首页

> 学术发表知识库

首页 学术发表知识库 问题

氯化锌对塑料的影响研究论文

发布时间:

氯化锌对塑料的影响研究论文

氯化锌的危害主要来自于氯化锌的毒性,氯化锌毒性很强,能剧烈刺激及烧灼皮肤和粘膜,长期与本品蒸气接触时发生变应性皮炎。吸入氯化锌烟雾经5-30min后能引起阵发性咳嗽、恶心。对上呼吸道、气管、支气管黏膜有损害。美国对氯化锌烟雾规定最高容许浓度为1mg/m3。 生产人员工作时要穿工作服,戴防护眼镜、防毒口罩、乳胶手套,以保护皮肤、眼睛、呼吸器官。车间通风要良好,下班后要洗热水淋浴。 工业固体氯化锌应以内衬聚乙烯袋的镀锌铁桶包装,也可用塑料桶、纸板桶或内衬聚乙烯袋的复合塑料袋的镀锌铁桶包装,也可用塑料桶、纸板桶或内衬聚乙烯袋的复合塑料编织袋包装,每桶(袋)净重50kg或25kg。工业氯化锌液体应用塑料桶或内涂耐酸漆等防腐材料的钢制槽车装运。包装上应有明显的“腐蚀性物品”标志.随着科技的发展,氯化锌的危害已经被开发商降到了最低,但是氯化锌的危害仍然存在,因此在处理氯化锌需要小心,仔细能改变 煤中有机质的富集程度,进而会影响煤热解特性.基于此,本实验主要从微观方面 研究不同密度级氯化锌溶液下的浮沉对上浮煤热解性能的...

道路用盐中使汽车零部件的失效风险进一步增加。因此设计人员需要对影响电池冷却效果和交流电管路安全性的关键零部件进行技术评估。

环境应力开裂(environment stress cracking,ESC)对于汽车塑料燃油管的设计人员而言,是1类较为常见的现象,为此需要对其开展相关试验。目前,现有的汽车塑料管路至少需要包含1个由长链聚酰胺树脂制作的外层——特别是聚酰胺(PA)11或12。

ESC是1类由于应力和环境同时作用而导致的严重失效现象。其主要原因是位于汽车底盘下方的零部件直接与道路用盐接触所致。ESC与化学降解过程并无直接联系,而是由于零部件细裂纹和盐结合后产生了1种化学物质,以此能加速应力形成。这种应力可同时存在于内部(过程残余)与外部(弯曲、压力、装配)。主要导致ESC现象产生的化学成分是氯化物,其会在酰胺基之间与氢键发生反应。

钠、钙、镁的氯化物为道路用盐中的主要成分。在冬季阶段,道路施工人员通过该类物质来去除附着于道路上的冰层。此类物质会导致PA材料的塑化现象,因此增加了聚合物的流动性并减小了机械阻力。金属氯化物(锌、铁和铜)等盐类物质主要在汽车内部形成,并会在酰胺基之间形成金属络合物,其为1类较强强的化学键。PA被这些化学物质交叉键连,由此使得PA的流动性高度减少,从而建立的应力无法被进一步释放,并使材料变得更为脆弱。在该类应力作用下,塑料很容易出现破裂现象。

耐氯化锌

针对汽车管路的主要测试标准,如DOT 106、ISO 7628、SAE J 2260等,对氯化锌的抵抗性进行了评价,同样也有许多汽车制造商制定了相应标准。上述试验充分证明了长链PA,中链PA及短链PA的优越性。部分汽车制造商,如标致雪铁龙(PSA),采用了特别的试验程序去评价压力管路对道路用盐的抵抗效果。

为了更好地理解ESC现象的成因,阿科玛(Arkema)公司已开发了1项特殊试验,其能对不同聚合物在不同试验工况下的性能进行精确评定。在80 ℃条件下,试验人员将切割后的管路环放入牵引机中,使其承受约30%的拉力,然后使其与氯化锌溶液接触。随后,试验人员对其进行仔细监测,使其应力水平逐步降至零。

该试验表明PA 6几乎会立刻开裂,PA 610会在10 min以内开裂。有趣的是,该项试验清晰表明了不同长链PA间的性能差别。其中,PA 1010仅持续了约1 h,PA 12 坚持了150 h,而PA 11几乎能坚持约300 h。

