图像分类作为计算机视觉领域的基础任务,经过大量的研究与试验,已经取得了傲人的成绩。然而,现有的分类任务大多是以单标签分类展开研究的。当图片中有多个标签时,又该如何进行分类呢?本篇综述将带领大家了解多标签图像分类这一方向,了解更具难度的图像分类。 作者 | 郭冰洋 编辑 | 言有三 随着科学技术的进步与发展,图像作为信息传播的重要媒介,在通信、无人驾驶、医学影像分析、航天、遥感等多个领域得到了广泛的研究,并在国民社会、经济生活中承担着更加重要的角色。人们对图像研究的愈发重视,也促使计算机视觉领域迎来了蓬勃发展的黄金时代。 作为计算机视觉领域的基础性任务,图像分类是目标检测、语义分割的重要支撑,其目标是将不同的图像划分到不同的类别,并实现最小的分类误差。经过近30年的研究,图像分类已经成功应用至社会生活的方方面面。如今,在我们的生活中随处可见——智能手机的相册自动分类、产品缺陷识别、无人驾驶等等。 根据分类任务的目标不同,可以将图像分类任务划分成两部分:(1)单标签图像分类;(2)多标签图像分类。 单标签图像分类是指每张图片对应一个类别标签,根据物体类别的数量,又可以将单标签图像分类划分成二分类、多类别分类。如下图所示,可以将该图的标签记为海洋,通过单标签图像分类我们可以判定该图像中是否含有海洋。 然而,现实生活中的图片中往往包含多个类别的物体,这也更加符合人的认知习惯。我们再来观察下图,可以发现图中不仅包含海洋,还包括了海豚。多标签图像分类可以告知我们图像中是否同时包含这些内容,这也能够更好地解决实际生活中的问题。 机器学习算法主要包括两个解决思路: (1) 问题迁移,即将多标签分类问题转化为单标签分类问题,如将标签转化为向量、训练多个分类器等; (2) 根据多标签特点,提出新的适应性算法,包括ML-KNN、Ranking SVM、Multi-label Decision Tree等。现对其中具有代表性的算法进行总结。 问题迁移 问题迁移方法的主要思想是先将多标签数据集用某种方式转换成单标签数据集,然后运用单标签分类方法进行分类。该方法有可以包括基于标签转换和基于样本实例转换。 基于标签转换 针对每个标签,将属于这个标签的所有实例分为一类,不属于的分为另一类,将所有数据转换为多个单标签分类问题(如下图)。典型算法主要有Binary Relevance和Classifier Chain两种。 基于样本实例转换 这种方法是将多标签实例分解成多个单标签实例。如下图所示。实例E3对应标签y3和y4,则通过分解多标签方法法将E3分解成单独选中标签y3和y4的实例,然后对每一个标签作单独预测。 适应性方法 如上文所述,新的适应性算法是根据多标签分类的特殊性,改进现有的单标签分类算法,主要包括以下三种: ML-KNN ML-KNN由传统的KNN算法发展而来。首先通过KNN算法得到样本最接近的K个邻近样本,然后根据K个邻近样本的标签,统计属于某一标签的邻近样本个数,最后利用最大后验概率原则(MAP)决定测试样本含有的标签集合。 Rank SVM Rank SVM是在SVM的基础上,加入Ranking Loss损失函数和相应的边际函数作为约束条件,并扩展目标函数而提出的一种多标签学习算法。该算法的简要思路是:首先定义函数s(x)是样本x的标签集的规模大小,然后定义rk(x)=wkTx+bk,如果求得的rk(x)值在最大的s(x)个元素(r1(x),...rQ(x))之间,则认为该样本x选中该标签k,否则就没被选中。在求解过程中定义新的排序函数rk(x)-rl(x)≥1,其中k表示被样本x选中的标签,l表示没有被选中的标签,并基于这个新的排序函来大间隔分类器,同时最小化Ranking Loss,从而推导出适合多标签分类的目标函数和限制条件。 