一、设计任务书设计带式输送机的传动装置。工作条件:带式输送机连续单向运转,工作平稳无过载,空载起动,输送带速度允许误差±5% ;两班制工作(每班按8小时计算),使用期限10年,小批量生产。具体的设计任务包括:(1)传动方案的分析和拟定;(2)电动机的选择,传动装置的运动和动力参数的计算;(3)传动零件的设计(带传动、单级齿轮传动);(4)轴和轴承组合设计(轴的结构设计,轴承组合设计,低速轴弯、扭组合强度校核,低速轴上轴承寿命计算);(5)键的选择及强度校核(低速轴上键的校核);(6)联轴器的选择;(7)减速器的润滑与密封;(8)减速器装配草图俯视图设计(箱体、附件设计等);二、传动方案的拟定及电动机的选择已知条件:运输带的有效拉力 F=3000N,传送带的速度为 v=2m/s,滚筒直径为 D=300mm。连续单向运转,工作平稳无过载。1、 传动方案的拟定 采用V带传动及单级圆柱齿轮传动。(1)、类型:采用Y系列三相异步电动机(2)、容量选取:工作机有效功率: Pw=FV/1000=3000 2/1000=6KW设 :V型带效率 :滚动轴承效率 :闭式齿轮传动(设齿轮精度为8级)效率 :弹性联轴器效率 :卷筒轴效率 ŋ6: 滚筒效率 查表得 ŋ2= ŋ3= ŋ4= ŋ5=ŋ6=传动装置总效率为: ŋ总= ŋ1 ŋ 2^2 ŋ3 ŋ4 ŋ5 ŋ6=×××××电动机所需功率为: Pd=FV/1000×查《机械设计基础课程设计》附录二, 选取电动机的额定功率 Pe=(3)、确定电动机转速滚筒转速为: =60×1000V/πD=60×1000×2/π×300=/min因带传动的传动比2-4为宜,齿轮传动的传动比3-5为宜,则最大适宜传动比为 最小适宜传动比为 则电动机转速可选范围为: nd=i =×(6~20)= r/min可选的同步转速有 1000r/min 1500r/min 3000r/min三种,三种方案的总传动比分别为:i = i = =考虑到电动机转速越高,价格越低,尺寸越小,结构更紧凑,故选用同步转速为 的电动机。查《机械设计基础课程设计》附录二,得此电动机的型号为 Y132M-4。电动机型号:Y132M-4 额定功率 : 满载转速 :1440 启动转矩 : 最大转矩 : 由电动机具体尺寸参数 ,得中心高: 132mm外型尺寸 : 515*(270/2+210)315底脚安装尺寸 :216 178 地脚螺孔直径 :12 轴外伸尺寸 :38 80 装键部位尺寸 :10 33 38 2、 计算传动装置的总传动比并分配传动比(1)、总传动比: i总=(2)、分配传动比:取带传动比 i带=,则减速器传动比 i齿=。三、 传动装置的运动和动力参数计算1、各轴转速计算 nⅠ= /i带=1440/ r/min nⅡ=nⅠ/i齿=/ r/min 滚筒n筒=nⅡ= r/min2、各轴输入功率计算 PⅠ= Pd ŋ带=× PⅡ=PⅠŋ2=×096= kw3、 各轴输入转矩计算Td=9550×Pd/nⅠ=9550×/1440=Ⅰ=9550×PⅠ/nⅠ= 9550×/Ⅱ=9550×PⅡ/nⅡ=9550×/四、传动零件的设计计算(一)、V带及带轮的设计已知条件:电动机型号为 Y132M-4 中心高132mm,电动机的输出功率为 。满载转速为 1440r/min。每天运转时间为16小时(八小时每班,两班制),I轴转速为 r/min齿轮传动传动比: i=nⅠ/nⅡ=4(1) 、确定计算功率 每天运转时间为16小时的带式输送机的工况系数 =。