性能试验

此外,Arkema公司的试验人员对零部件开展了相关试验。在试验过程中,当设计人员将PA 612作为外层时,所有的PA 612零件均出现了细裂纹,并且部分零件存在严重的失效现象,而由耐温性PA 11制成的零部件并未出现任何细裂纹。

试验人员对同样直径的多层结构管路进行了其他设置。此类管路被机械性地插在杉树形快插连接件上,其所采用的内层材料为PA 6。试验材料在60 ℃的氯化锌溶液中浸没24 h后,并未进行烘干且试验条件并不严苛。采用PA 612的多层物质中约有50%出现了严重失效现象,然而采用PA 12的多层物质并未出现任何细裂纹迹象。

所有的结果证明中链PA,如610和612等物质不适用于制造汽车管路。由此设计人员需要认真考虑ESC面临的风险。功能需求和测试程序必须适应零件位置,并使其充分适应环境,特别是内部和外部的温度。

目前,已有越来越多的汽车制造商针对电动汽车及自动驾驶汽车开展了研发工作。在该情况下,位于电动汽车底盘下的冷却管路和高压空调设备管路是汽车制造商需要考虑的1项重要元素。

作者:ETi

整理:王少辉

编辑:伍赛特

本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。

ZnCl2是比较强的路易斯酸,可以与氧配位,进一步催化其水解

我有详细 资料 怎么联系 人生试题一共有四道题目:学业、事业、婚姻、家庭。平均分高才能及格,切莫花太多的时间和精力在任一题目上。

铝元素对镀锌的影响研究论文

铝优先与铁发生反应,铝的氧化物熔点高,有时会阻止锌铁合金的形成,漏镀

因为铝会改变锌液的表面张力。

(1)如果含铝量过高,则会造成锌锅中的钢带和铁制设施的腐蚀速度加快,也会使铁原子大量进入锌液中带来一系列不良作用。(2)对于锌铁合金产品而言,镀锌以后还需进行铁原子的扩散化退火,使纯锌层变成锌铁合金镀层,铝抑制了铁原子向镀层中的扩散作用,就会使退火转变收到妨碍。(3)铝含量过高的产品耐硫酸铜侵蚀能力降低。

防止氧化生锈

氯离子对生物膜的影响研究论文

一般不是氯离子有影响,而是生成的次氯酸根对膜有较大影响。

氯离子含量高对微生物生长是有影响的。

高浓度氯离子对废水生物处理的毒害作用主要是通过升高的环境渗透压而破坏微生物的细胞膜和菌体内的酶,从而破坏微生物的生理活动。

工程经验数据表明:当废水中的氯离浓度大于2000mg/L时,微生物的活性将受到抑止,COD去除率会明显下降;当废水中的氯离子浓度大于8000mg/L时,会造成污泥体积膨胀,水面泛出大量泡沫,微生物会相继死亡。

基本介绍

微生物的单位结构是细胞,细胞壁相当于半渗透膜,在氯离子浓度小于等于2000mg/L时,细胞壁可承受的渗透压为0.5-1.0大气压,即使加上细胞壁和细胞质膜有一定的坚韧性和弹性,细胞壁可承受的渗透压也不会大于5-6大气压。

但当水溶液中的氯离子浓度在5000mg/L以上时,渗透压大约将增大至10-30大气压,在这样大的渗透压下,微生物体内的水分子会大量渗透到体外溶液中,造成细胞失水而发生质壁分离,严重者微生物死亡。

影响稳定性。氯离子是广泛存在于自然界的氯的-1价离子,无色。氯离子是生物体内含量最丰富的阴离子,通过跨膜转运和离子通道参与机体多种生物功能。氯离子在溶液中会生成沉淀或配离子则氯离子浓度增大,会增大沉淀或配离子的稳定性。蒸馏水是指经过蒸馏、冷凝操作的水。