Multi-label Decision Tree 该算法采用决策树技术处理多标签数据,利用基于多标签熵的信息增益准则递归地构建决策树。树形结构包括非叶结点、分支、叶节点。决策树模型用于分类时,特征属性用非叶节点表示,特征属性在某个值域上的输出用非叶节点之间的分支表示,而类别则用叶节点存放。 计算思想如下:首先计算每个特征的信息增益,挑选增益最大的特征来划分样本为左右子集,递归下去,直到满足停止条件,完成决策树的构建。对新的测试样本,沿根节点遍历一条路径到叶子节点,计算叶子节点样本子集中每个标签为0和1的概率,概率超过则表示含有该标签。当遍历所有路径到底不同的叶节点之后,则可判断涵盖的所有标签信息。 除了上述三类主要算法外,还包括诸多以单标签分类进行改进的算法,在此不再赘述。 深度学习的发展带动了图像分类精度的大幅提升,神经网络强大的非线性表征能力可以在大规模数据中学习到更加有效的特征。近年来,多标签图像分类也开始使用深度学习的思想展开研究。 魏云超等在程明明教授提出的BING理论基础上,提出了Hypotheses-CNN-Pooling。首先对每张图片提取含有标签信息的候选区域(如上图中的Hypotheses Extraction过程),然后将每个候选区域送入CNN进行分类训练,最后利用cross-hypothesis max-pooling融合所有候选区域的分类结果,从而得到多个标签信息完整的图片。 CNN具有强大的语义信息提取能力,而RNN则可以建立信息之间的关联。根据这一理论观点,Jiang Wang等提出了CNN-RNN联合的网络结构。首先利用CNN对输入图像进行训练,得到相应的特征,然后将图片对应的特征投影到与标签一致的空间中,在该空间利用RNN进行单词的搜索训练。该算法充分考虑了类别之间的相关性,可以有效对图像中具有一定关系的标签进行识别。 在CNN-RNN结构的基础上,后续文章又加入Regional LSTM模块。该模块可以对CNN的特征进行导向处理,从而获取特征的位置信息,并计算位置信息和标签之间的相关性。在上文的结果上进一步考虑了特征、位置和标签之间潜在的依赖关系,可以有效计算图片中多个标签同时存在的可能性,并进行图片的分类。 最近,诸多基于image-level进行弱监督分割研究的文章,充分利用了多标签分类网络的信息。其主要思想是将标签统一处理为向量形式,为每幅图片构建一个维度为1xN的矩阵标签(如[0,0,0,1,1,0]形式),并采用专门的损失函数(Hanming loss、Ranking loss等)进行训练。这一方法成功地将多标签的复杂问题,转化为单标签问题,从而可以利用传统的分类网络进行训练。 多标签图像分类的相关算法仍然层出不穷,但不论是基于机器学习还是基于深度学习的算法,都有其优势和不足,如何根据实际应用需求选用合适的算法,才是我们应当关注的重点内容。 单标签分类中通常采用准确率(Precision),召回率(Recall)、F值(F-measure)和AUC曲线对分类结果进行评价。然而,在多标签分类中一个图片与多个标签同时关联,其复杂程度远远高于单标签分类。因此,在继承单标签分类评价指标的基础上,许多关于多标签分类的评价指标也被提出。在这里只介绍多标签分类常用的指标,有关单标签分类的指标不再赘述。 平均准确率(AP)和平均准确率均值(mAP) 同单标签分类一样,当一张图片中的所有标记均预测正确时,准确率才可以置1,否则置零。每个类别下的标签分别进行计算后,取其平均值即可获得平均准确率,对所有平均准确率取均值即可获得平均准确率均值。平均准确率可以衡量模型在每个类别的好坏程度,而平均准确率均值则衡量的是在所有类别的好坏程度。 汉明距离 将预测的标签集合与实际的标签集合进行对比,按照汉明距离的相似度来衡量。汉明距离的相似度越高,即汉明损失函数越小,则模型的准确率越高。 