首页

> 学术论文知识库

首页 学术论文知识库 问题

基于图像算法毕业论文

发布时间:

基于图像算法毕业论文

图像处理是利用计算机对图像信息进行加工以满足人的视觉心理或者应用需求的行为,应用广泛,多用于测绘学、大气科学、天文学、美图、使图像提高辨识等。学术堂在这里为大家整理了一些图像处理本科毕业论文题目,希望对你有用。1、基于模糊分析的图像处理方法及其在无损检测中的应用研究2、数字图像处理与识别系统的开发3、关于数字图像处理在运动目标检测和医学检验中若干应用的研究4、基于ARM和DSP的嵌入式实时图像处理系统设计与研究5、基于图像处理技术的齿轮参数测量研究6、图像处理技术在玻璃缺陷检测中的应用研究7、图像处理技术在机械零件检测系统中的应用8、基于MATLAB的X光图像处理方法9、基于图像处理技术的自动报靶系统研究10、多小波变换及其在数字图像处理中的应用11、基于图像处理的检测系统的研究与设计12、基于DSP的图像处理系统的设计13、医学超声图像处理研究14、基于DSP的视频图像处理系统设计15、基于FPGA的图像处理算法的研究与硬件设计

数字图像处理方面了解的了。

随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。我整理了图像识别技术论文,欢迎阅读!

图像识别技术研究综述

摘要:随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。图像识别是利用计算机对图像进行处理、分析和理解,由于图像在成像时受到外部环境的影响,使得图像具有特殊性,复杂性。基于图像处理技术进一步探讨图像识别技术及其应用前景。

关键词:图像处理;图像识别;成像

中图分类号:TP391 文献标识码:A 文章编号:1009-3044(2013)10-2446-02

图像是客观景物在人脑中形成的影像,是人类最重要的信息源,它是通过各种观测系统从客观世界中获得,具有直观性和易理解性。随着计算机技术、多媒体技术、人工智能技术的迅速发展,图像处理技术的应用也越来越广泛,并在科学研究、教育管理、医疗卫生、军事等领域已取得的一定的成绩。图像处理正显著地改变着人们的生活方式和生产手段,比如人们可以借助于图像处理技术欣赏月球的景色、交通管理中的车牌照识别系统、机器人领域中的计算机视觉等,在这些应用中,都离不开图像处理和识别技术。图像处理是指用计算机对图像进行处理,着重强调图像与图像之间进行的交换,主要目标是对图像进行加工以改善图像的视觉效果并为后期的图像识别大基础[1]。图像识别是利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。但是由于获取的图像本事具有复杂性和特殊性,使得图像处理和识别技术成为研究热点。

1 图像处理技术

图像处理(image processing)利用计算机对图像进行分析,以达到所需的结果。图像处理可分为模拟图像处理和数字图像图像处理,而图像处理一般指数字图像处理。这种处理大多数是依赖于软件实现的。其目的是去除干扰、噪声,将原始图像编程适于计算机进行特征提取的形式,主要包括图像采样、图像增强、图像复原、图像编码与压缩和图像分割。

1)图像采集,图像采集是数字图像数据提取的主要方式。数字图像主要借助于数字摄像机、扫描仪、数码相机等设备经过采样数字化得到的图像,也包括一些动态图像,并可以将其转为数字图像,和文字、图形、声音一起存储在计算机内,显示在计算机的屏幕上。图像的提取是将一个图像变换为适合计算机处理的形式的第一步。

2)图像增强,图像在成像、采集、传输、复制等过程中图像的质量或多或少会造成一定的退化,数字化后的图像视觉效果不是十分满意。为了突出图像中感兴趣的部分,使图像的主体结构更加明确,必须对图像进行改善,即图像增强。通过图像增强,以减少图像中的图像的噪声,改变原来图像的亮度、色彩分布、对比度等参数。图像增强提高了图像的清晰度、图像的质量,使图像中的物体的轮廓更加清晰,细节更加明显。图像增强不考虑图像降质的原因,增强后的图像更加赏欣悦目,为后期的图像分析和图像理解奠定基础。

3)图像复原,图像复原也称图像恢复,由于在获取图像时环境噪声的影响、运动造成的图像模糊、光线的强弱等原因使得图像模糊,为了提取比较清晰的图像需要对图像进行恢复,图像恢复主要采用滤波方法,从降质的图像恢复原始图。图像复原的另一种特殊技术是图像重建,该技术是从物体横剖面的一组投影数据建立图像。

4)图像编码与压缩,数字图像的显著特点是数据量庞大,需要占用相当大的存储空间。但基于计算机的网络带宽和的大容量存储器无法进行数据图像的处理、存储、传输。为了能快速方便地在网络环境下传输图像或视频,那么必须对图像进行编码和压缩。目前,图像压缩编码已形成国际标准,如比较著名的静态图像压缩标准JPEG,该标准主要针对图像的分辨率、彩色图像和灰度图像,适用于网络传输的数码相片、彩色照片等方面。由于视频可以被看作是一幅幅不同的但有紧密相关的静态图像的时间序列,因此动态视频的单帧图像压缩可以应用静态图像的压缩标准。图像编码压缩技术可以减少图像的冗余数据量和存储器容量、提高图像传输速度、缩短处理时间。

5)图像分割技术,图像分割是把图像分成一些互不重叠而又具有各自特征的子区域,每一区域是像素的一个连续集,这里的特性可以是图像的颜色、形状、灰度和纹理等。图像分割根据目标与背景的先验知识将图像表示为物理上有意义的连通区域的集合。即对图像中的目标、背景进行标记、定位,然后把目标从背景中分离出来。目前,图像分割的方法主要有基于区域特征的分割方法、基于相关匹配的分割方法和基于边界特征的分割方法[2]。由于采集图像时会受到各种条件的影响会是图像变的模糊、噪声干扰,使得图像分割是会遇到困难。在实际的图像中需根据景物条件的不同选择适合的图像分割方法。图像分割为进一步的图像识别、分析和理解奠定了基础。

2 图像识别技术

图像识别是通过存储的信息(记忆中存储的信息)与当前的信息(当时进入感官的信息)进行比较实现对图像的识别[3]。前提是图像描述,描述是用数字或者符号表示图像或景物中各个目标的相关特征,甚至目标之间的关系,最终得到的是目标特征以及它们之间的关系的抽象表达。图像识别技术对图像中个性特征进行提取时,可以采用模板匹配模型。在某些具体的应用中,图像识别除了要给出被识别对象是什么物体外,还需要给出物体所处的位置和姿态以引导计算初工作。目前,图像识别技术已广泛应用于多个领域,如生物医学、卫星遥感、机器人视觉、货物检测、目标跟踪、自主车导航、公安、银行、交通、军事、电子商务和多媒体网络通信等。主要识别技术有:

指纹识别

指纹识别是生物识别技术中一种最实用、最可靠和价格便宜的识别手段,主要应用于身份验证。指纹识别是生物特征的一个部分,它具有不变性:一个人的指纹是终身不变的;唯一性:几乎没有两个完全相同的指纹[3]。一个指纹识别系统主要由指纹取像、预处理与特征提取、比对、数据库管理组成。目前,指纹识别技术与我们的现实生活紧密相关,如信用卡、医疗卡、考勤卡、储蓄卡、驾驶证、准考证等。

人脸识别 目前大多数人脸识别系统使用可见光或红外图像进行人脸识别,可见光图像识别性能很容易受到光照变化的影响。在户外光照条件不均匀的情况下,其正确识别率会大大降低。而红外图像进行人脸识别时可以克服昏暗光照条件变化影响,但由于红外线不能穿透玻璃,如果待识别的对象戴有眼镜,那么在图像识别时,眼部信息全部丢失,将严重影响人脸识别的性能[4]。

文字识别

文字识别是将模式识别、文字处理、人工智能集与一体的新技术,可以自动地把文字和其他信息分离出来,通过智能识别后输入计算机,用于代替人工的输入。文字识别技术可以将纸质的文档转换为电子文档,如银行票据、文稿、各类公式和符号等自动录入,可以提供文字的处理效率,有助于查询、修改、保存和传播。文字识别方法主要有结构统计模式识别、结构模式识别和人工神经网络[5]。由于文字的数量庞大、结构复杂、字体字形变化多样,使得文字识别技术的研究遇到一定的阻碍。

3 结束语

人类在识别现实世界中的各种事物或复杂的环境是一件轻而易举的事,但对于计算机来讲进行复杂的图像识别是非常困难的[6]。在环境较为简单的情况下,图像识别技术取得了一定的成功,但在复杂的环境下,仍面临着许多问题:如在图像识别过程中的图像分割算法之间的性能优越性比较没有特定的标准,以及算法本身存在一定的局限性,这使得图像识别的最终结果不十分精确等。

参考文献:

[1] 胡爱明,周孝宽.车牌图像的快速匹配识别方法[J].计算机工程与应用,2003,39(7):90—91.

[2] 胡学龙.数字图像处理[M].北京:电子工业出版社,2011.

[3] 范立南,韩晓微,张广渊.图像处理与模式识别[M].北京:科学出版社,2007.

[4] 晓慧,刘志镜.基于脸部和步态特征融合的身份识别[J].计算机应用,2009,1(29):8.

[5] 陈良育,曾振柄,张问银.基于图形理解的汉子构型自动分析系统[J].计算机应用,2005,25(7):1629-1631.

[6] Sanderson C,Paliwal K Fusion and Person Verification Using Speech & Face Information[C].IDIAP-RR 02-33,Martigny,Swizerland,2002.