则 = Pe=× kw(2)、 选择V带型号 查表知选A型带并考虑结构紧凑性等因素,初选用窄V带SPA型。(3)、确定带轮的基准直径 和 I、初选小带轮直径 一般取 ,并取标准值。查表取小带轮直径为125m m。机中心高为 H=132mm,由 ,故满足要求。II、验算带速 V=пd1n1/60×1000=×125×1440/60×1000 =/s一般应使 ,故符合要求。III、计算大带轮直径 要求传动比较精确,考虑滑动率 ,取 = 有 =(1- )i带 =()×125×取标准值 =350mm则传动比 i=对减速器的传动比进行修正,得减速器的传动比 i=4从动轮转速为 n2=/minIV、确定中心距和带长 【1】 由式 ,可得 mm≤a≤950 mm取初步中心距 =750mm(需使 a》700)【2】 初算带长 Dm=(D1+D2)/2= mmΔ=(D2-D1)/2= +2a+Δ /2=2402mm选取相近的标准长度 Ld=2500mm【3】 确定中心距 实际中心距a≈ +(Ld-L) /2=750+(2500-2402)/2=800mm V、验算小轮包角 【1】计算单根V带的许用功率 由SPA带的 =125mm, n=1440r/min i带= 得 = 又根据SPA带 Δ = 又由 Ld=2500mm查表,长度系数 =180°-Δ×60°/a=° 同时由 =°得包角系数 Ka= 【2】、计算带的根数zZ=Pc/(P0+ΔP0)Kl Ka= 取z=5SPA带推荐槽数为1-6,故符合要求。VI、 确定初拉力 单位长度质量 q=/m单根带适宜拉力为:=、 计算压轴力 压轴力为:FQ=2z sin( a1/2)= 、张紧装置此处的传动近似为水平的传动,故可用调节中心距的方案张紧。 VIIII、带轮的结构设计 已知大带轮的直径da2=350mm,小带轮的直径为 da1=125mm。对于小带轮,由于其与电动机输出转轴直接相连,故转速较高,宜采用铸钢材料, 又因其直径小,故用实心结构。 对于大带轮,由于其转速不甚高,可采用铸铁材料,牌号一般为HT150或HT200, 又因其直径大,故用腹板式结构。(二)、齿轮设计已知条件:已知输入功率P1= ,转速为 n1= r/min,齿数比 u=4,单向运转,载荷平稳,每天工作时间为16小时,预计寿命为10年。(1)、选定齿轮类型、材料、热处理方式及精度等级A、采用直齿圆柱齿轮传动。B、带式输送机为一般机械,速度不高,选用8级精度。C、查表 小齿轮材料为45钢,调质处理,平均齿面硬度为250HBS。 大齿轮材料为45钢,正火处理,平均齿面硬度为200 HBS。(2)、初步计算齿轮参数 因为是闭式齿面齿轮传动,故先按齿面接触疲劳强度设计,按齿根弯曲疲劳强度校核。小齿轮分度圆的直径为 A、 Ad==85B、 计算齿轮转矩 TⅠ=9550×PⅠ/nⅠ= 9550×/ NmC、 取齿宽系数 齿数比为u=4D、 取 ,则大齿轮的齿数: =84 E、 接触疲劳极限[σH]lim =610MPa, [σH]lim =500MPa 应力循环次数 N1=60××10×300×16=×10 N2=N1/u=×10 查图得接触疲劳寿命极限系数为 =1, =取安全系数SH=1则接触应力:[σ ] =[σ ]lim1ZN1/SH=610×1/1=610MPa[σ ] =[σ ]lim2ZN2/SH=550MPa 取 [σ ]=550 MPa 则 =85 >=66mm 取d1=70mm(3)、确定传动尺寸 1、计算圆周速度 v=pd1n1/60*1000=、计算载荷系数查表得使用系数 由 v= ,8级精度,查图得动载系数 查表得齿间载荷分配系数 查表得齿向载荷分布系数 (非对称布置,轴刚性小)得 3、 确定模数: m=d1/z1=70/21=,取标准模数为 .54、计算中心距: a=m(z1+z2)/2= 圆整为a=185mm5、精算分度圆直径 d1=mz1=×21=×84=294mm6、计算齿宽b1= d1=×取 b2=80mm, b1=85mm7、计算两齿轮的齿顶圆直径、齿根圆直径 小齿轮:齿顶圆直径: da1=m(z1+ha*)=×(21+1)=77mm齿根圆直径:df1=m(z1-2ha*-2c)=×(21-2×1-2×)=大齿轮:齿顶圆直径:da2=齿根圆直径:df2=(4)、校核齿根弯曲强度由 式中各参数的含义1、 的值同前2、查表齿形系数 Ya1= Ya2= 应力校核系数 Ysa1= Ysa2=、许用弯曲应力 查图6-15(d)、(c)的弯曲疲劳强度系数为 =1 查图得弯曲疲劳寿命系数 ,取安全系数 ,故有KFN1= KFN2=满足齿根弯曲强度。(5)结构设计小齿轮的分度圆直径为 ,故可采用实心结构大齿轮的分度圆直径为 ,故应采用腹板式结构(6)、速度误差计算 经过带轮和齿轮设计后,滚筒的实际转速n= /i= =滚筒理论要求转速为 则误差为 故符合要求。五、轴的设计计算(一)、低速轴的设计校核低速轴的设计已知:输出轴功率为 =,输出轴转矩为 =,输出轴转速为 =,寿命为10年。齿轮参数: z1=21, z2=84,m=, 1、 选择轴的材料该轴无特殊要求,因而选用调质处理的45钢,查得 2、 求输入轴的功率,转速及扭矩已求得 ,PI= , TI=, nI= 、 初步估算最小轴径最小轴径 当选取轴的材料为45钢,C取110 = 输出轴的最小直径显然是安装联轴器处轴的直径 。 考虑到轴上开有键槽对轴强度的影响,轴径需增大5%。 d=(1+5%) 则d=45mm 为使所选直径 与联轴器的孔径相适应,故需同时选择联轴器。 联轴器的扭矩 ,查表得 ,又TII=,则有Tc=kT= 理论上该联轴器的计算转矩应小于联轴器的公称转矩。从《机械设计基础课程设计》 查得采用 型弹性套柱联轴器。该联轴器所传递的公称转矩 取与该轴配合的半联轴器孔径为 d=50mm,故轴径为d1=45mm半联轴器长 ,与轴配合部分长度 L1=84mm。轴的结构设计装联轴器轴段I-II: =45mm,因半联轴器与轴配合部分的长度为 ,为保证轴端挡板压紧联轴器,而不会压在轴的端面上,故 略小于 ,取 =81mm。(2)、装左轴承端盖轴段II-III:联轴器右端用轴肩定位,取 =50mm, 轴段II-III的长度由轴承端盖的宽度及其固定螺钉的范围(拆装空间而定),可取 =45mm.(3)、装左轴承轴段III-VI:由于圆柱斜齿轮没有轴向力及 =55,初选深沟球轴承,型号为6211,其尺寸为D×d×B=100×55×21,故 =55。 轴段III-VI的长度由滚动轴承的宽度B=21mm,轴承与箱体内壁的距离s=5~10(取 =10),箱体内壁与齿轮距离a=10~20mm(一般取 )以及大齿轮轮毂与装配轴段的长度差(此处取4)等尺寸决定:L3=B+s+a+4=21+10+14+4=49mm取L3=49mm。