2005年向量与三角函数、圆锥曲线知识点交汇高考题选编1----7.(湖南卷)设函数f (x)的图象与直线x =a,x =b及x轴所围成图形的面积称为函数f(x)在[a,b]上的面积,已知函数y=sinnx在[0, ]上的面积为 (n∈N* ),(i)y=sin3x在[0, ]上的面积为 ;(ii)y=sin(3x-π)+1在[ , ]上的面积为 . 2-----(17)(山东卷)已知向量 ,求 的值.3------(17)(全国卷Ⅰ)设函数 图像的一条对称轴是直线 。(Ⅰ)求 ;(Ⅱ)求函数 的单调增区间;(Ⅲ)画出函数 在区间 上的图像。4-----18.(江西卷)已知向量 .求函数f(x)的最大值,最小正周期,并写出f(x)在[0,π]上的单调区间.5-----(8)(全国)已知点 , , .设 的平分线 与 相交于 ,那么有 ,其中 等于 C(A)2(B) (C)-3(D)- 6-----(15)(全国) 的外接圆的圆心为O,两条边上的高的交点为H, ,则实数 .7------(18)(江苏) 在△ABC中,O为中线AM上的一个动点,若AM=2,则 的最小值是 .8------14、(天津)在直角坐标系xOy中,已知点A (0,1)和点B ( 3,4),若点C在∠AOB的平分线上且| OC | = 2,则 = __________。9-----21.(本小题满分12分)(福建)已知方向向量为v=(1, )的直线l过点(0,-2 )和椭圆C: 的焦点,且椭圆C的中心关于直线l的对称点在椭圆C的右准线上.(Ⅰ)求椭圆C的方程;(Ⅱ)是否存在过点E(-2,0)的直线m交椭圆C于点M、N,满足 ,cot∠MON≠0(O为原点).若存在,求直线m的方程;若不存在,请说明理由.10------19.(本小题满分14分)(湖南) 已知椭圆C: + =1(a>b>0)的左.右焦点为F1、F2,离心率为e. 直线l:y=ex+a与x轴.y轴分别交于点A、B,M是直线l与椭圆C的一个公共点,P是点F1关于直线l的对称点,设 =λ . (Ⅰ)证明:λ=1-e2; (Ⅱ)确定λ的值,使得△PF1F2是等腰三角形.11------21、(本题14分)(天津)抛物线C的方程为 ,过抛物线C上一点 ( )作斜率为 的两条直线分别交抛物线C于 , 两点(P、A、B三点互不相同),且满足 ( ≠0且 )。(Ⅰ)求抛物线C的焦点坐标和准线方程(Ⅱ)设直线AB上一点M,满足 ,证明线段PM的中点在y轴上(Ⅲ)当 时,若点P的坐标为(1, 1),求∠PAB为钝角时点A的纵坐标 的取值范围。12------(21)(本小题满分14分)(全国II)P、Q、M、N四点都在椭圆 上,F为椭圆在y轴正半轴上的焦点.已知 与 共线, 与 共线,且 .求四边形PMQN的面积的最小值和最大值.13-----(21)(本大题满分14分)(全国Ⅰ)已知椭圆的中心为坐标原点O,焦点在 轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A、B两点, 与 共线.(Ⅰ)求椭圆的离心率;(Ⅱ)设M为椭圆上任意一点,且 ,证明 为定值.14------(22)(本小题满分14分)(天津)抛物线C的方程为 ,过抛物线C上一点P(x0,y0)(x0¹0)作斜率为k1,k2的两条直线分别交抛物线C于A(x1,y1)、B(x2,y2)两点(P、A、B三点互不相同),且满足 (Ⅰ)求抛物线C的焦点坐标和准线方程(Ⅱ)设直线AB上一点M,满足 ,证明线段PM的中点在y轴上(Ⅲ)当 时,若点P的坐标为(1, 1),求ÐPAB为钝角时点A的纵坐标 的取值范围