1-错误率 1-错误率用来计算预测结果中排序第一的标签不属于实际标签集中的概率。其思想相当于单标签分类问题中的错误率评价指标。1-错误率越小,说明预测结果越接近实际标签,模型的预测结果也就越好。 覆盖率 覆盖率用来度量“排序好的标签列表”平均需要移动多少步数,才能覆盖真实的相关标签集合。对预测集合Y中的所有标签{y1,y2,… yi … yn}进行排序,并返回标签yi在排序表中的排名,排名越高,则相关性越差,反之,相关性越高。 排序损失 排序损失计算的是不相关标签比相关标签的相关性还要大的概率。 高质量的数据集是图像分类的基础,更是关键所在。随着人们对数据质量的重视程度越来越高,如今已有诸多完备的多标签图像分类数据集。 Pascal VOC Pascal VOC数据集的主要任务是在真实场景中识别来自多个类别的目标。该数据集共有近两万张图片,共有20个类别组成。Pascal VOC官方对每张图片都进行了详细的信息标注,包括类别信息、边界框信息和语义信息,均保存在相应的xml格式文件中。通过读取xml文件中的项,我们可以获取到单张图片中包含的多个物体类别信息,从而构建多标签信息集合并进行分类训练。 COCO COCO(Common Objects in Context)数据集由微软公司赞助搭建。该数据集包含了91个类别,三十余万张图片以及近二百五十万个标签。与Pascal VOC相类似,COCO数据的标注信息均保存在图片对应的json格式文件中。通过读取json文件中的annotation字段,可以获取其中的category_id项,从而获取图片中的类别信息。同一json文件中包含多个category_id项,可以帮助我们构建多标签信息。COCO数据集的类别虽然远远大于Pascal VOC,而且每一类包含的图像更多,这也更有利于特定场景下的特征学习。 除了上述两个个主流数据集之外,比较常用的还包括ImageNet数据集、NUS-WIDE数据集。近年来,诸多公司、科研机构也提出了诸多全新的数据集,如ML-Images等。这些标注完善的数据,为多标签图像分类的研究提供了有力的支持,同样也为图像处理领域的发展做出了巨大贡献。 (1)多标签图像分类的可能性随着图片中标签类别的增加呈指数级增长,在现有的硬件基础上会加剧训练的负担和时间成本,如何有效的降低信息维度是面临的最大挑战。 (2) 多标签分类往往没有考虑类别之间的相关性,如房子大概率不会出现老虎、海洋上不太可能出现汽车。对于人类来说,这些均是常识性的问题,但对于计算机却是非常复杂的过程,如何找到类别之间的相关性也能够更好的降低多标签图像分类的难度。 古语有云:“纸上得来终觉浅,绝知此事要躬行”,理论知识的学习必须通过实践才能进一步强化,完成了综述内容的书写,后续将基于Pytorch框架以Pascal VOC2012增强数据集进行多标签图像分类实战,敬请期待哦! 如果想加入我们,后台留言吧 技术交流请移步知识星球 更多请关注知乎专栏《有三AI学院》和公众号《有三AI》
Abstract
我们训练了一个大型的深度卷积神经网络,将ImageNet lsvprc -2010竞赛中的120万幅高分辨率图像分类为1000个不同的类。在测试数据上,我们实现了top-1和top-5的错误率,分别为和,这与前的最高水平相比有了很大的提高。该神经网络有6000万个参数和65万个神经元,由5个卷积层(其中一些后面接了最大池化层)和3个全连接层(最后的1000路softmax)组成。为了使训练更快,我们使用了非饱和神经元和一个非常高效的GPU实现卷积运算。为了减少全连通层的过拟合,我们采用了一种最近发展起来的正则化方法——dropout,结果显示它非常有效。我们还在ILSVRC-2012比赛中输入了该模型的一个变体,并获得了的top-5测试错误率,而第二名获得了的错误率.