点击下页还有更多>>>图像识别技术论文

中国知网也好!万方数据也好都有例子!甚至百度文库都有!==================论文写作方法===========================论文网上没有免费的,与其花人民币,还不如自己写,万一碰到人的,就不上算了。写作论文的简单方法,首先大概确定自己的选题,然后在网上查找几份类似的文章通读一些相关资料,对这方面的内容有个大概的了解!参照你们学校的论文的格式,列出提纲,补充内容!实在不会,把这几份论文综合一下,从每篇论文上复制一部分,组成一篇新的文章!然后把按自己的语言把每一部分换下句式或词,经过换词不换意的办法处理后,网上就查不到了!最后,到万方等地进行检测,将扫红部分进行再次修改!祝你顺利完成论文!

图像融合算法毕业论文

融合算法fusionalgorithm如:(多传感器单目标位置融合算法)经纬仪引导数据的数据融合可以采用参数估计融合算法,即对8组引导数据,按照某种估计准则函数融合算法fusionalgorithm如:(多传感器单目标位置融合算法)经纬仪引导数据的数据融合可以采用参数估计融合算法,即对8组引导数据,按照某种估计准则函数

医学影像诊断学是医学影像学中的一门重要学科,而医学影像学是临床医学的一个重要分支。下面是我为大家整理的医学影像技术专业 毕业 论文,供大家参考。

《 高职影像专业医学影像物理学的教学探讨 》

摘 要: 根据课程特点、学生现状,我们重视教师素质培养,理清教材层次与学生的关系,运用丰富的 教学 方法 ,变抽象的论述为理论联系实际的形象化教学,提高了医学影像物理学课程的教学质量。

关键词: 高职 医学 影像物理学 教学探讨

近十几年来,大型医学影像设备的迅速发展,极大地提高了诊断治疗水平。随着社会对医学影像专业人才的需要愈加迫切,国内众多本科医学院校都设置了医学影像专业。而随着我国社区医疗的发展,填报高等职业技术学院医学影像专业的学生人数不断增加。以湖北职业技术学院为例,影像专业学生录取人数由每年一个班提高到两至三个班。不论各院校侧重培养高学历医学影像临床诊断专业人才,还是侧重培养高学历医学影像工程技术人才,在专业课程设置过程中,都强调了开设医学影像物理学基础(以下简称影像物理学)这门课程的重要性和必要性。有些本科院校还在临床医学专业开始开设影像物理学为选修课程,目的就是让临床医师具备医学影像的基础理论知识,为将来后续专业课程――医学影像诊断学或医学影像学的开设提供必要的理论基础。

1.高职医学院校影像专业课程设置现状

以湖北职业技术学院为例,高职医学院校影像专业现在招收高中文科和理科学生及中职生。在课程开设上,只在大学一年级开设医学电子学基础这一门理工科课程,相关高等数学知识缺乏,学生的数理基础比较薄弱。医学影像物理学基础是一门交叉学科,又是一门非常重要的专业基础课。教学目的是让学生掌握医学成像理论的物理学基本原理、规律;了解医学成像的物理理论知识;为深刻理解成像过程,评价图像,以及读识图像、挖掘图像蕴藏的生物信息奠定基础。这就需要一定的高等数学、核物理学、量子物理、超声波物理等许多知识来做铺垫。当然更多需要成像技术的相关基础知识。面对这些必要的知识,影像专业高职生在有限的时间、有限的学时里是完成不了的,这是事实。其实,影像物理学是伴随影像专业的建立而诞生的一门新课程,在国内存在尚不足十年。因此,从教材到教学,各校都处于摸索前进的阶段。如何让高职生在无基础的前提下有效学习该门课程,我将自己在几年教学过程中的教学体会写出来,与大家共同探讨。

2.提高教师的专业素质,必须树立专业思想

由于缺乏相关师资力量,目前各院校影像物理学的教学任务大都由物理学教研室的教师承担。但是,物理学和影像物理学两门课程的专业性质差别很大,前者为理科基础课,后者为专业基础课。从事影像物理学教学的教师必须具备一定的医学专业知识,具备较高的专业素质,教学必须树立专业思想,才能将物理学知识和影像学知识有机结合起来,增强学生的学习兴趣,提高该课程的教学质量。因此,授课教师应加强自身专业素质,利用临床进修的机会学习影像知识和实际技术,尽力做好教学工作。

3.教学过程中必须恰当把握知识的深度

影像物理学是先期开设影像专业院校的教学工作者在教学过程中逐步完善而建立的。它是将高等数学知识、物理学知识、成像理论,计算机技术等知识应用于超声成像技术、X-CT成像技术、同位素成像技术、磁共振成像技术中的一门交叉学科。知识的起点很高,学生学习起来有一定的难度,在教学过程中应恰当把握教材知识的深度,讲解需深入浅出,通俗易懂。比如超声场的描述部分,涉及较多的高等数学知识,在教学过程中应注意引导学生注重理解场的分布性质、描述场的量的物理意义,等等,尽量避免学生由于数学知识少而降低对该课程的理解和学习兴趣。磁共振部分,学生需要具备一定的原子核物理、量子力学知识才能准确理解核自旋的能级、跃迁等概念和现象。在教学中应注意搜集一些资料,尽量用较通俗的、经典的、宏观假说进行解释,增强学生对微观世界的感性认识。

4.注意把握影像物理学原理与成像技术、影像设备学有关知识的权重关系

X-CT成像、超声成像、同位素成像、磁共振成像每一部分都有两项主要内容:物理基本原理和成像基本原理。在教学过程中应把主要精力放在讲解物理学基本原理上,这是毫无疑问的,这也是物理专业毕业的教师最容易做到的,但学生的学习兴趣往往集中在成像原理上,对涉及的成像技术、成像设备等知识更表现出浓厚兴趣。虽然成像技术和成像设备在后期专业课程的实践教学中会详细讲解,在这里我们对这部分做简要的介绍,以收到良好的教学效果。这些年来,我校历届学生都表现出对影像物理的极大学习兴趣。这与我们的教学方法有一定的关系。

5.注意提高学生对知识的感性认识

影像物理学各部分知识都是比较抽象的,学生普遍觉得难懂难学。因此,通过各种手段提高学生对知识的感性认识,能对学生的学习起到事半功倍的帮助作用。在教学过程中,我们将陀螺进动实验给学生做演示,讲解原子核中核子的自旋与自旋磁矩的相关知识;借助于声波的传播与反射知识对超声测量实验进行详细讲解;分配一定的学时带领学生到附属医院相关科室参观学习。邀请超声,CT临床诊断教师和技术教师给学生当场讲解仪器的原理、操作方法,以及诊断等,使学生对课堂上学到的知识有一个感性认识,加深理解,收到了很好的效果。

6.实现教材的多层次、立体化

由于该课程属于应用型的知识,学起来难度更大,我们进行了教材的多层次、立体化尝试。课程是教材的基础,教材是课程的载体,教材中要融入现代化的教学技术,实现多样化、配套和协调化。我们的做法是:文字教材与现代多媒体手段紧密结合。

教材体系包括:(1)传统的纸质教材《医学影像物理学》(人民卫生出版社出版);(2)教师授课用的独创的电子教案,其中配以大量的自制和临床实拍图片和自己研发的动画,并提出学生思考的问题;(3)辅助学生自学和研究的学习软件,如《CT与磁共振成像原理》CAI课件(人民卫生电子音像出版社公开出版发行,被列入“十一五”国家重点电子出版物);(4)网页形式课件2部。初步形成了多形态、多用途、多层次的教学资源和多种以教学服务为目的的结构性配套教学出版物的集合。

总之,影像物理学是一门新课,只有不断摸索,不断 总结 经验 ,逐步改进教学方法和手段,才能增强教学效果。通过几年来的努力,一方面学生看到了现在所学的就是将来所用的,提高了学习基础课的兴趣,另一方面学生培养了学习能力,同时对后续课程“医学影像诊断学”的学习奠定了基础。

参考文献:

[1]侯淑莲,李石玉,马新超等.关于医药学院校物理课程的思考[J].大学物理,2005,24,(5):53-56.

[2]包尚联,唐孝威.医学物理研究进展[J].自然科学进展,2006,16,(1):7-13.

[3]童家明,刘成玉,周晓彬等.普通高等学校医药类专业物理理论课教学现状调查[J].大学物理,2005,24,(7):55-59.

[4]侯淑莲.CT与磁共振成像原理[M/CD].北京:人民卫生电子音像出版社,2007.