(4)、装齿轮轴段IV-V:考虑齿轮装拆方便,应使d4>d3=55mm, 轴段IV-V的长度由齿轮轮毂宽度 =80mm决定,取 =77mm。(5)、轴环段V-VI: 考虑齿轮右端用轴环进行轴向定位,取d5=70mm。 轴环宽度一般为轴肩高度的倍,即 =。(6)、自由段VI-VII: 考虑右轴承用轴肩定位,由6211轴承查得轴肩处安装尺寸为da=64mm,取d6=60mm。 轴段VI-VII的长度由轴承距箱体内壁距离 ,轴环距箱体内壁距离 决定,则 =19mm。(7)、右轴承安装段VII-VIII: 选用6211型轴承,d7=55mm,轴段VII-VIII的长度由滚动轴承宽度B=21mm和轴承与箱体内壁距离决定,取 。轴总长为312mm。3轴上零件的定位 齿轮、半联轴器与轴的周向定位均用平键连接。 按 =45mm,由手册查得平键剖面 ,键槽用键槽铣刀加工,长为70mm。 半联轴器与轴的配合代号为 同理由 =60mm,选用平键为10×8×70,为保证良好的对中性,齿轮轮毂与轴的配合代号为 ,滚动轴承与轴的周向定位是靠过盈配合来保证的,此处选 。4考虑轴的结构工艺性轴端倒角取 .为便于加工,齿轮、半联轴器处的键槽分布在同一母线上。5、轴的强度验算先作出轴的受力计算简图,如图所示,取集中载荷作用在齿轮的中点,并找出圆锥滚子轴承的支反力作用点。由表查得代号为6211轴承 ,B=21mm。则L1=(1)、计算齿轮上的作用力 输出轴大齿轮的分度圆直径为d2=294mm, 则圆周力 径向力 轴向力 Fa=Ft tan =Ft tan 0°=0(2)、计算轴承的支反力 【1】、水平面上支反力R =Ft L3/(L2+L3)= R =FtL2/(L2+L3)= 【2】、垂直面上支反力 【3】、画弯矩图 截面C处的弯矩a、 水平面上的弯矩 b、 垂直面上的弯矩 c、 合成弯矩M d、 扭矩T=T =499286Nmme、 画计算弯矩因单向运转,视扭矩为脉动循环, ,则截面B、C处的当量弯矩为=299939Nmmf、 按弯扭组合成应力校核轴的强度可见截面C的当量弯矩最大,故校核该截面的强度 查表得 ,因 ,故安全。 A截面直径最小,故校核其强度 查表得 ,因 ,故安全。g、 判断危险截面剖面A、B、II、III只受扭矩,虽有键槽、轴肩及过渡配合等所引起的应力集中均将削弱轴的疲劳强度,但由于轴的最小直径是按扭转强度较为宽裕地确定的,所以剖面A、B、II、III均无需校核。从应力集中对轴的疲劳强度的影响来看,剖面IV和V处过盈配合所引起的应力集中最严重;从受载的情况看,剖面C处 最大。剖面V的应力集中的影响和剖面IV的相近,但剖面V不受扭矩作用,同时轴径也比较大,故不必作强度校核。剖面C上虽然 最大,但应力集中不大(过盈配合及键槽引起的应力集中均在两端),而且这里轴的直径最大,故剖面C也不必校核。剖面VI显然更不必校核,又由于键槽的应力集中系数比过盈配合的小,因而该轴只须校核IV既可。(二)、高速轴的设计校核高速轴的设计已知:输入轴功率为PⅠ= kw ,输入轴转矩为TⅠ= ,输入轴转速为nⅠ= r/min,寿命为10年。齿轮参数: z1=21,z2=84,m=, 。1、选择轴的材料该轴无特殊要求,因而选用调质处理的45钢,由表查得 1、 求输出轴的功率 ,转速 及扭矩 。