易使膜被氧化,降低水通量,缩短使用寿命

水的氯离子对石膏的影响研究论文

雨水是水蒸气凝结而成的,如果空气没有污染的话,雨水中不会含有氯离子。所以雨水不会对氯离子含量产生影响。

脱硫水源改造该厂脱硫用水一直使用厂区工业水,厂区工业水源取自机组冷水塔内的循环冷却水,机组循环水冷却水氯离子在550mg/L 区间范围长周期运行。正常情况下,脱硫系统每小时耗用水量约150m3 左右,无疑,厂区工业水中氯离子含量高,是造成该厂脱硫石膏氯离子含量高的主要原因之一。该厂循环水补水来自城市中水,中水来水氯离子随着季节不同会有所变化,通常处于160mg/L 左右范围变化。因循环水浓缩倍率在3.5 倍上下,因而机组循环水冷却水氯离子会达550mg/L,甚至更高。改造方案:在主厂现有石灰预处理清水池处,安装清水输送泵,输送到脱硫系统用水管道处对接,保留原水系统做紧急备用。对脱硫系统用水水源进行技改后,水源更换为中水来水通过石灰预处理后的澄清水,氯离子含量降低为现有工业水的1/3~1/4 范围,氯离子降至160mg/L 左右范围。将大大改善吸收塔浆液品质,提高石膏脱水效果,促进石膏品质稳定。同时,脱硫系统水源改造后,浆液中氯离子状况大大改善,将大幅降低废水处理需求量。3.7 废水系统改造和维护鉴于板框压滤机存在经常拉板拉不开、滤布冲洗不正常等问题,对其进行更换。在真空皮带脱水机的气液分离器底流管道上设置一路旁路接送到废水缓冲箱,脱硫废水取自真空皮带机滤液,含泥量大大减少、颗粒物减小,大大改善了废水处理系统运行条件。

石膏氯离子含量高的害处有:1、因脱硫石膏含有一定液态水,氯离子处于电解状态,对接触石膏的界面,特别是碳钢,腐蚀较严重。2、石膏氯离子高往往是浆液氯离子高,此时浆液脱水较困难,石膏晶体不易长大,石膏品质差。3、氯离子含量高,使脱硫石膏作为建筑材料使用受限,或者直接不能用。