1 Introduction
当前的物体识别方法主要利用机器学习方法。为了提高它们的性能,我们可以收集更大的数据集,学习更强大的模型,并使用更好的技术来防止过度拟合。直到最近,标记图像的数据集在成千上万的图像(例如,NORB [16], Caltech-101/256 [8,9], CIFAR-10/100[12])中相对较小。使用这种大小的数据集可以很好地解决简单的识别任务,特别是如果使用保存标签的转换来扩展它们。例如,MNIST数字识别任务的当前最佳错误率(<)接近人类性能[4]。但是现实环境中的物体表现出相当大的可变性,所以为了学会识别它们,有必要使用更大的训练集。的确,小图像数据集的缺点已经被广泛认识(例如,Pinto等人的[21]),但直到最近才有可能收集数百万张图像的标记数据集。新的更大的数据集包括LabelMe[23],它由成千上万的全分段图像组成,和ImageNet[6],它由超过22000个类别的超过1500万标记的高分辨率图像组成。
要从数百万张图像中了解数千个物体,我们需要一个具有巨大学习能力的模型。 然而,对象识别任务的巨大复杂性意味着即使像ImageNet这样大的数据集也无法指定这个问题,因此我们的模型也应该具有大量的先验知识来补偿我们没有的所有数据。卷积神经网络(Convolutional neural networks, CNNs)就是这样一类模型[16,11,13,18,15,22,26]。它们的能力可以通过改变深度和宽度来控制,而且它们还对图像的性质(即统计的平稳性和像素依赖的局部性)做出了强有力且最正确的假设。 因此,与具有相似大小层的标准前馈神经网络相比,CNNs具有更少的连接和参数,因此更容易训练,而其理论上最好的性能可能只会稍微差一些。
尽管CNNs的质量很吸引人,尽管它们的本地架构相对高效,但在高分辨率图像上大规模应用仍然非常昂贵。幸运的是,当前的gpu与高度优化的2D卷积实现相结合,已经足够强大,可以方便地训练有趣的大型CNNs,而最近的数据集(如ImageNet)包含了足够多的标记示例,可以在不严重过拟合的情况下训练此类模型。
本文的具体贡献如下:
最后,网络的大小主要受到当前gpu上可用内存的大小和我们愿意忍受的训练时间的大小的限制。我们的网络需要5到6天的时间来训练两个GTX 580 3GB GPU。我们所有的实验都表明,只要等待更快的gpu和更大的数据集可用,我们的结果就可以得到改善。
2 The Dataset
ImageNet是一个包含超过1500万张高分辨率图像的数据集,属于大约22000个类别。这些图片是从网上收集来的,并由人工贴标签者使用亚马逊的土耳其机械众包工具进行标记。从2010年开始,作为Pascal视觉对象挑战赛的一部分,每年都会举办一场名为ImageNet大型视觉识别挑战赛(ILSVRC)的比赛。ILSVRC使用ImageNet的一个子集,每个类别大约有1000张图片。总共大约有120万张训练图像、5万张验证图像和15万张测试图像。
ILSVRC-2010 是唯一可用测试集标签的 ILSVRC 版本,因此这是我们进行大多数实验的版本。由于我们也在 ILSVRC-2012 竞赛中加入了我们的模型,在第6节中,我们也报告了我们在这个版本的数据集上的结果,对于这个版本的数据集,测试集标签是不可用的。在 ImageNet 上,通常报告两个错误率:top-1 和 top-5,其中 top-5 错误率是测试图像的一部分,其中正确的标签不在模型认为最可能的五个标签中。
ImageNet由可变分辨率的图像组成,而我们的系统需要一个恒定的输入维数。 因此,我们将图像降采样到256 * 256的固定分辨率。给定一个矩形图像,我们首先重新调整图像的大小,使其短边长度为256,然后从结果图像中裁剪出中心的256%256块。除了从每个像素中减去训练集上的平均活动外,我们没有以任何其他方式对图像进行预处理。因此,我们将网络训练成像素的原始RGB值(居中)。
3 The Architecture
ReLU Nonlinearity
Training on Multiple GPUs
Local Response Normalization
Overlapping Pooling
Pooling layers in CNNs summarize the outputs of neighboring groups of neurons in the same kernel map. Traditionally, the neighborhoods summarized by adjacent pooling units do not overlap (.,[17, 11, 4]). To be more precise, a pooling layer can be thought of as consisting of a grid of pooling units spaced s pixels apart, each summarizing a neighborhood of size z z centered at the location of the pooling unit. If we set s = z, we obtain traditional local pooling as commonly employed in CNNs. If we set s < z, we obtain overlapping pooling. This is what we use throughout our network, with s = 2 and z = 3. This scheme reduces the top-1 and top-5 error rates by and , respectively, as compared with the non-overlapping scheme s = 2; z = 2, which produces output of equivalent dimensions. We generally observe during training that models with overlapping pooling find it slightly more difficult to overfit.
