首页

> 学术发表知识库

首页 学术发表知识库 问题

氯离子对香蕉根系的影响研究论文

发布时间:

氯离子对香蕉根系的影响研究论文

植物以氯离子(Cl-)的形式吸收氯。氯在植物体内与硝酸盐竞争吸收位点,与水分平衡有关。 而硝态氮促进植株吸收必需养分阳离子(钙离子、镁离子、钾离子等)应该是竞争作用。顺带一提。协和作用和竞争作用:一种离子的存在能促进植物对另一种离子的吸收,称为离子的协和作用。相反,一种离子的存在抑制植物对另一种离子的吸收,则称为离子的竞争作用。如:在光下硝酸根离子促进钾离子吸收,铵根离子促进磷酸根离子吸收,溴离子、碘离子的存在使氯离子吸收减少。这种现象的发生可能与离子竞争的结合部位有关。——————————————————————————————————真怀念那竞赛……又要找回那些资料……。

硝酸根离子含氮,氮是大量元素,是植物大量需要的,帮吸收量比氯离子多吧

高浓度氯离子对植物根系有伤害,同时氯化铵的可能分解出氨气,也会对植物造成影响。只有桂圆等少数植物用适量的氯肥可以增产。

氯离子对生物膜的影响研究论文

一般不是氯离子有影响,而是生成的次氯酸根对膜有较大影响。

氯离子含量高对微生物生长是有影响的。

高浓度氯离子对废水生物处理的毒害作用主要是通过升高的环境渗透压而破坏微生物的细胞膜和菌体内的酶,从而破坏微生物的生理活动。

工程经验数据表明:当废水中的氯离浓度大于2000mg/L时,微生物的活性将受到抑止,COD去除率会明显下降;当废水中的氯离子浓度大于8000mg/L时,会造成污泥体积膨胀,水面泛出大量泡沫,微生物会相继死亡。

基本介绍

微生物的单位结构是细胞,细胞壁相当于半渗透膜,在氯离子浓度小于等于2000mg/L时,细胞壁可承受的渗透压为0.5-1.0大气压,即使加上细胞壁和细胞质膜有一定的坚韧性和弹性,细胞壁可承受的渗透压也不会大于5-6大气压。

但当水溶液中的氯离子浓度在5000mg/L以上时,渗透压大约将增大至10-30大气压,在这样大的渗透压下,微生物体内的水分子会大量渗透到体外溶液中,造成细胞失水而发生质壁分离,严重者微生物死亡。

影响稳定性。氯离子是广泛存在于自然界的氯的-1价离子,无色。氯离子是生物体内含量最丰富的阴离子,通过跨膜转运和离子通道参与机体多种生物功能。氯离子在溶液中会生成沉淀或配离子则氯离子浓度增大,会增大沉淀或配离子的稳定性。蒸馏水是指经过蒸馏、冷凝操作的水。

易使膜被氧化,降低水通量,缩短使用寿命

水的氯离子对石膏的影响研究论文

雨水是水蒸气凝结而成的,如果空气没有污染的话,雨水中不会含有氯离子。所以雨水不会对氯离子含量产生影响。

脱硫水源改造该厂脱硫用水一直使用厂区工业水,厂区工业水源取自机组冷水塔内的循环冷却水,机组循环水冷却水氯离子在550mg/L 区间范围长周期运行。正常情况下,脱硫系统每小时耗用水量约150m3 左右,无疑,厂区工业水中氯离子含量高,是造成该厂脱硫石膏氯离子含量高的主要原因之一。该厂循环水补水来自城市中水,中水来水氯离子随着季节不同会有所变化,通常处于160mg/L 左右范围变化。因循环水浓缩倍率在3.5 倍上下,因而机组循环水冷却水氯离子会达550mg/L,甚至更高。改造方案:在主厂现有石灰预处理清水池处,安装清水输送泵,输送到脱硫系统用水管道处对接,保留原水系统做紧急备用。对脱硫系统用水水源进行技改后,水源更换为中水来水通过石灰预处理后的澄清水,氯离子含量降低为现有工业水的1/3~1/4 范围,氯离子降至160mg/L 左右范围。将大大改善吸收塔浆液品质,提高石膏脱水效果,促进石膏品质稳定。同时,脱硫系统水源改造后,浆液中氯离子状况大大改善,将大幅降低废水处理需求量。3.7 废水系统改造和维护鉴于板框压滤机存在经常拉板拉不开、滤布冲洗不正常等问题,对其进行更换。在真空皮带脱水机的气液分离器底流管道上设置一路旁路接送到废水缓冲箱,脱硫废水取自真空皮带机滤液,含泥量大大减少、颗粒物减小,大大改善了废水处理系统运行条件。

石膏氯离子含量高的害处有:1、因脱硫石膏含有一定液态水,氯离子处于电解状态,对接触石膏的界面,特别是碳钢,腐蚀较严重。2、石膏氯离子高往往是浆液氯离子高,此时浆液脱水较困难,石膏晶体不易长大,石膏品质差。3、氯离子含量高,使脱硫石膏作为建筑材料使用受限,或者直接不能用。