《 刍议影像融合推动医学影像领域发展 》

内容摘要:科技的进步不仅是带动了工商业的发展,同时也推动了医学发展,计算机技术被广泛用于影像医学中。现在医学上的各种检查仪器越来越精密,功能更加完善,图像信息的存储和传输为医学的研究和诊断提供了更好的依据。医学影像的融合就是影像信息的融合,是借助计算机技术辅助诊断病情的。医学影像的融合是医学影像学新的发展方向,本文对医学影像的融合进行分析,探讨影像融合对医学影像发展的影响和作用。

关键词:医学影像 影像融合 诊断

一、影像融合

医学影像融合其实就是利用计算机技术,将影像信息进行融合。其中包括将图像信息进行数字化处理,再进行数据协同和匹配,得到一个新的影像信息来获得对病情更好的观测,以计算机为辅助手段,使诊断更加准确、具象。

影像融合的发展趋势

影像融合的趋势

医学影像学是近年来发展的比较快的临床学科之一,其中的超声、放射等早就被应用到医学的诊断上,但是,面对不同病人的各种症状,单一的影像检查已经不足以作为诊断的依据。因此,影像融合越来越成为医学中的焦点,人们更希望通过多重的影像检查、比较和分析,使检查结果更准确,更好的辅助临床疾病的治疗。影响融合的发展提高了医学诊断的综合水平,对于推动影像学的发展有重要的意义。而且,医学影像的融合不仅可以对诊断锦上添花,还可以为治疗提供帮助。例如:X线、超声、聚焦和磁共振结合在一起进行治疗。影响融合的发展是势在必行的,而且将推动医学影像学的更新与发展。

影像融合的必要性

1、医学技术的更新与发展需要影响融合

计算机技术被广泛应用于各个领域中,这也包括医学影像学。随着新技术的发展和实施,图像后期处理技术也需要不断的提高,影像的融合技术就是后处理技术的新发展。前后技术的同步才能更好的将影像学的好处发挥出来。

2、影像融合使检查更全面准确

影像学的检查手段是很多的,从B超到射线再到CT等,每项检查都是有针对性的,但是正因为这样又有一定的局限性。每项检查都有单一局限性,只能准确的体现一方面的数据值,不利于诊断病情。影像的融合弥补了这一缺陷。

3、临床诊断需要影像融合

一切的检查手段都是为了最终的临床治疗,影像诊断一样是为临床治疗服务的。影响的融合,集中了多项单一检查的优势,呈现的图像更清晰,更便于医生的判断,使诊断更清晰准确,也就能根据诊断提供更好的治疗方案,辅助临床治疗。

影响融合的方法和技术应用

首先是信息技术的融合。无论是什么样的诊断技术,最后要得到的都是这项技术所能诊断出来的信息。影像的融合首先要实施对信息的融合,图像数据的转换是理解是关键。而图像的转换时将不同检查设备检测的图像信息进行格式的转换和调整,使其更逼真的呈现出检测部位的状态,确保诊断的准确性。

其次是数字化技术的融合。建立图像数据库是比较直观和易于提取信息的。

还有就是计算机技术的应用,这几项技术的融合,使影像融合后的检查更加具体详细。

影像融合的方法:界标 配对 、表 面相 合法、空间力矩配对、交叉相关法。

四、 医学影像融合的临床价值

现代医学已经把用计算机技术对获取的影像信息进行处理的研究成果应用于临床医学的诊断,将各项检查结果通过计算机技术进行分析、处理,将影像融合重新现出清晰度高、高质量的影像。主要有以下几个方面的临床价值:

帮助临床诊断

影像融合后的图像将检查部位的结构和周边组织清楚地呈现出来,通过影像诊断,医生能够更加了解检测部位的组织形态是否发生病变以及病变的程度。很多疾病早期的病变都是不太明显了,一旦没被发现就可能会错过最佳的治疗时机。影像融合后的图像可以通过区域放大将组织的差异标注出来,便于观察和诊断,能够及时的发现病变,减少漏诊的情况。

有助于手术的治疗

影像融合的中,结合了图像重建和三维立体定向技术,这些技术的应用能够清晰的显示出病变部位及其周围组织的状况和空间状态,医生可以根据融合后的图像制定手术方案,并在手术实施过程中提供实时显示,也为术后的观察提供了方便。

有助于医学研究

影像的融合结合了多项检查的优势,提供的影像信息更全面清晰,病理特征更明显,是医学研究中非常有价值的影像学资料,为以后疾病的研究提供更好的依据。

结语:医学影像的融合就是将多项检查的优点,经过一系列计算机技术的融合和处理重新形成新的图像。医学影像的融合是医学影像技术发展的一次伟大的更新,它将各种各种技术综合运用到医学的检查和诊断上,推动了影像学的进一步发展。

参考文献

[1]王静云,李绍林;医学影像图像融合技术的新进展[J];第四军医大学学报;2004年20期

[2]李熙莹;黄镜荣;;图像融合技术研究及其在医学中的应用[A];大珩先生九十华诞文集暨中国光学学会2004年学术大会论文集[C];2004年

[3]吴疆;医学图像融合算法研究[D];西北工业大学;2006年

[4]张孝飞,王强,韦春荣,王至诚,张福北;医学图像融合技术研究综述[J];广西科学;2002年01期

[5]赵敏志;李钢;张仁斌;;图像融合技术现状[A];第六届全国信息获取与处理学术会 议论文 集(3)[C];2008年

[6]康晓东.计算机在医疗方面的最新应用.北京:电子工业出版社,1999,46-70.

有关医学影像技术专业毕业论文推荐:

1. 医学影像毕业论文范文

2. 有关医学影像类毕业论文

3. 医学影像本科毕业论文

4. 医学影像学研究论文

5. 关于医学影像的论文

已发送到你邮箱

57202电子政务与电子政府.doc│ 57203脉冲激光沉积法(PLD)制备非晶态BZN薄膜的研究.doc│ 57204气桶式压底机设计.doc│ 57205变速拨叉加工工艺及工装.doc│ 57207-100kW微机控制单晶硅加热电源设计.doc│ 57208防火卷帘门智能控制装置设计.doc│ 57209无功补偿装置设计.doc│ 57219-110KV继电保护线路设计.doc│ 57220基于单片机温湿度控制系统.doc│ 57221出租车计费系统设计.doc│ 57222印染丝光过程的浓烧碱的在线控制.doc│ 57223基于PID控制算法的恒温控制系统.doc│ 57224基于单片机的照明控制系统设计.doc│ 57225基于CAN总线的教学模拟汽车模型的设计.doc│ 57226五层单台电梯PLC控制系统的总体设计方案.doc│ 57227基于单片机的温度测量系统设计.doc│ 57228智能化住宅中的防盗防火报警系统设计(含翻译).doc│ 57229火灾自动监控报警系统设计.doc│ 57230-XX公司办公楼电气设计.doc│ 57231-110KV线路微机距离保护系统设计.doc│ 57232旅客列车自动报站多媒体系统.doc│ 57233论当前经济危机下我国虚拟经济和实体经济的关系.doc│ 57234活动目录的安全(含翻译).doc│ 57235基于J2EE的网上购物系统(含翻译).doc│ 57236基于MATLAB的图像融合算法.doc│ 57237论我国商业银行业务创新.doc│ 57239公共政策环境因素分析.doc│ 57240数控机床产品服务系统配置方法研究(含任务书).doc│ 57241基于Flash八面体广告组件设计与实现.doc│ 57242某小区一栋12层高配筋混凝土小砌块塔式住宅楼设计.doc│ 57243展览馆的初步设计.doc│ 57244《三维虚拟电路实验》网络教学的设计与实现-在网页中显示虚拟试验仪器(含翻译).doc│ 57245七层钢筋混凝土框架结构体系图书馆设计.doc│ 57249锂电池智能充电器设计(含翻译).doc│ 57251单台电梯PLC控制系统的总体设计(含翻译).doc│ 57252河东降压变电所电气部分设计.doc│ 57258-110kV35kV变电站电气主接线设计.doc│ 57259医疗呼叫系统设计(含翻译).doc│ 57260-XX大学变电所电气部分设计(含翻译).doc│ 57261-60KV降压变电站设计(含翻译).doc│ 57262坝后式水电站电气部分设计(含翻译).doc│├─57206汽车变速箱体加工工艺及典型夹具设计(含开题+任务书+图)├─57210锦恒食堂电气与照明设计├─57212某钢厂变电所电气部分设计├─57213东北特钢4号变电所电气部分设计├─57214基于PLC锅炉控制系统设计(含开题)├─57215微机无功补偿装置设计├─57216锦州6×200MW火电厂一期工程电气部分初步设计├─57217福佳商城1号楼电气照明设计(含开题)├─57218电梯控制系统设计├─57238浅析政府绩效评估体系├─57246-“新元绿洲”可行性研究├─57247基于Web的课件信息管理系统(含翻译+程序)├─57248-10kV输电线接地故障仿真平台(含开题+任务书)├─57250浅析次贷危机对我国政府金融监管的启示(含开题+任务书)├─57253农民满意度影响因素分析及其测量—基于襄樊地区365份农户的调查├─57254日本政府扶持中小企业政策对我国的启示├─57255东莞IT产业与苏州IT产业比较分析├─57256东莞加工贸易转型与升级分析└─57257跨国公司对华投资现状与发展趋势这些全是软件工程的,直接使用就可以的。网址:

图像分割算法毕业论文

图像分割是图像处理与计算机视觉的基本问题之一,是图像处理图像分析的关键步骤。我整理了图像分割技术论文,欢迎阅读!