Overall Architecture
Now we are ready to describe the overall architecture of our CNN. As depicted in Figure 2, the net contains eight layers with weights; the first five are convolutional and the remaining three are fully-connected. The output of the last fully-connected layer is fed to a 1000-way softmax which produces a distribution over the 1000 class labels. Our network maximizes the multinomial logistic regression objective, which is equivalent to maximizing the average across training cases of the log-probability of the correct label under the prediction distribution.
4 Reducing Overfitting
Data Augmentation
Dropout
结合许多不同模型的预测是减少测试错误的一种非常成功的方法[1,3],但是对于已经需要几天训练的大型神经网络来说,这似乎太昂贵了。然而,有一个非常有效的模型组合版本,它在训练期间只花费大约2倍的成本。最近介绍的技术称为dropout[10],它将每个隐藏神经元的输出设置为0,概率为。以这种方式丢弃的神经元不参与正向传递,也不参与反向传播。所以每次输入时,神经网络都会对不同的结构进行采样,但是所有这些结构都共享权重。这种技术减少了神经元之间复杂的相互适应,因为神经元不能依赖于特定的其他神经元的存在。因此,它被迫学习与其他神经元的许多不同随机子集结合使用的更健壮的特征。在测试时,我们使用所有的神经元,但将它们的输出乘以,这是一个合理的近似值,近似于取由指数型多退出网络产生的预测分布的几何平均值。
我们在图2的前两个完全连接的层中使用了dropout。没有dropout,我们的网络显示出大量的过拟合。Dropout使收敛所需的迭代次数增加了一倍。
5 Details of learning
7 Discussion
随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。我整理了图像识别技术论文,欢迎阅读!
图像识别技术研究综述
摘要:随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。图像识别是利用计算机对图像进行处理、分析和理解,由于图像在成像时受到外部环境的影响,使得图像具有特殊性,复杂性。基于图像处理技术进一步探讨图像识别技术及其应用前景。
关键词:图像处理;图像识别;成像
中图分类号:TP391 文献标识码:A 文章编号:1009-3044(2013)10-2446-02
图像是客观景物在人脑中形成的影像,是人类最重要的信息源,它是通过各种观测系统从客观世界中获得,具有直观性和易理解性。随着计算机技术、多媒体技术、人工智能技术的迅速发展,图像处理技术的应用也越来越广泛,并在科学研究、教育管理、医疗卫生、军事等领域已取得的一定的成绩。图像处理正显著地改变着人们的生活方式和生产手段,比如人们可以借助于图像处理技术欣赏月球的景色、交通管理中的车牌照识别系统、机器人领域中的计算机视觉等,在这些应用中,都离不开图像处理和识别技术。图像处理是指用计算机对图像进行处理,着重强调图像与图像之间进行的交换,主要目标是对图像进行加工以改善图像的视觉效果并为后期的图像识别大基础[1]。图像识别是利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。但是由于获取的图像本事具有复杂性和特殊性,使得图像处理和识别技术成为研究热点。
1 图像处理技术
图像处理(image processing)利用计算机对图像进行分析,以达到所需的结果。图像处理可分为模拟图像处理和数字图像图像处理,而图像处理一般指数字图像处理。这种处理大多数是依赖于软件实现的。其目的是去除干扰、噪声,将原始图像编程适于计算机进行特征提取的形式,主要包括图像采样、图像增强、图像复原、图像编码与压缩和图像分割。
1)图像采集,图像采集是数字图像数据提取的主要方式。数字图像主要借助于数字摄像机、扫描仪、数码相机等设备经过采样数字化得到的图像,也包括一些动态图像,并可以将其转为数字图像,和文字、图形、声音一起存储在计算机内,显示在计算机的屏幕上。图像的提取是将一个图像变换为适合计算机处理的形式的第一步。