环境潮湿对镀锌层的影响研究论文

§5-2金属在海水中的腐蚀 海水是具有强腐蚀性的天然电解质,海上各种运输工具舰船,海上石油采钻平台,海底电缆,输油管道都面临海水腐蚀,所以研究和解决金属材料的海水腐蚀??对发展我国海运和海洋开发都具有重要的意义。一,海水特点1, 海水溶有大量NaCl为主的盐类。其含NaCl量约为3%或3.5%2, 海水具有很高的导电率3, 海水表面含氧量随水温不同大约在5-12ppm之间4, 海水的PH值通常在8.1-8.3%二、海水腐蚀的电化学过程海水既然是一种典型的电解质溶液,关于电化学腐蚀的基本规律也适用于海水腐蚀,但海水腐蚀的电化学过程又有其自身的特点。1、 海水近中性且含有溶解氧,对于大多数金属或合金在海水中的腐蚀过程都是氧去极化过程2、 海水中含有大量Cl-离子,对于大多数金属(钢,铁,锌)在海水中的腐蚀,阳极极化程度很小,这是因为Cl-离子能阻碍和???金属的钝化,其破坏方式有①破坏氧化膜,②Cl-比某些钝化剂更易吸附,③Cl-与金属形成络合物加速了阳极溶解。由于这些原因即使是不锈钢也难以保持不腐蚀,若在不锈钢中加入Mo则能提高其在海水中的稳定性。3、 海水的电阻率很小,因此异种金属接触能造成的显著的电焊腐蚀。其作用强烈,作用范围大,如前面讲了海船的青铜螺旋桨能引起数十米远钢制船身腐蚀。4、 在海水中由于钝化的局部破坏,很容易发生空隙和缝隙腐蚀等局部腐蚀。三、影响海水腐蚀的因素。海水是含有多种盐类的溶液且又含有生物,悬浮状砂,腐败的有机物等,其腐蚀速度与化学物理,生物等因素有关它要比单纯的盐溶液腐蚀强很多。1、 盐的浓度:海水是以NaCl为主的盐溶液,钢的腐蚀速度与含盐量关系如下图所示,随NaCl浓度升高腐蚀速度加快对海水来说其NaCl的浓度范围正好在最大范围内,当溶盐超过一定值后,由于氧的溶解度降低使金属腐蚀速度下降。2、 含氧量:海水中氧含量是影响海水腐蚀的重要因素,因金属在海水中的腐蚀主要是氧去极化过程,因此海水中含氧量增加可使金属腐蚀速度增加,海水表面与大气接触,含氧量最高可达12ppm,随海水浓度增加氧含量降低,随海水中盐浓度增加和温度上升,含氧量也降低。3、 温度:和其他反应一样,温度升高,金属腐蚀速度加快而海水温度随纬度季节和海水???不同而变化。4、 海生物:在海生物为了维持其生命活动要吸收氧气,放出二氧化碳在其死亡后,尸体分解析出H2S。CO2和H2S会加速金属的海水腐蚀速度,如在??设在海水中的金属设备常丛生着一些??和附着一些动物使金属腐蚀加速。5、 海水流速(金属结构与海水的相对运动速度)因海水的腐蚀过程是氧去极化过程,海水流速大使金属腐蚀速度加快。四、防止海水腐蚀的方法1、 电化学保护,主要是阴极防护是防止海水腐蚀的常用方法,它是依靠牺牲阳极来实现阴极保护的。用来作牺牲阳极的材料为锌合金,镁合金,铅合金。2、 合理选材:①选用含Mo的不锈钢??减少????,②选用耐腐蚀的钛合金,铜合金,??合金。3、 涂层保护,这是防止海水腐蚀的普遍采用的方法,如采用防锈漆涂料和防止生物粘污的防污涂料§5-3土壤腐蚀埋在地下的金属油气水管,电缆等由于土壤腐蚀造成管线穿孔,而漏气,漏油,漏水或使电信发生故障而且这些设备很难检测,给生产造成很大的损失和危害,如美国每年因腐蚀而替换的管子费用就有几亿美元之多,对我国来说,随着石油工业的发展,每年有大量的管线埋在地下投入运行,因此研究土壤腐蚀规律寻找有效的防护措施具有重要的实际意义土壤腐蚀是一种电化学腐蚀,溶解有盐类和其他物质的土壤电解质,其腐蚀要比一般盐类溶液腐蚀严重的多。一、土壤电解质的特点1、 土壤的多相性:土壤由土粒,水,空气等组成,具有复杂的多相结构,土粒中又含有多种无机物和有机物土粒粒度大小也不同,往往有几种不同土粒(砂,碳土,粉沙土,粘土)组成的。2、 土壤具有毛细管多孔性:在土壤颗粒间形成大量毛细管微孔或孔隙,孔隙中充满空气和水,因此土壤的孔隙度和含水性的程度有影响土壤的透气性和导电率的大小。