图像分割技术研究

摘要:图像分割是图像处理与计算机视觉的基本问题之一,是图像处理图像分析的关键步骤。本文介绍了基于阈值的分割方法和图像分割的图像分割性能的评价、应用现状;最后总结出图像分割的发展趋势。

关键词:图像分割、阈值、边缘检测、区域分割

中图分类号: 文献标识码: A

1引言

随着图像分割技术研究的深入,其应用日趋广泛。凡属需要对图像目标进行提取、测量的工作都离不开图像分割。图像分割是图像处理、模式识别和人工智能等多个领域中一个十分重要且又十分困难的问题,是计算机视觉技术中首要的、重要的关键步骤。图像分割结果的好坏直接影响对计算机视觉中的图像理解。现有的方法多是为特定应用设计的,有很大的针对性和局限性,到目前为止还不存在一个通用的方法,也不存在一个判断分割是否成功的客观标准。因此,对图像分割的研究目前还缺乏一个统一的理论体系,使得图像分割的研究仍然是一个极富有挑战性的课题。

2图像分割方法

图像分割(Image Segmentation),简单地说就是将一幅数字图像分割成不同的区域,在同一区域内具有在一定的准则下可认为是相同的性质,如灰度、颜色、纹理等。而任何相邻区域之间其性质具有明显的区别。

基于灰度特征的阈值分割方法

阈值分割技术是经典的、流行的图象分割方法之一,它是用一个或几个阈值将图像的灰度级分为几个部分,认为属于同一个部分的像素是同一个物体。

这类方法主要包括以下几种:

(1)单阈值法,用一个全局阈值区分背景和目标。当一幅图像的直方图具有明显的双峰时,选择两峰之间的谷底作为阈值。

(2)双阈值法,用两个阈值区分背景和目标。通过设置两个阈值,以防单阈值设置阈值过高或过低,把目标像素误归为背景像素,或把背景像素误归为目标像素。

(3)多阈值法,当存在照明不均,突发噪声等因素或背景灰度变化较大时,整幅图像不存在合适的单一阈值,单一阈值不能兼顾图像不同区域的具体情况,这时可将图像分块处理,对每一块设一个阈值。

边缘检测分割法

基于边缘检测技术可以按照处理的顺序分为并行边缘检测和串行边缘检测两大类。常见的边缘检测方法有:差分法、模板匹配法及统计方法等。由于边缘灰度变化规律一般体现为阶梯状或者脉冲状。边缘与差分值的关系可以归纳为两种情况,其一是边缘发生在差分最大值或者最小值处;其二是边缘发生在过零处。

基于区域的分割方法

基于区域的分割方法利用的是图像的空间性质。该方法认为分割出来的某一区域具有相似的性质。常用的方法有区域生长法和区域分裂合并法。该类方法对含有复杂场景或自然景物等先验知识不足的图像进行分割,效果较好。

区域生长方法是把一幅图像分成许多小区域开始的,这些初始的小区域可能是小的邻域甚至是单个像素,在每个区域中,通过计算能反映一个物体内像素一致性的特征,作为区域合并的判断标准。区域合并的第一步是赋给每个区域一组参数,即特征。接下来对相邻区域的所有边界进行考查,如果给定边界两侧的特征值差异明显,那么这个边界很强,反之则弱。强边界允许继续存在,而弱边界被消除,相邻区域被合并。没有可以消除的弱边界时,区域合并过程结束,图像分割也就完成。

结合特定工具的图像分割技术

20世纪80年代末以来,随着一些特殊理论的出现及其成熟,如数学形态学、分形理论、模糊数学、小波分析、模式识别、遗传算法等,大量学者致力于将新的概念、新的方法用于图像分割,有效地改善了分割效果。产生了不少新的分割算法。下面对这些算法做一些简单的概括。

基于数学形态学的分割算法

分水岭算法是一种经典的借鉴了数学形态理论的分割方法。该方法中,将一幅图像比为一个具有不同高度值的地形,高灰度值处被认为是山脊,底灰度值处被认为是山谷,将一滴水从任一点流下,它会朝地势底的地方流动,最终聚于某一局部最底点,最后所有的水滴会分聚在不同的吸引盆地,由此,相应的图像就被分割成若干部分。分水岭算法具有运算简单、性能优良,能够较好提取运动对象轮廓、准确得到运动物体边缘的优点。但分割时需要梯度信息,对噪声较敏感。

基于模糊数学的分割算法

目前,模糊技术在图像分割中应用的一个显著特点就是它能和现有的许多图像分割方法相结合,形成一系列的集成模糊分割技术,例如模糊聚类、模糊阈值、模糊边缘检测技术等。

这类方法主要有广义模糊算子与模糊阈值法两种分割算法。

(1)广义模糊算子在广义模糊集合的范围内对图像处理,使真正的边缘处于较低灰度级,但还有一些不是边缘的像素点的灰度也在较低灰度级中,虽然算法的计算简明,且边缘细腻,但得到的边缘图会出现断线问题。

(2)模糊阈值法引入灰度图像的模糊数学描述,通过计算图像的模糊熵来选取图像的分割阈值,后用阈值法处理图像得到边界。

基于遗传算法的分割方法

此算法是受生物进化论思想提出的一种优化问题的解决方法,它使用参数编码集而不是参数本身,通过模拟进化,以适者生存的策略搜索函数的解空间,它是在点群中而不是在单点进行寻优。遗传算法在求解过程中使用随机转换规则而不是确定性规则来工作,它唯一需要的信息是适应值,通过对群体进行简单的复制、杂交、变异作用完成搜索过程。由于此法能进行能量函数全局最小优化搜索,且可以降低搜索空间维数,降低算法对模板初始位置的敏感,计算时间也大为减少。其缺点是容易收敛于局部最优。

基于神经网络分割算法

人工神经网络具有自组织、自学习、自适应的性能和非常强的非线性映射能力,适合解决背景知识不清楚、推理规则不明确和比较复杂的分类问题,因而也适合解决比较复杂的图像分割问题。原则上讲,大部分分割方法都可用 ANN(attificial neural network)实现。ANN 用于分割的研究起步较晚,只有多层前馈NN,多层误差反传(BP)NN,自组织NN,Hopfield NN以及满足约束的NN(CSNN-Const raint Satisfaction Neurat Network)等得到了应用。使用一个多层前向神经网络用于图象分割,输入层神经元的数目取决于输入特征数,而输出层神经元的数目等同于分类的数目。

图像分割中的其他方法

前面介绍了4大类图像分割较常用的方法,有关图像分割方法和文献很多,新方法不断产生,这些方法有的只对特定的情形有效,有的综合了几种方法,放在一起统称为第5类。

(1)标号法(labeling)是一种基于统计学的方法,这种方法将图像欲分割成的几个区域各以一个不同的标号来表示,用一定的方式对图像中的每一个像素赋以标号,标号相同的像素就合并成该标号所代表的区域。

(2)基于Snak模型的分割方法,基于Snake模型的分割是通过对能量函数的动态优化来逼近图像目标的真实轮廓的

(3)纹理分割,由于新的数学工具的引入,纹理分割技术取得了一些进展,张蓬等人将小波分析应用于纹理基元提取。

(4)基于知识的图像分割方法,直接建立在先验知识的基础上,使分割更符合实际图像的特点。该方法的难度在于知识的正确合理的表示与利用。

3图像分割性能的评价

图像分割评价主要有两个方面的内容:一是研究各分割算法在不同情况下的表现,掌握如何选择和控制其参数设置,以适应不同需要。二是分析多个分割算法在分割同一图像时的性能,比较优劣,以便在实际应用中选取合适的算法。分割评价方法分为分析法和实验法两大类。分析法是直接分析分割算法本身的原理及性能,而实验法是通过对测试图像的分割结果来评价算法的。两种方法各有优劣,由于缺乏可靠理论依据,并非所有分割算法都能够通过分析法分析其性能。每种评价方法都是出于某种考虑而提出来的,不同的评价方法只能反映分割算法性能的某一性能。另一方面,每一种分割算法的性能是由多种因素决定的,因此,有可能需要多种准则来综合评价。

4图像分割技术的发展趋势

随着神经网络、遗传算法、统计学理论、小波理论以及分形理论等在图像分割中的广泛应用,图像分割技术呈现出以下的发展趋势:(1)多种特征的融合。(2)多种分割方法的结合。(3)新理论与新方法。

参考文献

[1] [美]RC冈萨雷斯.数字图像处理(第二版)[M].阮秋琦,等译.北京:电子工业出版社,2003

[2] 章毓晋.图像分割[M].北京:科学出版社,2001.

[3] 李弼程,彭天强,彭波等.智能图像处理技术[M].北京:电子工业出版社,2004.

[4] 杨晖,曲秀杰.图像分割方法综述[J].电脑开发与应用。2005,18(3):21-23.