2)图像增强,图像在成像、采集、传输、复制等过程中图像的质量或多或少会造成一定的退化,数字化后的图像视觉效果不是十分满意。为了突出图像中感兴趣的部分,使图像的主体结构更加明确,必须对图像进行改善,即图像增强。通过图像增强,以减少图像中的图像的噪声,改变原来图像的亮度、色彩分布、对比度等参数。图像增强提高了图像的清晰度、图像的质量,使图像中的物体的轮廓更加清晰,细节更加明显。图像增强不考虑图像降质的原因,增强后的图像更加赏欣悦目,为后期的图像分析和图像理解奠定基础。
3)图像复原,图像复原也称图像恢复,由于在获取图像时环境噪声的影响、运动造成的图像模糊、光线的强弱等原因使得图像模糊,为了提取比较清晰的图像需要对图像进行恢复,图像恢复主要采用滤波方法,从降质的图像恢复原始图。图像复原的另一种特殊技术是图像重建,该技术是从物体横剖面的一组投影数据建立图像。
4)图像编码与压缩,数字图像的显著特点是数据量庞大,需要占用相当大的存储空间。但基于计算机的网络带宽和的大容量存储器无法进行数据图像的处理、存储、传输。为了能快速方便地在网络环境下传输图像或视频,那么必须对图像进行编码和压缩。目前,图像压缩编码已形成国际标准,如比较著名的静态图像压缩标准JPEG,该标准主要针对图像的分辨率、彩色图像和灰度图像,适用于网络传输的数码相片、彩色照片等方面。由于视频可以被看作是一幅幅不同的但有紧密相关的静态图像的时间序列,因此动态视频的单帧图像压缩可以应用静态图像的压缩标准。图像编码压缩技术可以减少图像的冗余数据量和存储器容量、提高图像传输速度、缩短处理时间。
5)图像分割技术,图像分割是把图像分成一些互不重叠而又具有各自特征的子区域,每一区域是像素的一个连续集,这里的特性可以是图像的颜色、形状、灰度和纹理等。图像分割根据目标与背景的先验知识将图像表示为物理上有意义的连通区域的集合。即对图像中的目标、背景进行标记、定位,然后把目标从背景中分离出来。目前,图像分割的方法主要有基于区域特征的分割方法、基于相关匹配的分割方法和基于边界特征的分割方法[2]。由于采集图像时会受到各种条件的影响会是图像变的模糊、噪声干扰,使得图像分割是会遇到困难。在实际的图像中需根据景物条件的不同选择适合的图像分割方法。图像分割为进一步的图像识别、分析和理解奠定了基础。
2 图像识别技术
图像识别是通过存储的信息(记忆中存储的信息)与当前的信息(当时进入感官的信息)进行比较实现对图像的识别[3]。前提是图像描述,描述是用数字或者符号表示图像或景物中各个目标的相关特征,甚至目标之间的关系,最终得到的是目标特征以及它们之间的关系的抽象表达。图像识别技术对图像中个性特征进行提取时,可以采用模板匹配模型。在某些具体的应用中,图像识别除了要给出被识别对象是什么物体外,还需要给出物体所处的位置和姿态以引导计算初工作。目前,图像识别技术已广泛应用于多个领域,如生物医学、卫星遥感、机器人视觉、货物检测、目标跟踪、自主车导航、公安、银行、交通、军事、电子商务和多媒体网络通信等。主要识别技术有:
指纹识别
指纹识别是生物识别技术中一种最实用、最可靠和价格便宜的识别手段,主要应用于身份验证。指纹识别是生物特征的一个部分,它具有不变性:一个人的指纹是终身不变的;唯一性:几乎没有两个完全相同的指纹[3]。一个指纹识别系统主要由指纹取像、预处理与特征提取、比对、数据库管理组成。目前,指纹识别技术与我们的现实生活紧密相关,如信用卡、医疗卡、考勤卡、储蓄卡、驾驶证、准考证等。
人脸识别 目前大多数人脸识别系统使用可见光或红外图像进行人脸识别,可见光图像识别性能很容易受到光照变化的影响。在户外光照条件不均匀的情况下,其正确识别率会大大降低。而红外图像进行人脸识别时可以克服昏暗光照条件变化影响,但由于红外线不能穿透玻璃,如果待识别的对象戴有眼镜,那么在图像识别时,眼部信息全部丢失,将严重影响人脸识别的性能[4]。
文字识别
文字识别是将模式识别、文字处理、人工智能集与一体的新技术,可以自动地把文字和其他信息分离出来,通过智能识别后输入计算机,用于代替人工的输入。文字识别技术可以将纸质的文档转换为电子文档,如银行票据、文稿、各类公式和符号等自动录入,可以提供文字的处理效率,有助于查询、修改、保存和传播。文字识别方法主要有结构统计模式识别、结构模式识别和人工神经网络[5]。由于文字的数量庞大、结构复杂、字体字形变化多样,使得文字识别技术的研究遇到一定的阻碍。
3 结束语
人类在识别现实世界中的各种事物或复杂的环境是一件轻而易举的事,但对于计算机来讲进行复杂的图像识别是非常困难的[6]。在环境较为简单的情况下,图像识别技术取得了一定的成功,但在复杂的环境下,仍面临着许多问题:如在图像识别过程中的图像分割算法之间的性能优越性比较没有特定的标准,以及算法本身存在一定的局限性,这使得图像识别的最终结果不十分精确等。
参考文献:
[1] 胡爱明,周孝宽.车牌图像的快速匹配识别方法[J].计算机工程与应用,2003,39(7):90—91.