3、 土壤的不均匀性:在宏观上讲不同区域,土壤性质上不同,从微观结构讲,即前面讨论的由水,土壤,气孔,水分的存在其结构紧密程度上的差异。4、 土壤的相对固定性:土壤固体部分对埋在地下的金属构件是固定不变的,仅土壤中液相和气相可作有限运动。二、土壤腐蚀过程 土壤腐蚀过程同样可分为阳极过程和阴极过程1、 阳极过程:钢管埋在土壤中阳极区发生铁的溶解反应。 阳极反应进行的速度首先受金属离子水化过程的难易控制,因此土壤的湿度对阳极过程影响较大,尤其是土壤中的氯离子Cl-和硫酸根离子能与Fe2+生成可溶性盐类,会加速阳极溶解。2、 阴极过程:在弱酸性,中性和碱性土壤中阴极过程主要是氧的去极化作用。土壤中的氧存在于土壤孔隙中和溶解在水中,由于水中溶解氧是有限的,对土壤腐蚀其主要作用的缝隙和毛细管中的氧,但是这些氧到达阴极表面的传递过程是比较复杂的,其传递速度取决于土层的厚度,结构和湿度,厚的土层阻碍氧的扩散,且土壤粘度越大湿度越高,氧到达阴极表面越困难,金属的腐蚀越轻,反之,土层浅土壤疏松,湿度小,透气性好金属腐蚀就越严重。对于大多数土壤来说是腐蚀决定于腐蚀微电池作用时,腐蚀过程强烈的为阴极过程所控制,如下图所示三、土壤腐蚀的几种形式1、 由于充气不够均匀引起的腐蚀:主要是地下管道穿过结构不同和潮湿度不同的土壤带时,由于所接触的氧浓度差别引起的宏观电池腐蚀,(图)与含氧量较高的土壤(砂土)接触的管道成为宏观腐蚀电池的阴极区,而与含氧量较少的土壤(粘土区)接触的管道,成为宏观腐蚀电池的阳极区。该区将受到腐蚀。管道埋设在结构不同土壤中发生氧的浓差电池腐蚀,??如埋设湿度不同也会造成氧的浓差宏观电池,离地面较深的部位为阳极区受到腐蚀,在直径较大的水平输送管道上就能看到感到下部比上部腐蚀更为严重。2、 由于杂散电流引起的腐蚀:所谓杂散电流指由原定的正常电路漏失而流入它处的电流,其主要来源是应用直流电大功率装置,如有轨电车,地铁,电气大??以接地为回路的交通工具以及电解电镀槽等直流电力系统,图是有轨电车附近的下金属管道由于杂散电流而引起的腐蚀示意图,在正常情况下,电流自电源的正极通过电力机车的架空线再沿铁轨回到电源负极,但是当铁轨与土壤间的绝缘不良时,有一部分电流就会从铁轨漏失到土壤中,如果其附近有地下管道,杂散电流便通过管道再流经土壤回到电源,此时相当于有两个串连的电解池即:路轨(阳极)│土壤│管道(阴极)管道(阳极)│土壤│路轨(阴极) 在第二个电解池中的阳极区(杂散电流从管道的流出端)发生腐蚀,管道上的杂散电流可高达300-500A其影响又达到几十公里,如??7-8mm的钢管在4个月内便可腐蚀掉。3、 由于微生物引起的腐蚀 在缺氧条件下,如密实,潮湿的粘土深处,金属腐蚀似乎很难进行,但是这样的条件却特别有利于某些微生物的生长,特别是有硫酸盐还原菌存在时,这种细菌能将硫酸盐还原成氧,其中一部分消耗于微生物自身的新陈代谢,大部分可作为阴极去极化剂,引起地下金属管道强烈腐蚀,据统计地下埋设的金属构件有一半是属于这种腐蚀四、影响土壤腐蚀的因素2、孔隙度(透气性),较大的孔隙度有利于用氧的渗透和水分存在,因而是腐蚀的促进因素。3、含水量:图表示铜管的腐蚀速度与土壤含水量关系,可以表示当含水量很高时,氧的扩散,渗透受到阻碍,腐蚀速度较小,随含水量减少,扩散渗透氧均匀,氧去极化变易腐蚀速度增加,当含水量在10%一下,由于水分短缺,因阳极极化和土壤的电阻增大,腐蚀速度又急剧降低。4、 电阻率:土壤电阻率与土壤孔隙度,含水量及含盐量等因素有关,土壤的电阻越小腐蚀越严重,如土壤潮湿含氧量高,腐蚀严重。5、 土壤的酸度PH值:大部分土壤呈中性PH值为6-8之间,但也有PH值为9-10的碱性土壤及PH值为3-6的酸性土壤(沼泽土,腐植土)在PH≤4的酸性土壤中氢的阴极去极化,能顺利进行,使腐蚀速度增加。1. 土壤中的含氧量。