点击下页还有更多>>>图像分割技术论文

图像处理的很多任务都离不开图像分割。因为图像分割在cv中实在太重要(有用)了,就先把图像分割的常用算法做个总结。         接触机器学习和深度学习时间已经不短了。期间看过各种相关知识但从未总结过。本文过后我会尽可能详细的从工程角度来总结,从传统机器学习算法,传统计算机视觉库算法到深度学习目前常用算法和论文,以及模型在各平台的转化,量化,服务化部署等相关知识总结。         图像分割常用算法大致分为下面几类。由于图像的能量范函,边缘追踪等方法的效果往往只能解决特定问题,效果并不理想,这里不再阐述。当然二值化本身也可以分割一些简单图像的。但是二值化算法较多,我会专门做一个文章来总结。这里不再赘述。         1.基于边缘的图像分割算法:             有利用图像梯度的传统算法算子的sobel,roberts,prewitt,拉普拉斯以及canny等。             这些算法的基本思想都是采用合适的卷积算子,对图像做卷积。从而求出图像对应的梯度图像。(至于为什么通过如图1这样的算子卷积,即可得到图像的梯度图像,请读者复习下卷积和倒数的概念自行推导)由于图像的边缘处往往是图像像素差异较大,梯度较大地方。因此我们通过合适的卷积核得到图像的梯度图像,即得到了图像的边缘图像。至于二阶算子的推导,与一阶类似。优点:传统算子梯度检测,只需要用合适的卷积核做卷积,即可快速得出对应的边缘图像。缺点:图像边缘不一定准确,复杂图像的梯度不仅仅出现在图像边缘,可以能出现在图像内部的色彩和纹理上。              也有基于深度学习方法hed,rcf等。由于这类网络都有同一个比较严重的缺陷,这里只举例hed网络。hed是基于FCN和VGG改进,同时引出6个loss进行优化训练,通过多个层输出不同scale的粒度的边缘,然后通过一个训练权重融合各个层的边缘结果。hed网络结构如下: 可以得到一个比较完整的梯度图像,可参考github的hed实现。优点:图像的梯度细节和边缘完整性,相比传统的边缘算子要好很多。但是hed对于边缘的图像内部的边缘并不能很好的区分。当然我们可以自行更改loss来尝试只拟合外部的图像边缘。但最致命的问题在于,基于vgg的hed的网络表达能力有限,对于图像和背景接近,或者图像和背景部分相融的图片,hed似乎就有点无能为力了。         2.基于区域分割的算法:             区域分割比较常用的如传统的算法结合遗传算法,区域生长算法,区域分裂合并,分水岭算法等。这里传统算法的思路是比较简单易懂的,如果有无法理解的地方,欢迎大家一起讨论学习。这里不再做过多的分析。             基于区域和语意的深度学习分割算法,是目前图像分割成果较多和研究的主要方向。例如FCN系列的全卷积网络,以及经典的医学图像分割常用的unet系列,以及rcnn系列发展下的maskrcnn,以及18年底的PAnet。基于语意的图像分割技术,无疑会成为图像分割技术的主流。             其中,基于深度学习语意的其他相关算法也可以间接或直接的应用到图像分割。如经典的图像matting问题。18年又出现了许多非常优秀的算法和论文。如Deep-Image-Matting,以及效果非常优秀的MIT的 semantic soft segmentation(sss).             基于语意的图像分割效果明显要好于其他的传统算法。我在解决图像分割的问题时,首先尝试用了hed网络。最后的效果并不理想。虽然也参考github,做了hed的一些fine-tune,但是还是上面提到的原因,在我多次尝试后,最终放弃。转而适用FCN系列的网络。但是fcn也无法解决图像和背景相融的问题。图片相融的分割,感觉即需要大的感受野,又需要未相融部分原图像细节,所以单原FCN的网络,很难做出准确的分割。中间还测试过很多其他相关的网络,但都效果不佳。考虑到感受野和原图像细节,尝试了resnet和densenet作为图像特征提取的底层。最终我测试了unet系列的网络:                 unet的原始模型如图所示。在自己拍照爬虫等手段采集了将近1000张图片。去掉了图片质量太差的,图片内容太过类似的。爬虫最终收集160多张,自己拍照收集200张图片后,又用ps手动p了边缘图像,采用图像增强变换,大约有300*24张图片。原生unet网络的表现比较一般。在将unet普通的卷积层改为resnet后,网络的表达能力明显提升。在将resnet改为resnet101,此时,即使对于部分相融的图像,也能较好的分割了。但是unet的模型体积已经不能接受。                 在最后阶段,看到maskrcnn的实例分割。maskrcnn一路由rcnn,fasterrcnn发展过来。于是用maskrcnn来加入自己的训练数据和label图像进行训练。maskrcnn的结果表现并不令人满意,对于边缘的定位,相比于其他算法,略显粗糙。在产品应用中,明显还不合适。                         3.基于图的分割算法             基于深度学习的deepgrab,效果表现并不是十分理想。deepgrab的git作者backbone采用了deeplabv2的网络结构。并没有完全安装原论文来做。 论文原地址参考: 整体结构类似于encode和decoder。并没有太仔细的研究,因为基于resent101的结构,在模型体积,速度以及deeplab的分割精度上,都不能满足当前的需求。之前大致总结过计算机视觉的相关知识点,既然目前在讨论移动端模型,那后面就分模块总结下移动端模型的应用落地吧。 由于时间实在有限。这里并没有针对每个算法进行详细的讲解。后续我会从基础的机器学习算法开始总结。

基于模板的图像分类方法论文

图像分类作为计算机视觉领域的基础任务,经过大量的研究与试验,已经取得了傲人的成绩。然而,现有的分类任务大多是以单标签分类展开研究的。当图片中有多个标签时,又该如何进行分类呢?本篇综述将带领大家了解多标签图像分类这一方向,了解更具难度的图像分类。 作者 | 郭冰洋 编辑 | 言有三 随着科学技术的进步与发展,图像作为信息传播的重要媒介,在通信、无人驾驶、医学影像分析、航天、遥感等多个领域得到了广泛的研究,并在国民社会、经济生活中承担着更加重要的角色。人们对图像研究的愈发重视,也促使计算机视觉领域迎来了蓬勃发展的黄金时代。 作为计算机视觉领域的基础性任务,图像分类是目标检测、语义分割的重要支撑,其目标是将不同的图像划分到不同的类别,并实现最小的分类误差。经过近30年的研究,图像分类已经成功应用至社会生活的方方面面。如今,在我们的生活中随处可见——智能手机的相册自动分类、产品缺陷识别、无人驾驶等等。 根据分类任务的目标不同,可以将图像分类任务划分成两部分:(1)单标签图像分类;(2)多标签图像分类。 单标签图像分类是指每张图片对应一个类别标签,根据物体类别的数量,又可以将单标签图像分类划分成二分类、多类别分类。如下图所示,可以将该图的标签记为海洋,通过单标签图像分类我们可以判定该图像中是否含有海洋。 然而,现实生活中的图片中往往包含多个类别的物体,这也更加符合人的认知习惯。我们再来观察下图,可以发现图中不仅包含海洋,还包括了海豚。多标签图像分类可以告知我们图像中是否同时包含这些内容,这也能够更好地解决实际生活中的问题。 机器学习算法主要包括两个解决思路: (1) 问题迁移,即将多标签分类问题转化为单标签分类问题,如将标签转化为向量、训练多个分类器等; (2) 根据多标签特点,提出新的适应性算法,包括ML-KNN、Ranking SVM、Multi-label Decision Tree等。现对其中具有代表性的算法进行总结。 问题迁移 问题迁移方法的主要思想是先将多标签数据集用某种方式转换成单标签数据集,然后运用单标签分类方法进行分类。该方法有可以包括基于标签转换和基于样本实例转换。 基于标签转换 针对每个标签,将属于这个标签的所有实例分为一类,不属于的分为另一类,将所有数据转换为多个单标签分类问题(如下图)。典型算法主要有Binary Relevance和Classifier Chain两种。 基于样本实例转换 这种方法是将多标签实例分解成多个单标签实例。如下图所示。实例E3对应标签y3和y4,则通过分解多标签方法法将E3分解成单独选中标签y3和y4的实例,然后对每一个标签作单独预测。  适应性方法 如上文所述,新的适应性算法是根据多标签分类的特殊性,改进现有的单标签分类算法,主要包括以下三种: ML-KNN ML-KNN由传统的KNN算法发展而来。首先通过KNN算法得到样本最接近的K个邻近样本,然后根据K个邻近样本的标签,统计属于某一标签的邻近样本个数,最后利用最大后验概率原则(MAP)决定测试样本含有的标签集合。 Rank SVM Rank SVM是在SVM的基础上,加入Ranking Loss损失函数和相应的边际函数作为约束条件,并扩展目标函数而提出的一种多标签学习算法。该算法的简要思路是:首先定义函数s(x)是样本x的标签集的规模大小,然后定义rk(x)=wkTx+bk,如果求得的rk(x)值在最大的s(x)个元素(r1(x),...rQ(x))之间,则认为该样本x选中该标签k,否则就没被选中。在求解过程中定义新的排序函数rk(x)-rl(x)≥1,其中k表示被样本x选中的标签,l表示没有被选中的标签,并基于这个新的排序函来大间隔分类器,同时最小化Ranking Loss,从而推导出适合多标签分类的目标函数和限制条件。 Multi-label Decision Tree 该算法采用决策树技术处理多标签数据,利用基于多标签熵的信息增益准则递归地构建决策树。树形结构包括非叶结点、分支、叶节点。决策树模型用于分类时,特征属性用非叶节点表示,特征属性在某个值域上的输出用非叶节点之间的分支表示,而类别则用叶节点存放。 计算思想如下:首先计算每个特征的信息增益,挑选增益最大的特征来划分样本为左右子集,递归下去,直到满足停止条件,完成决策树的构建。对新的测试样本,沿根节点遍历一条路径到叶子节点,计算叶子节点样本子集中每个标签为0和1的概率,概率超过则表示含有该标签。当遍历所有路径到底不同的叶节点之后,则可判断涵盖的所有标签信息。 除了上述三类主要算法外,还包括诸多以单标签分类进行改进的算法,在此不再赘述。 深度学习的发展带动了图像分类精度的大幅提升,神经网络强大的非线性表征能力可以在大规模数据中学习到更加有效的特征。近年来,多标签图像分类也开始使用深度学习的思想展开研究。 魏云超等在程明明教授提出的BING理论基础上,提出了Hypotheses-CNN-Pooling。首先对每张图片提取含有标签信息的候选区域(如上图中的Hypotheses Extraction过程),然后将每个候选区域送入CNN进行分类训练,最后利用cross-hypothesis max-pooling融合所有候选区域的分类结果,从而得到多个标签信息完整的图片。 CNN具有强大的语义信息提取能力,而RNN则可以建立信息之间的关联。根据这一理论观点,Jiang Wang等提出了CNN-RNN联合的网络结构。首先利用CNN对输入图像进行训练,得到相应的特征,然后将图片对应的特征投影到与标签一致的空间中,在该空间利用RNN进行单词的搜索训练。该算法充分考虑了类别之间的相关性,可以有效对图像中具有一定关系的标签进行识别。 在CNN-RNN结构的基础上,后续文章又加入Regional LSTM模块。该模块可以对CNN的特征进行导向处理,从而获取特征的位置信息,并计算位置信息和标签之间的相关性。在上文的结果上进一步考虑了特征、位置和标签之间潜在的依赖关系,可以有效计算图片中多个标签同时存在的可能性,并进行图片的分类。 最近,诸多基于image-level进行弱监督分割研究的文章,充分利用了多标签分类网络的信息。其主要思想是将标签统一处理为向量形式,为每幅图片构建一个维度为1xN的矩阵标签(如[0,0,0,1,1,0]形式),并采用专门的损失函数(Hanming loss、Ranking loss等)进行训练。这一方法成功地将多标签的复杂问题,转化为单标签问题,从而可以利用传统的分类网络进行训练。 多标签图像分类的相关算法仍然层出不穷,但不论是基于机器学习还是基于深度学习的算法,都有其优势和不足,如何根据实际应用需求选用合适的算法,才是我们应当关注的重点内容。 单标签分类中通常采用准确率(Precision),召回率(Recall)、F值(F-measure)和AUC曲线对分类结果进行评价。然而,在多标签分类中一个图片与多个标签同时关联,其复杂程度远远高于单标签分类。因此,在继承单标签分类评价指标的基础上,许多关于多标签分类的评价指标也被提出。在这里只介绍多标签分类常用的指标,有关单标签分类的指标不再赘述。 平均准确率(AP)和平均准确率均值(mAP) 同单标签分类一样,当一张图片中的所有标记均预测正确时,准确率才可以置1,否则置零。每个类别下的标签分别进行计算后,取其平均值即可获得平均准确率,对所有平均准确率取均值即可获得平均准确率均值。平均准确率可以衡量模型在每个类别的好坏程度,而平均准确率均值则衡量的是在所有类别的好坏程度。 汉明距离 将预测的标签集合与实际的标签集合进行对比,按照汉明距离的相似度来衡量。汉明距离的相似度越高,即汉明损失函数越小,则模型的准确率越高。 1-错误率 1-错误率用来计算预测结果中排序第一的标签不属于实际标签集中的概率。其思想相当于单标签分类问题中的错误率评价指标。1-错误率越小,说明预测结果越接近实际标签,模型的预测结果也就越好。 覆盖率 覆盖率用来度量“排序好的标签列表”平均需要移动多少步数,才能覆盖真实的相关标签集合。对预测集合Y中的所有标签{y1,y2,… yi … yn}进行排序,并返回标签yi在排序表中的排名,排名越高,则相关性越差,反之,相关性越高。 排序损失 排序损失计算的是不相关标签比相关标签的相关性还要大的概率。 高质量的数据集是图像分类的基础,更是关键所在。随着人们对数据质量的重视程度越来越高,如今已有诸多完备的多标签图像分类数据集。 Pascal VOC Pascal VOC数据集的主要任务是在真实场景中识别来自多个类别的目标。该数据集共有近两万张图片,共有20个类别组成。Pascal VOC官方对每张图片都进行了详细的信息标注,包括类别信息、边界框信息和语义信息,均保存在相应的xml格式文件中。通过读取xml文件中的项,我们可以获取到单张图片中包含的多个物体类别信息,从而构建多标签信息集合并进行分类训练。 COCO COCO(Common Objects in Context)数据集由微软公司赞助搭建。该数据集包含了91个类别,三十余万张图片以及近二百五十万个标签。与Pascal VOC相类似,COCO数据的标注信息均保存在图片对应的json格式文件中。通过读取json文件中的annotation字段,可以获取其中的category_id项,从而获取图片中的类别信息。同一json文件中包含多个category_id项,可以帮助我们构建多标签信息。COCO数据集的类别虽然远远大于Pascal VOC,而且每一类包含的图像更多,这也更有利于特定场景下的特征学习。 除了上述两个个主流数据集之外,比较常用的还包括ImageNet数据集、NUS-WIDE数据集。近年来,诸多公司、科研机构也提出了诸多全新的数据集,如ML-Images等。这些标注完善的数据,为多标签图像分类的研究提供了有力的支持,同样也为图像处理领域的发展做出了巨大贡献。 (1)多标签图像分类的可能性随着图片中标签类别的增加呈指数级增长,在现有的硬件基础上会加剧训练的负担和时间成本,如何有效的降低信息维度是面临的最大挑战。 (2) 多标签分类往往没有考虑类别之间的相关性,如房子大概率不会出现老虎、海洋上不太可能出现汽车。对于人类来说,这些均是常识性的问题,但对于计算机却是非常复杂的过程,如何找到类别之间的相关性也能够更好的降低多标签图像分类的难度。 古语有云:“纸上得来终觉浅,绝知此事要躬行”,理论知识的学习必须通过实践才能进一步强化,完成了综述内容的书写,后续将基于Pytorch框架以Pascal VOC2012增强数据集进行多标签图像分类实战,敬请期待哦! 如果想加入我们,后台留言吧 技术交流请移步知识星球 更多请关注知乎专栏《有三AI学院》和公众号《有三AI》