[2] 胡学龙.数字图像处理[M].北京:电子工业出版社,2011.
[3] 范立南,韩晓微,张广渊.图像处理与模式识别[M].北京:科学出版社,2007.
[4] 晓慧,刘志镜.基于脸部和步态特征融合的身份识别[J].计算机应用,2009,1(29):8.
[5] 陈良育,曾振柄,张问银.基于图形理解的汉子构型自动分析系统[J].计算机应用,2005,25(7):1629-1631.
[6] Sanderson C,Paliwal K Fusion and Person Verification Using Speech & Face Information[C].IDIAP-RR 02-33,Martigny,Swizerland,2002.
点击下页还有更多>>>图像识别技术论文
图像处理是利用计算机对图像信息进行加工以满足人的视觉心理或者应用需求的行为,应用广泛,多用于测绘学、大气科学、天文学、美图、使图像提高辨识等。学术堂在这里为大家整理了一些图像处理本科毕业论文题目,希望对你有用。1、基于模糊分析的图像处理方法及其在无损检测中的应用研究2、数字图像处理与识别系统的开发3、关于数字图像处理在运动目标检测和医学检验中若干应用的研究4、基于ARM和DSP的嵌入式实时图像处理系统设计与研究5、基于图像处理技术的齿轮参数测量研究6、图像处理技术在玻璃缺陷检测中的应用研究7、图像处理技术在机械零件检测系统中的应用8、基于MATLAB的X光图像处理方法9、基于图像处理技术的自动报靶系统研究10、多小波变换及其在数字图像处理中的应用11、基于图像处理的检测系统的研究与设计12、基于DSP的图像处理系统的设计13、医学超声图像处理研究14、基于DSP的视频图像处理系统设计15、基于FPGA的图像处理算法的研究与硬件设计
数字图像处理方面了解的了。
随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。我整理了图像识别技术论文,欢迎阅读!
图像识别技术研究综述
摘要:随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。图像识别是利用计算机对图像进行处理、分析和理解,由于图像在成像时受到外部环境的影响,使得图像具有特殊性,复杂性。基于图像处理技术进一步探讨图像识别技术及其应用前景。
关键词:图像处理;图像识别;成像
中图分类号:TP391 文献标识码:A 文章编号:1009-3044(2013)10-2446-02
图像是客观景物在人脑中形成的影像,是人类最重要的信息源,它是通过各种观测系统从客观世界中获得,具有直观性和易理解性。随着计算机技术、多媒体技术、人工智能技术的迅速发展,图像处理技术的应用也越来越广泛,并在科学研究、教育管理、医疗卫生、军事等领域已取得的一定的成绩。图像处理正显著地改变着人们的生活方式和生产手段,比如人们可以借助于图像处理技术欣赏月球的景色、交通管理中的车牌照识别系统、机器人领域中的计算机视觉等,在这些应用中,都离不开图像处理和识别技术。图像处理是指用计算机对图像进行处理,着重强调图像与图像之间进行的交换,主要目标是对图像进行加工以改善图像的视觉效果并为后期的图像识别大基础[1]。图像识别是利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。但是由于获取的图像本事具有复杂性和特殊性,使得图像处理和识别技术成为研究热点。
1 图像处理技术