已求得 = r/min = =初步估算最小轴径最小轴径 d min= 由表可知,当选取轴的材料为45钢,C取110 d min= mm 此最小直径显然是安装大带轮处轴的直径 。 考虑到轴上开有键槽对轴强度的影响,轴径需增大5%。 则 d min= ,取 =28 mm2、 轴的结构设计 (1)、装带轮轴段I-II: =28 mm,轴段I-II的长度根据大带轮的轮毂宽度B决定,已知 =60mm,为保证轴端挡板压紧带轮,而不会压在轴的端面上,故 略小于 ,故取 =57mm。(2)、装左轴承端盖轴段II-III:联轴器右端用轴肩定位,取 ,轴段II-III的长度由轴承端盖的宽度及其固定螺钉的范围(拆装空间而定),可取 (3)、装左轴承轴段III-IV:由于圆柱直齿轮无轴向力及 ,初选深沟球轴承,型号6207,其尺寸为 , 。轴段III-VI的长度由滚动轴承的宽度,滚动轴承与箱体内壁距离 ,等尺寸决定: 。(4)、间隙处IV-V: 高速轴小齿轮右缘与箱体内壁的距离 。取 , (5)、装齿轮轴段V-VI:考虑齿轮装拆方便,应使 ,取 ,轴段V-VI的长度由齿轮轮毂宽度B=80mm决定,取 。(6)、轴段VI-VII: 与轴段IV-V同。 。(7)、右轴承安装段VII-VIII: 选用6207型轴承, B=17mm ,轴VII-VIII的长度取 轴总长为263mm。3、 轴上零件的定位小齿轮、带轮与轴的周向定位均用平键连接。 按 =28mm,由手册查得平键剖面 ,键槽用键槽铣刀加工,长为45mm。 带轮与轴的配合代号为 。同理由 ,选用平键为 ,为保证良好的对中性,齿轮轮毂与轴的配合代号为 ,滚动轴承与轴的周向定位是靠过盈配合来保证的,此处选 。4、 考虑轴的结构工艺性轴端倒角取 。为便于加工,齿轮、带轮处的键槽分布在同一母线上。7、轴的强度验算先作出轴的受力计算简图,如图所示,取集中载荷作用在齿轮的中点,并找出圆锥滚子轴承的支反力作用点。查《机械设计课程设计指导书》得代号为6207的深沟球轴承 a=17mm,则L1=57/2+50+17/2=87mmL2=17/2+12+10+80/2=(1)、计算齿轮上的作用力 输出轴小齿轮的分度圆直径为 d1=mz1= 21= 则圆周力 径向力 轴向力 Fa=0(2)、计算轴承的支反力 【1】、水平面上支反力 RHA=FtL3/(L2+L3)=1/2Ft= RHB=FtL2/(L2+L3)= 1/2Ft= 【2】、垂直面上支反力 RVA=3220N RVB= =347N【3】、截面C处的弯矩1、 水平面上的弯矩 2、 垂直面上的弯矩 3、 合成弯矩M 4、 扭矩T= TⅠ= 5、 计算弯矩因单向运转,视扭矩为脉动循环, ,则截面C、A、D处的当量弯矩为6 、 按弯扭组合成应力校核轴的强度可见截面A的当量弯矩最大,故校核该截面的强度 查表得 ,因 ,故安全。截面D的直径最小,故校核该截面的强度 因 ,故安全。5、 判断危险截面剖面A、B、II、III只受扭矩,虽有键槽、轴肩及过渡配合等所引起的应力集中均将削弱轴的疲劳强度,但由于轴的最小直径是按扭转强度较为宽裕地确定的,所以剖面A、B、II、III均无需校核。从应力集中对轴的疲劳强度的影响来看,剖面IV和V处过盈配合所引起的应力集中最严重;从受载的情况看,剖面C处 最大。剖面V的应力集中的影响和剖面IV的相近,但剖面V不受扭矩作用,同时轴径也比较大,故不必作强度校核。