Abstract

我们训练了一个大型的深度卷积神经网络,将ImageNet lsvprc -2010竞赛中的120万幅高分辨率图像分类为1000个不同的类。在测试数据上,我们实现了top-1和top-5的错误率,分别为和,这与前的最高水平相比有了很大的提高。该神经网络有6000万个参数和65万个神经元,由5个卷积层(其中一些后面接了最大池化层)和3个全连接层(最后的1000路softmax)组成。为了使训练更快,我们使用了非饱和神经元和一个非常高效的GPU实现卷积运算。为了减少全连通层的过拟合,我们采用了一种最近发展起来的正则化方法——dropout,结果显示它非常有效。我们还在ILSVRC-2012比赛中输入了该模型的一个变体,并获得了的top-5测试错误率,而第二名获得了的错误率.

1 Introduction

当前的物体识别方法主要利用机器学习方法。为了提高它们的性能,我们可以收集更大的数据集,学习更强大的模型,并使用更好的技术来防止过度拟合。直到最近,标记图像的数据集在成千上万的图像(例如,NORB [16], Caltech-101/256 [8,9], CIFAR-10/100[12])中相对较小。使用这种大小的数据集可以很好地解决简单的识别任务,特别是如果使用保存标签的转换来扩展它们。例如,MNIST数字识别任务的当前最佳错误率(<)接近人类性能[4]。但是现实环境中的物体表现出相当大的可变性,所以为了学会识别它们,有必要使用更大的训练集。的确,小图像数据集的缺点已经被广泛认识(例如,Pinto等人的[21]),但直到最近才有可能收集数百万张图像的标记数据集。新的更大的数据集包括LabelMe[23],它由成千上万的全分段图像组成,和ImageNet[6],它由超过22000个类别的超过1500万标记的高分辨率图像组成。

要从数百万张图像中了解数千个物体,我们需要一个具有巨大学习能力的模型。 然而,对象识别任务的巨大复杂性意味着即使像ImageNet这样大的数据集也无法指定这个问题,因此我们的模型也应该具有大量的先验知识来补偿我们没有的所有数据。卷积神经网络(Convolutional neural networks, CNNs)就是这样一类模型[16,11,13,18,15,22,26]。它们的能力可以通过改变深度和宽度来控制,而且它们还对图像的性质(即统计的平稳性和像素依赖的局部性)做出了强有力且最正确的假设。 因此,与具有相似大小层的标准前馈神经网络相比,CNNs具有更少的连接和参数,因此更容易训练,而其理论上最好的性能可能只会稍微差一些。

尽管CNNs的质量很吸引人,尽管它们的本地架构相对高效,但在高分辨率图像上大规模应用仍然非常昂贵。幸运的是,当前的gpu与高度优化的2D卷积实现相结合,已经足够强大,可以方便地训练有趣的大型CNNs,而最近的数据集(如ImageNet)包含了足够多的标记示例,可以在不严重过拟合的情况下训练此类模型。

本文的具体贡献如下:

最后,网络的大小主要受到当前gpu上可用内存的大小和我们愿意忍受的训练时间的大小的限制。我们的网络需要5到6天的时间来训练两个GTX 580 3GB GPU。我们所有的实验都表明,只要等待更快的gpu和更大的数据集可用,我们的结果就可以得到改善。

2 The Dataset

ImageNet是一个包含超过1500万张高分辨率图像的数据集,属于大约22000个类别。这些图片是从网上收集来的,并由人工贴标签者使用亚马逊的土耳其机械众包工具进行标记。从2010年开始,作为Pascal视觉对象挑战赛的一部分,每年都会举办一场名为ImageNet大型视觉识别挑战赛(ILSVRC)的比赛。ILSVRC使用ImageNet的一个子集,每个类别大约有1000张图片。总共大约有120万张训练图像、5万张验证图像和15万张测试图像。

ILSVRC-2010 是唯一可用测试集标签的 ILSVRC 版本,因此这是我们进行大多数实验的版本。由于我们也在 ILSVRC-2012 竞赛中加入了我们的模型,在第6节中,我们也报告了我们在这个版本的数据集上的结果,对于这个版本的数据集,测试集标签是不可用的。在 ImageNet 上,通常报告两个错误率:top-1 和 top-5,其中 top-5 错误率是测试图像的一部分,其中正确的标签不在模型认为最可能的五个标签中。

ImageNet由可变分辨率的图像组成,而我们的系统需要一个恒定的输入维数。 因此,我们将图像降采样到256 * 256的固定分辨率。给定一个矩形图像,我们首先重新调整图像的大小,使其短边长度为256,然后从结果图像中裁剪出中心的256%256块。除了从每个像素中减去训练集上的平均活动外,我们没有以任何其他方式对图像进行预处理。因此,我们将网络训练成像素的原始RGB值(居中)。

3 The Architecture

ReLU Nonlinearity

Training on Multiple GPUs

Local Response Normalization

Overlapping Pooling

Pooling layers in CNNs summarize the outputs of neighboring groups of neurons in the same kernel map. Traditionally, the neighborhoods summarized by adjacent pooling units do not overlap (.,[17, 11, 4]). To be more precise, a pooling layer can be thought of as consisting of a grid of pooling units spaced s pixels apart, each summarizing a neighborhood of size z z centered at the location of the pooling unit. If we set s = z, we obtain traditional local pooling as commonly employed in CNNs. If we set s < z, we obtain overlapping pooling. This is what we use throughout our network, with s = 2 and z = 3. This scheme reduces the top-1 and top-5 error rates by and , respectively, as compared with the non-overlapping scheme s = 2; z = 2, which produces output of equivalent dimensions. We generally observe during training that models with overlapping pooling find it slightly more difficult to overfit.