钠离子对生化的影响研究论文

生物小论文 (关于种子) 一、种子的发芽率 种子发芽率一般是指在适宜的条件下,经浸种吸足水分的种子,在l0天内发芽的种子数占供试种子总数的百分率。它是决定种子质量和实用价值,确定播种量和用种量的主要依据。不同的种子,其发芽力往往有很大差别,相同的种子,其发芽力也会有变化。种子的发芽力受栽培条件、成熟程度、收获时的气候、入库时的种子含水率以及贮藏条件好坏、贮藏时间长短等多因素的复杂影响。如果不进行发芽测定,盲目地进行浸种、催芽或者直接播种,就有可能出现出苗不齐、苗数不足、甚至完全不出苗等现象,其结果不仅浪费粮食,又耽误了季节,造成生产被动。认真做好种子的发芽力测定,周密计算用种量,有计划地进行生产,不但可以避免出现上述情况,还可以提高产量。水稻种子发芽率常用的测定计算方法是:先从供试品种的种子容器中,分上、中、下、边缘、中央不同部位分别随机取出少量种子,去除杂质后,在水温20—30℃条件下浸24小时,然后将吸足水分的种子以100粒为一组,分成四组,分别均匀排列在铺有滤纸或草纸的4个培养皿内,并分别以等量适量的水,放在气温30—35℃环境条件—下,逐日记载发芽数,从试验开始记载10天,最后分组计算其发芽率,四组的平均数即为该种子的发芽率,其计算公式为:发芽率(%)=发芽的种子数*100/供试种子总数 二、种子发芽需要的条件 种子发芽必需的条件是水分、温度、氧气及阳光。 水分是种子发芽的首要条件。种子必须吸收足够的水分才能加速种子内部的生理作用,促进酶的活动,有利于贮藏养料的溶解和胚的增长,从而促进种子的萌发。 温度也是种子发芽必要条件之一。种子在吸收足够水分和氧气后,还需要一定的温度才能萌发,温度是种子萌发的能量来源。温度作用在于促进酶的活性,种子萌发的最适温度也就是酶的最适宜温度。此外,温度也直接影响到种子吸水快慢和呼吸强弱。在一定温度范围内,温度越高,种子吸水越快,呼吸也越强,发芽越快。 种子发芽试验需要大量的氧气。种子发芽时呼吸作用增强,如种子缺氧呼吸,造成种子不宜发芽。 不同作物种子,发芽时对光的反应不同。大部分农作物种子(如玉米、禾谷类等种子)对光照要求不严格。这些种子发芽试验时用光照或黑暗均可。有一些好光性的种子如烟草种子,芹菜种子等,只有在光照条件下才能发芽或促进发芽。还有一些嫌光性的种子,如黑草种有光照时会抑制发芽。这些种子发芽试验时应给黑暗处理。 三、种子萌发的过程 当一粒种子萌发时。首先要吸收水分。子叶或胚乳中的营养物质转运给胚根、胚芽、胚轴。随后,胚根发育,突破种皮,形成根。胚轴伸长,胚芽发育成茎和叶。 我也曾经做过两次种子萌发的实验,是用绿豆做的,第一次实验的时候,因为总是忘了给种子加水,结果种子全都干死了,终于第一次实验以失败而告终。接着马上就迎来了第二次实验,这次记得了上次的教训,我的种子终于发芽了

钠离子是不可以调节ph值的,调节ph值的是氢离子或者氢氧根离子可以间接调节。交换得越彻底,水质的过剩碱度也就越大,经过锅炉蒸发浓缩后pH值会上升。当然,如果钠离子交换器出水硬度已经达到最低,那么这时候过剩碱度无论如何也上不去了,这时候只能通过锅内加药来调节pH值。

只知道第2问,蛋白质变性就是蛋白质在化学、物理、生物等因素的作用下使其空间结构发生变化,失去原有的活性及功能。可以对蛋白质变性研究,来开发治愈阮病毒带来的疾病等待高手完善!

氢离子对铜结晶的影响研究论文

用化学方程式也一样是正确的,只是感觉会很乱。要明确的一点是,在溶液中只要同时存在着游离态的氢离子和硝酸根离子,我们就可以把它认为是硝酸,因此在反应结束后溶液中的硝酸铜是以游离态的铜离子和硝酸根离子的形式存在的,而硫酸又可以电离出氢离子,因此氢离子与硝酸根离子在一起时又会形成了硝酸,与没有反应完全的铜单质继续反应。3Cu+8H+2NO3(-)==3Cu(2+)+2NO+4H20此题是根据此离子方程式来判断用哪个数值计算的,根据已知,1.92g铜粉为0.03mol,因此若有0.03mol铜参加反应,根据方程式,则需氢离子为0.08mol,硝酸根离子为0.02mol。再看下条件所给出的硝酸物质的量为0.4*0.1=0.04mol,硫酸为0.1*0.1=0.01mol,计算出总的氢离子物质的量为0.04+0.01*2=0.06mol;总的硝酸根物质的量为0.04mol。再来比较一下,铜为0.03,氢离子为0.06,硝酸根为0.04,根据方程式的铜:氢离子:硝酸根=3:8:2得出,三种粒子中铜和硝酸根均是过量的,因此就用氢离子的0.06mol带入离子方程式计算出结果。

因为铜不能与稀盐酸稀硫酸等酸发生置换反应,所以铜的失电子能力比氢弱,相反的铜离子的得电子能力就较强了,即氧化性较强。

在电化学上的电解反应才会出现,一般的反应是不能进行的!

因为Cu和稀硝酸反应的实质是Cu和氢离子还有硝酸根反应,而硫酸正好提供了氢离子,3mol的铜,硝酸根实质上只有2mol参与了反应。所以不能直接拿HNO3来计算。

相关百科

热门百科

首页
发表服务