剖面C上虽然 最大,但应力集中不大(过盈配合及键槽引起的应力集中均在两端),而且这里轴的直径最大,故剖面C也不必校核。剖面VI显然更不必校核,又由于键槽的应力集中系数比过盈配合的小,因而该轴只须校核IV既可。六、键连接的校核计算键连接设计I、 带轮与输入轴间键连接设计轴径 ,轮毂长度为 ,查手册,选用A型平键,其尺寸为 。现校核其强度: , , 。 查手册得 ,因为 ,故满足要求。II、 小齿轮与输入轴间键连接设计轴径 d=50mm,轮毂长度为 ,查手册,选用A型平键,其尺寸为 .现校核其强度:TI=128872Nmm, , 。 查手册得 ,因为 ,故满足要求。键连接设计III、 大齿轮与输出轴间键连接设计轴径d=60mm,轮毂长度为 ,查手册,选用A型平键,其尺寸为 现校核其强度: TII= Nm, , 。 查手册得 ,因为 ,故满足要求。IV、 半联轴器与输出轴间键连接设计轴径 ,半联轴器的长度为 ,查手册,选用A型平键,其尺寸为 .现校核其强度: , , 。 查手册得 ,因为 ,故满足要求。七、 滚动轴承的选择及寿命计算滚动轴承的组合设计及低速轴上轴承的寿命计算已知条件:采用的轴承为深沟球轴承。一、滚动轴承的组合设计1、滚动轴承的支承结构输出轴和输入轴上的两轴承跨距为H1=155mm,H2=150mm ,都小于350mm。且工作状态温度不甚高,故采用两端固定式支承结构。2、滚动轴承的轴向固定轴承内圈在轴上的定位以轴肩固定一端位置,另一端用弹性挡圈固定。轴承外圈在座孔中的轴向位置采用轴承盖固定。3、滚动轴承的配合轴承内圈与轴的配合采用基孔制,采用过盈配合,为 。轴承外圈与座孔的配合采用基轴制。4、滚动轴承的装拆 装拆轴承的作用力应加在紧配合套圈端面上,不允许通过滚动体传递装拆压力。 装入时可用软锤直接打入,拆卸时借助于压力机或其他拆卸工具。5、滚动轴承的润滑 对于输出轴承,内径为d=55mm,转速为n= ,则 ,查表可知其润滑的方式可为润滑脂、油浴润滑、滴油润滑、循环油润滑以及喷雾润滑等。 同理,对于输入轴承,内径为35,转速为 r/min ,查表可知其润滑的方式可为润滑脂、油 浴润滑、滴油润滑、循环油润滑以及喷雾润滑等6、滚动轴承的密封 对于输出轴承,其接触处轴的圆周速度 故可采用圈密封。二、低速轴上轴承寿命的计算已知条件:1轴承 , 2轴承 轴上的轴向载荷为0径向载荷为 查表得 ,则轴承轴向分力Fs1=Fr1/2Y=567NFs2=Fr2/2Y=496N易知此时 Fs1 > Fs2则轴承2的轴向载荷 轴承1轴向载荷为 .且低速轴的转速为 预计寿命 =16 57600hI、计算轴承1寿命6、 确定 值查《机械设计基础课程设计》表,得6207基本动荷 ,基本额定静载荷 。7、 确定e值对于深沟球轴承,则可得 e=、 计算当量动载荷P由
毕业设计 型调度绞车 原塑件的工艺性分析 毕业设计 油箱盖的模具设计 课程设计 垫片冲压模具设计 金属工艺学课程设计 双齿轮 金属工艺学课程设计 滑动套 毕业论文 设计一用于带式运输上的单级直齿圆柱齿轮减速器 毕业设计 基于SolidWorks下的圆柱齿轮减速器的建模与结构设计 毕业设计 螺旋千斤顶的设计 毕业设计 基于Solidworks下的山地自行车的结构设计及建模 课程设计 铸钢车间型砂传送带传送装置设计 花键磨床分度机构 齐齐哈尔职业学院毕业设计 CA6140车床后托架加工工艺及夹具设计 毕业设计 轴承专用数控车床床身防护钣金结构设计 毕业设计 