Overall Architecture

Now we are ready to describe the overall architecture of our CNN. As depicted in Figure 2, the net contains eight layers with weights; the first five are convolutional and the remaining three are fully-connected. The output of the last fully-connected layer is fed to a 1000-way softmax which produces a distribution over the 1000 class labels. Our network maximizes the multinomial logistic regression objective, which is equivalent to maximizing the average across training cases of the log-probability of the correct label under the prediction distribution.

4 Reducing Overfitting

Data Augmentation

Dropout

结合许多不同模型的预测是减少测试错误的一种非常成功的方法[1,3],但是对于已经需要几天训练的大型神经网络来说,这似乎太昂贵了。然而,有一个非常有效的模型组合版本,它在训练期间只花费大约2倍的成本。最近介绍的技术称为dropout[10],它将每个隐藏神经元的输出设置为0,概率为。以这种方式丢弃的神经元不参与正向传递,也不参与反向传播。所以每次输入时,神经网络都会对不同的结构进行采样,但是所有这些结构都共享权重。这种技术减少了神经元之间复杂的相互适应,因为神经元不能依赖于特定的其他神经元的存在。因此,它被迫学习与其他神经元的许多不同随机子集结合使用的更健壮的特征。在测试时,我们使用所有的神经元,但将它们的输出乘以,这是一个合理的近似值,近似于取由指数型多退出网络产生的预测分布的几何平均值。

我们在图2的前两个完全连接的层中使用了dropout。没有dropout,我们的网络显示出大量的过拟合。Dropout使收敛所需的迭代次数增加了一倍。

5 Details of learning

7 Discussion

随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。我整理了图像识别技术论文,欢迎阅读!

图像识别技术研究综述

摘要:随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。图像识别是利用计算机对图像进行处理、分析和理解,由于图像在成像时受到外部环境的影响,使得图像具有特殊性,复杂性。基于图像处理技术进一步探讨图像识别技术及其应用前景。

关键词:图像处理;图像识别;成像

中图分类号:TP391 文献标识码:A 文章编号:1009-3044(2013)10-2446-02

图像是客观景物在人脑中形成的影像,是人类最重要的信息源,它是通过各种观测系统从客观世界中获得,具有直观性和易理解性。随着计算机技术、多媒体技术、人工智能技术的迅速发展,图像处理技术的应用也越来越广泛,并在科学研究、教育管理、医疗卫生、军事等领域已取得的一定的成绩。图像处理正显著地改变着人们的生活方式和生产手段,比如人们可以借助于图像处理技术欣赏月球的景色、交通管理中的车牌照识别系统、机器人领域中的计算机视觉等,在这些应用中,都离不开图像处理和识别技术。图像处理是指用计算机对图像进行处理,着重强调图像与图像之间进行的交换,主要目标是对图像进行加工以改善图像的视觉效果并为后期的图像识别大基础[1]。图像识别是利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。但是由于获取的图像本事具有复杂性和特殊性,使得图像处理和识别技术成为研究热点。

1 图像处理技术

图像处理(image processing)利用计算机对图像进行分析,以达到所需的结果。图像处理可分为模拟图像处理和数字图像图像处理,而图像处理一般指数字图像处理。这种处理大多数是依赖于软件实现的。其目的是去除干扰、噪声,将原始图像编程适于计算机进行特征提取的形式,主要包括图像采样、图像增强、图像复原、图像编码与压缩和图像分割。

1)图像采集,图像采集是数字图像数据提取的主要方式。数字图像主要借助于数字摄像机、扫描仪、数码相机等设备经过采样数字化得到的图像,也包括一些动态图像,并可以将其转为数字图像,和文字、图形、声音一起存储在计算机内,显示在计算机的屏幕上。图像的提取是将一个图像变换为适合计算机处理的形式的第一步。

2)图像增强,图像在成像、采集、传输、复制等过程中图像的质量或多或少会造成一定的退化,数字化后的图像视觉效果不是十分满意。为了突出图像中感兴趣的部分,使图像的主体结构更加明确,必须对图像进行改善,即图像增强。通过图像增强,以减少图像中的图像的噪声,改变原来图像的亮度、色彩分布、对比度等参数。图像增强提高了图像的清晰度、图像的质量,使图像中的物体的轮廓更加清晰,细节更加明显。图像增强不考虑图像降质的原因,增强后的图像更加赏欣悦目,为后期的图像分析和图像理解奠定基础。

3)图像复原,图像复原也称图像恢复,由于在获取图像时环境噪声的影响、运动造成的图像模糊、光线的强弱等原因使得图像模糊,为了提取比较清晰的图像需要对图像进行恢复,图像恢复主要采用滤波方法,从降质的图像恢复原始图。图像复原的另一种特殊技术是图像重建,该技术是从物体横剖面的一组投影数据建立图像。

4)图像编码与压缩,数字图像的显著特点是数据量庞大,需要占用相当大的存储空间。但基于计算机的网络带宽和的大容量存储器无法进行数据图像的处理、存储、传输。为了能快速方便地在网络环境下传输图像或视频,那么必须对图像进行编码和压缩。目前,图像压缩编码已形成国际标准,如比较著名的静态图像压缩标准JPEG,该标准主要针对图像的分辨率、彩色图像和灰度图像,适用于网络传输的数码相片、彩色照片等方面。由于视频可以被看作是一幅幅不同的但有紧密相关的静态图像的时间序列,因此动态视频的单帧图像压缩可以应用静态图像的压缩标准。图像编码压缩技术可以减少图像的冗余数据量和存储器容量、提高图像传输速度、缩短处理时间。

5)图像分割技术,图像分割是把图像分成一些互不重叠而又具有各自特征的子区域,每一区域是像素的一个连续集,这里的特性可以是图像的颜色、形状、灰度和纹理等。图像分割根据目标与背景的先验知识将图像表示为物理上有意义的连通区域的集合。即对图像中的目标、背景进行标记、定位,然后把目标从背景中分离出来。目前,图像分割的方法主要有基于区域特征的分割方法、基于相关匹配的分割方法和基于边界特征的分割方法[2]。由于采集图像时会受到各种条件的影响会是图像变的模糊、噪声干扰,使得图像分割是会遇到困难。在实际的图像中需根据景物条件的不同选择适合的图像分割方法。图像分割为进一步的图像识别、分析和理解奠定了基础。

2 图像识别技术

图像识别是通过存储的信息(记忆中存储的信息)与当前的信息(当时进入感官的信息)进行比较实现对图像的识别[3]。前提是图像描述,描述是用数字或者符号表示图像或景物中各个目标的相关特征,甚至目标之间的关系,最终得到的是目标特征以及它们之间的关系的抽象表达。图像识别技术对图像中个性特征进行提取时,可以采用模板匹配模型。在某些具体的应用中,图像识别除了要给出被识别对象是什么物体外,还需要给出物体所处的位置和姿态以引导计算初工作。目前,图像识别技术已广泛应用于多个领域,如生物医学、卫星遥感、机器人视觉、货物检测、目标跟踪、自主车导航、公安、银行、交通、军事、电子商务和多媒体网络通信等。主要识别技术有:

指纹识别

指纹识别是生物识别技术中一种最实用、最可靠和价格便宜的识别手段,主要应用于身份验证。指纹识别是生物特征的一个部分,它具有不变性:一个人的指纹是终身不变的;唯一性:几乎没有两个完全相同的指纹[3]。一个指纹识别系统主要由指纹取像、预处理与特征提取、比对、数据库管理组成。目前,指纹识别技术与我们的现实生活紧密相关,如信用卡、医疗卡、考勤卡、储蓄卡、驾驶证、准考证等。

人脸识别 目前大多数人脸识别系统使用可见光或红外图像进行人脸识别,可见光图像识别性能很容易受到光照变化的影响。在户外光照条件不均匀的情况下,其正确识别率会大大降低。而红外图像进行人脸识别时可以克服昏暗光照条件变化影响,但由于红外线不能穿透玻璃,如果待识别的对象戴有眼镜,那么在图像识别时,眼部信息全部丢失,将严重影响人脸识别的性能[4]。

文字识别

文字识别是将模式识别、文字处理、人工智能集与一体的新技术,可以自动地把文字和其他信息分离出来,通过智能识别后输入计算机,用于代替人工的输入。文字识别技术可以将纸质的文档转换为电子文档,如银行票据、文稿、各类公式和符号等自动录入,可以提供文字的处理效率,有助于查询、修改、保存和传播。文字识别方法主要有结构统计模式识别、结构模式识别和人工神经网络[5]。由于文字的数量庞大、结构复杂、字体字形变化多样,使得文字识别技术的研究遇到一定的阻碍。

3 结束语

人类在识别现实世界中的各种事物或复杂的环境是一件轻而易举的事,但对于计算机来讲进行复杂的图像识别是非常困难的[6]。在环境较为简单的情况下,图像识别技术取得了一定的成功,但在复杂的环境下,仍面临着许多问题:如在图像识别过程中的图像分割算法之间的性能优越性比较没有特定的标准,以及算法本身存在一定的局限性,这使得图像识别的最终结果不十分精确等。

参考文献:

[1] 胡爱明,周孝宽.车牌图像的快速匹配识别方法[J].计算机工程与应用,2003,39(7):90—91.