土壤中的氧有的溶解在水中有的存在于毛细管中和隙缝中,含氧量在干燥的砂土中最高,在潮湿的砂土中次之,在潮湿密实的粘土中最少,??的速度由于湿度和结构不同土壤中含氧量可相差几百倍,这种充气不均匀是造成氧浓度差电池腐蚀的主要原因。五、防止土壤腐蚀的措施1、 覆盖层保护:在土壤中普遍使用焦油沥青质的覆盖层,在涂层内用玻璃纤维(布),石棉等纤维材料地下还缠绕加固地基,也可采用聚乙烯叠料或环氧树脂喷涂。2、 金属土层或包覆金属:镀锌有一定效果,?????,因为镀层与被覆的金属构成腐蚀电路,使镀层很快造成破坏。用铅包覆电缆有较好的效果,因为铅在地下比碳钢稳定很多,腐蚀速度小。3、 采用电化学保护:广泛采用牺牲阳极或外加电流对地下管道进行保护,甚至把覆盖层与电化学保护结合地使用,在涂层??地方阴极保护其作用。§5-4微生物(细菌)腐蚀微生物(细菌)腐蚀指在微生物生命活动参与下所发生的腐蚀过程,又由于与腐蚀有关的微生物主要是细菌类,又称细菌腐蚀。凡是同水,土壤,潮湿空气接触的金属???都可能遭到微生物腐蚀,前面曾讲到有50%以上的地下管道的腐蚀都与微生物腐蚀有关。此???深水泵,油田冷水系统,水坝,码头等金属设施也都可能发生微生物腐蚀。一、微生物腐蚀的特征1、 微生物腐蚀并非微生物直接食取金属,而是微生物生命活动结果直接或间接参与了腐蚀过程。2、 微生物的生命过程即生长繁殖需具有适宜的环境条件,如一定的温度,湿度,酸度,环境含氧量及营养源等,因此微生物腐蚀显然与这些条件密切相关3、 微生物腐蚀往往是多种微生物共生(嗜氧菌的腐蚀造成厌氧菌的环境)是相互作用的结果。4、 有粘泥存在5、 腐蚀部位伴有孔蚀迹象(∵粘泥下为贫氧区,因氧浓差电池腐蚀会造成)二、微生物腐蚀机制1、 微生物新陈代谢产物的腐蚀作用,这些腐蚀性的新陈代谢物包括无机物,有机物,硫化物,氨等??腐蚀环境2、 促进腐蚀的电极反应动力学过程如硫酸盐还原菌的存在(其活动过程)3、 致变金属周围环境的氧浓度含盐量,??度等,形成氧浓差等局部腐蚀电池。4、 破坏具有保护作用的涂覆层或缓蚀剂的稳定性,如有机纤维覆盖层被分解破坏,亚硫盐缓蚀剂因细菌作用而被氧化。三、与腐蚀有关的主要微生物(细菌) 细菌按其生长发育中对氧的要求分为:嗜氧性细菌及厌氧性细菌,前者需要有氧存在才能生长繁殖,后者在缺氧条件下才能生长繁殖。1、 硫酸盐还原菌:这种菌在自然界分布非常广泛,属于厌氧细菌,所造成的腐蚀类型常呈点蚀局部腐蚀。腐蚀产物是黑色的带有难闻气味的硫化物。反应机理如下:阳极反应: 水电离: 阴极反应: 细菌引起阴极去极化: (腐蚀产物)2、 硫氧化菌:属于嗜氧性细菌,被还原的土壤组分是硫,硫化物,硫代硫酸盐,常存在施肥的及含有硫的土壤,这种细菌能将硫及硫化物氧化成硫酸,其反应为:3、 铁细菌:属于嗜氧性细菌,其分布也相当广泛,有杆,球,丝多种形态,被还原的土壤组分主要是碳酸亚铁,碳酸氢亚铁等常存在于含有铁盐的有机物的静水流水中,溪流和泉水少,该细菌能使二价铁离子氧化成三价并沉淀于菌体内。四、微生物腐蚀的控制1、 使用杀菌剂和抑菌剂:所用的这些药剂除具有高校,低毒,稳定价廉外,主要根据微生物种类及使用环境来选择,如对于铁细菌可通氯杀死,但残余氯含量应该控制在0.1-1ppm之间,否则氯离子又要引起腐蚀,对于硫酸盐还原菌采用铬酸盐较为有效。2、 致变环境条件,通过改变环境条件抑制微生物生长,如减少微生物有机物营养源,提高PH值(PH>5)及提高温度(>50℃)3、 覆盖防护层:地下管道采用炼焦油沥青涂层4、 阴极保护,如为防止硫酸盐还原菌的作用对于土壤中钢铁构件的保护电位被控制在-0.950v以下。

不管是钾盐镀锌、锌酸盐镀锌、还是氰化物镀锌,天气对电镀本身不会有太大影响。倒是对钝化膜有点影响,高温高湿的环境有可能会影响到镀锌的钝化膜的耐腐蚀效果;钝化膜本身如果耐蚀性不好的话,甚至容易形成白锈。

相关百科

热门百科

首页
发表服务