十字头的机械加工工艺规程及五套夹具设计 课程设计 设计带式输送机传动装置 毕业设计 模具设计与加工 课程设计 开瓶器冲孔落料设计 毕业设计 盖类零件设计 课程设计 支架级进模设计 毕业设计 新型揉搓式洗衣机的设计 机械CAD/CAM课程设计 MP5播放器结构设计 课程设计 煤气式退火炉控制系统设计 毕业设计 气门摇臂轴支座的机械加工工艺及夹具设计 课程设计 制定拨叉零件的加工工艺设计铣尺寸18H11槽的铣床夹具 课程设计 锐意车工具箱盖双型腔注塑模设计 机械设计课程设计 课程设计 CA6140普通车床的数控化改造 85条高级AutoCAD工程师绘图技巧 毕业设计 ACP-7C型诺基亚充电器底座模具的数控加工工艺设计 毕业设计 套筒注射模具设计 毕业设计 曲轴加工工艺设计论文 毕业设计 桥式起重机传动装置设计 毕业设计 精镗CK-V型主轴箱Φ、2-Φ 三孔双向卧式组合镗床SWT-5 机械课程设计 用于带式运输机的展开式二级圆柱齿轮减速器 课程设计 设计一初轧机的轧辊机构 邵阳学院课程设计(论文)任务书集——带式传输机的传动装置设计(共13份) 毕业设计 行星减速器 机械制造工艺学课程设计 设计“CA6140车床831005(第2组)拨叉”零件的机械加工工艺及工艺设备 毕业设计 磁流变减振器 南通职业大学毕业设计 某扇机轴零件 课程设计 CA6140型普通车床数控化改造 毕业设计 机床产品典型零部件的二次开发 毕业设计 立式数控铣床工作台设计 毕业设计 机座水压机的液压系统设计 毕业设计 步进梁式再加热炉的设计 湖南人文科技学院课程设计 数控移相信号发生器 北京邮电大学机械制造工艺课程设计 设计“××××”零件的机械加工工艺规程 课程设计 自动控制伸缩门 安全人机工程学电子书
一种利用阿基米德螺旋线原理制作的千斤顶!
机械类毕业设计类资料你可以百度搜索一下九爱图纸或者9icad,网站里面有上万机械图纸和上千套机械毕业设计(图纸+说明书),相信这些资料对你做毕业设计一定会有帮助的。
螺旋传动详解螺旋传动设计
螺旋传动是利用螺杆和螺母的啮合来传递动力和运动的机械传动。主要用于将旋转运动转换成直线运动,将转矩转换成推力。1、按工作特点,螺旋传动用的螺旋分为传力螺旋、传导螺旋和调整螺旋。(1)传力螺旋:以传递动力为主,它用较小的转矩产生较大的轴向推力,一般为间歇工作,工作速度不高,而且通常要求自锁,例如螺旋压力机和螺旋千斤顶上的螺旋。(2)传导螺旋:以传递运动为主,常要求具有高的运动精度,一般在较长时间内连续工作,工作速度也较高,如机床的进给螺旋(丝杠)。(3)调整螺旋:用于调整并固定零件或部件之间的相对位置,一般不经常转动,要求自锁,有时也要求很高精度,如机器和精密仪表微调机构的螺旋。2、按螺纹间摩擦性质,螺旋传动可分为滑动螺旋传动和滚动螺旋传动。滑动螺旋传动又可分为普通滑动螺旋传动和静压螺旋传动。
现在的论文大多都要钱的,免费的很少啊。我都找了好长时间了,是关于减速器壳的工艺设计。都要钱的,郁闷!
237 浏览 5 回答
220 浏览 5 回答
335 浏览 2 回答
252 浏览 7 回答
193 浏览 2 回答
250 浏览 6 回答
345 浏览 6 回答
226 浏览 7 回答
280 浏览 4 回答
258 浏览 4 回答
201 浏览 3 回答
289 浏览 4 回答
132 浏览 5 回答
315 浏览 4 回答
128 浏览 3 回答