[2] 胡学龙.数字图像处理[M].北京:电子工业出版社,2011.

[3] 范立南,韩晓微,张广渊.图像处理与模式识别[M].北京:科学出版社,2007.

[4] 晓慧,刘志镜.基于脸部和步态特征融合的身份识别[J].计算机应用,2009,1(29):8.

[5] 陈良育,曾振柄,张问银.基于图形理解的汉子构型自动分析系统[J].计算机应用,2005,25(7):1629-1631.

[6] Sanderson C,Paliwal K Fusion and Person Verification Using Speech & Face Information[C].IDIAP-RR 02-33,Martigny,Swizerland,2002.

点击下页还有更多>>>图像识别技术论文

图像分类算法本科毕业论文

人类与基于模型学习的计算机视觉算法区分开来的一个特点是,能够获取关于世界的知识,并利用这些知识对视觉世界进行推理。人类可以了解物体的特性以及它们之间的关系,从而学习各种各样的视觉概念,通常只用很少的例子。本文研究了结构化先验知识在知识图谱形式下的应用,表明利用该知识可以提高图像分类的性能。我们在最近关于图端到端学习的工作的基础上,引入了图搜索神经网络(Graph Search Neural Network)作为一种有效地将大的知识图谱合并到视觉分类管道中的方法。我们在许多实验中表明,对于多标签分类,我们的方法优于标准的神经网络基线。

(a)将GSNN()作为一种将潜在的大知识图谱合并到端到端的学习系统中的方法,该系统在计算上对大图是可行的; (b)一个使用噪声知识图谱进行图像分类的框架; (c)解释我们的图像分类的能力。使用传播模型。我们的方法明显优于多标签分类的基线。

将GGNN用于图像任务的最大问题是计算可伸缩性。例如,尼尔(NEIL)[4]有超过2000个概念,而内尔(NELL)[3]有超过200万个自信的信念。即使对我们的任务进行了删减,这些图仍然是巨大的。标准GGNN上的正向传播是( ), 是节点数,反向传播是( ),其中 是传播步骤数。我们在合成图上对GGNNs进行了简单的实验,发现在超过500个节点之后,一个向前和向后的传递在一个实例上会超过1秒钟,即使在做出大量参数假设时也是如此。在2000个节点上,单个图像需要一分钟多的时间。不可能在盒子外(out of the box)使用GGNN。

我们解决这个问题的方法是图搜索神经网络(Graph Search Neural Network ,GSNN)。顾名思义,我们的想法是,不要一次对图形的所有节点执行循环更新,而是从一些基于输入的初始节点开始,只选择扩展对最终输出有用的节点。因此,我们只计算图子集上的更新步骤。那么,我们如何选择要用哪个节点子集初始化图呢?在训练和测试期间,我们根据目标检测器或分类器确定的概念存在的可能性来确定图中的初始节点。在我们的实验中,我们对80个COCO类别中的每一个都使用了更快的R-CNN(Faster R-CNN)[28]。对于超过某个选定阈值的分数,我们选择图中的相应节点作为初始激活节点集。

一旦我们有了初始节点,我们还将与初始节点相邻的节点添加到激活集。考虑到初始节点,我们首先要将关于初始节点的信念传播到所有相邻节点。然而,在第一个时间步骤之后,我们需要一种方法来决定下一个扩展哪个节点。因此,我们学习了一个每个节点的评分函数,它估计该节点有多“重要”。在每个传播步骤之后,对于当前图中的每个节点,我们预测一个重要性得分

是一个学习网络,重要性网络(importance network)。

一旦我们有了 的值,我们就将从未扩展到的得分最高的 个节点添加到我们的扩展集(expanded set),并将与这些节点相邻的所有节点添加到激活集(active set)。图2说明了这种扩展。t=1时,仅扩展检测到的节点。t=2时,我们根据重要性值扩展所选节点,并将其邻居添加到图中。在最后一个时间步骤 中,我们计算每个节点的输出,并重新排序和零填充(per-node-output and re-order and zero-pad)输出到最终分类网络中。

为了训练重要性网络(importance net),我们将目标重要性值分配给图中给定图像的每个节点。与图像中真值概念(ground-truth concepts)相对应的节点被赋予1的重要性值。这些节点的邻居被分配了一个值 。两跳(two-hop)之外的节点具有值 ,以此类推等等。其思想是,最接近最终输出的节点是最重要的扩展。

现在我们有了一个端到端的网络,它将一组初始节点和注释作为输入,并为图中的每个激活节点输出每个节点的输出。它由三组网络组成:传播网、重要性网和输出网(the propagation net, the importance net, and the output net)。图像问题的最终损失可以通过输出网络从管道的最终输出反向传播,而重要性损失则通过每个重要性输出反向传播。参见图3查看GSNN架构。首先 ,检测信任初始化(detection confidences initialize) ,初始检测到的节点的隐藏状态。然后我们初始化 相邻节点的隐藏状态,使用0。然后我们使用传播网络(propagation net)更新隐藏状态。然后使用 的值预测重要性分数 ,该分数用于选择要添加到 的下一个节点。.然后用 初始化这些节点,并通过传播网络再次更新隐藏状态。T步之后,我们采取所有的累积隐藏状态来预测所有激活节点的GSNN输出。在反向传播过程中,二元交叉熵(binary cross entropy,BCE)损失通过输出层反馈,重要性损失通过重要性网络反馈,以更新网络参数。

最后一个细节是在GSNN中添加节点偏置(node bias)。在GGNN中,每个节点的输出函数 接受节点 的隐藏状态和初始注释,计算它的输出。在某种意义上,它与节点的意义不可知(agnostic)。也就是说,在训练或测试时,GSNN采用了一个可能从未见过的图,以及对于每个节点一些初始注释 。然后,它使用图的结构通过网络传播这些注释,然后计算输出。图中的节点可以表示任何东西,从人际关系到计算机程序。然而,在我们的图网络中,一个特定的节点表示“horse”或“cat”这一事实可能是相关的,我们也可以将自己约束到一个静态图而不是图像概念。因此,我们引入节点偏差项,对于图中的每个节点,都有一些学习值。我们的输出方程 , 是一个与整体图中的特定节点 相关联的偏差项。该值存储在一个表中,其值由backpropagation更新。

. 图像管道和基线(Image pipeline and baselines) 另一个使图形网络适应视觉问题的问题是如何将图形网络合并到图像管道中。对于分类,这是相当简单的。我们获取图形网络的输出,对其进行重新排序,使节点始终以相同的顺序出现在最终网络中,并对未展开的任何节点进行零填充。因此,如果我们有一个具有316个节点输出的图形,并且每个节点预测一个5维隐藏变量,那么我们将从该图形创建一个1580维特征向量。我们还将该特征向量与微调后的VGG-16网络的FC7层(4096 dim)连接起来[35],并将更快的R-CNN(80 dim)预测的每个COCO类别的最高得分连接起来。这个5756维特征向量被输入到一层最终分类网络中,该网络经过辍学训练。 对于基线,我们比较:(1)VGG基线-仅将FC7输入最终分类网;(2)检测基线将FC7和最高COCO分数输入最终分类网。

[1] 论文笔记:GSNN: The More You Know: Using Knowledge Graphs for Image Classification [2] The More You Know: Using Knowledge Graphs for Image Classification ——用知识图谱进行图像分类论文阅读笔记

[1] KMarino / GSNN_TMYN [2] SteinsGate9 / gsnn_demo

图像处理是利用计算机对图像信息进行加工以满足人的视觉心理或者应用需求的行为,应用广泛,多用于测绘学、大气科学、天文学、美图、使图像提高辨识等。学术堂在这里为大家整理了一些图像处理本科毕业论文题目,希望对你有用。1、基于模糊分析的图像处理方法及其在无损检测中的应用研究2、数字图像处理与识别系统的开发3、关于数字图像处理在运动目标检测和医学检验中若干应用的研究4、基于ARM和DSP的嵌入式实时图像处理系统设计与研究5、基于图像处理技术的齿轮参数测量研究6、图像处理技术在玻璃缺陷检测中的应用研究7、图像处理技术在机械零件检测系统中的应用8、基于MATLAB的X光图像处理方法9、基于图像处理技术的自动报靶系统研究10、多小波变换及其在数字图像处理中的应用11、基于图像处理的检测系统的研究与设计12、基于DSP的图像处理系统的设计13、医学超声图像处理研究14、基于DSP的视频图像处理系统设计15、基于FPGA的图像处理算法的研究与硬件设计

数字图像处理是利用计算机对图像信息进行加工以满足人的视觉心理或者应用需求的行为,应用广泛,多用于测绘学、大气科学、天文学、美图、使图像提高辨识等。这里学术堂为大家整理了一些数字图像处理毕业论文题目,希望对你有用。1、基于模糊分析的图像处理方法及其在无损检测中的应用研究2、数字图像处理与识别系统的开发3、关于数字图像处理在运动目标检测和医学检验中若干应用的研究4、基于ARM和DSP的嵌入式实时图像处理系统设计与研究5、基于图像处理技术的齿轮参数测量研究6、图像处理技术在玻璃缺陷检测中的应用研究7、图像处理技术在机械零件检测系统中的应用8、基于MATLAB的X光图像处理方法9、基于图像处理技术的自动报靶系统研究10、多小波变换及其在数字图像处理中的应用11、基于图像处理的检测系统的研究与设计12、基于DSP的图像处理系统的设计13、医学超声图像处理研究14、基于DSP的视频图像处理系统设计15、基于FPGA的图像处理算法的研究与硬件设计

数字图像处理方面了解的了。

相关百科

热门百科

首页
发表服务