在流行病学,生物统计学和天文学中常遇到随机截断数据。在随机截断下,人们关系的随机变量X被另一个随机变量Y干扰。只有当X≥Y时,才能观测到X和Y。在这个模型下,人们需要用截断数据估计X的分布函数F。F的非参数最大似然估计Fn在下述意义下服从中心极限定理。对任何可测函数g(x),√n∫g(x)[dFn(x)-dF(x)]依分布收敛到均值为零方差为σ^2的正态分布。从这个结果可以得出F的各种矩,特征函数等估计的渐近正态性。作为推论,还可以得到Fn在整个直线上的依分布收敛。我们的结果不要求X和Y的分布函数连续,得到的方差公式是简明的。