图像处理(image processing)利用计算机对图像进行分析,以达到所需的结果。图像处理可分为模拟图像处理和数字图像图像处理,而图像处理一般指数字图像处理。这种处理大多数是依赖于软件实现的。其目的是去除干扰、噪声,将原始图像编程适于计算机进行特征提取的形式,主要包括图像采样、图像增强、图像复原、图像编码与压缩和图像分割。
1)图像采集,图像采集是数字图像数据提取的主要方式。数字图像主要借助于数字摄像机、扫描仪、数码相机等设备经过采样数字化得到的图像,也包括一些动态图像,并可以将其转为数字图像,和文字、图形、声音一起存储在计算机内,显示在计算机的屏幕上。图像的提取是将一个图像变换为适合计算机处理的形式的第一步。
2)图像增强,图像在成像、采集、传输、复制等过程中图像的质量或多或少会造成一定的退化,数字化后的图像视觉效果不是十分满意。为了突出图像中感兴趣的部分,使图像的主体结构更加明确,必须对图像进行改善,即图像增强。通过图像增强,以减少图像中的图像的噪声,改变原来图像的亮度、色彩分布、对比度等参数。图像增强提高了图像的清晰度、图像的质量,使图像中的物体的轮廓更加清晰,细节更加明显。图像增强不考虑图像降质的原因,增强后的图像更加赏欣悦目,为后期的图像分析和图像理解奠定基础。
3)图像复原,图像复原也称图像恢复,由于在获取图像时环境噪声的影响、运动造成的图像模糊、光线的强弱等原因使得图像模糊,为了提取比较清晰的图像需要对图像进行恢复,图像恢复主要采用滤波方法,从降质的图像恢复原始图。图像复原的另一种特殊技术是图像重建,该技术是从物体横剖面的一组投影数据建立图像。
4)图像编码与压缩,数字图像的显著特点是数据量庞大,需要占用相当大的存储空间。但基于计算机的网络带宽和的大容量存储器无法进行数据图像的处理、存储、传输。为了能快速方便地在网络环境下传输图像或视频,那么必须对图像进行编码和压缩。目前,图像压缩编码已形成国际标准,如比较著名的静态图像压缩标准JPEG,该标准主要针对图像的分辨率、彩色图像和灰度图像,适用于网络传输的数码相片、彩色照片等方面。由于视频可以被看作是一幅幅不同的但有紧密相关的静态图像的时间序列,因此动态视频的单帧图像压缩可以应用静态图像的压缩标准。图像编码压缩技术可以减少图像的冗余数据量和存储器容量、提高图像传输速度、缩短处理时间。
5)图像分割技术,图像分割是把图像分成一些互不重叠而又具有各自特征的子区域,每一区域是像素的一个连续集,这里的特性可以是图像的颜色、形状、灰度和纹理等。图像分割根据目标与背景的先验知识将图像表示为物理上有意义的连通区域的集合。即对图像中的目标、背景进行标记、定位,然后把目标从背景中分离出来。目前,图像分割的方法主要有基于区域特征的分割方法、基于相关匹配的分割方法和基于边界特征的分割方法[2]。由于采集图像时会受到各种条件的影响会是图像变的模糊、噪声干扰,使得图像分割是会遇到困难。在实际的图像中需根据景物条件的不同选择适合的图像分割方法。图像分割为进一步的图像识别、分析和理解奠定了基础。
2 图像识别技术
图像识别是通过存储的信息(记忆中存储的信息)与当前的信息(当时进入感官的信息)进行比较实现对图像的识别[3]。前提是图像描述,描述是用数字或者符号表示图像或景物中各个目标的相关特征,甚至目标之间的关系,最终得到的是目标特征以及它们之间的关系的抽象表达。图像识别技术对图像中个性特征进行提取时,可以采用模板匹配模型。在某些具体的应用中,图像识别除了要给出被识别对象是什么物体外,还需要给出物体所处的位置和姿态以引导计算初工作。目前,图像识别技术已广泛应用于多个领域,如生物医学、卫星遥感、机器人视觉、货物检测、目标跟踪、自主车导航、公安、银行、交通、军事、电子商务和多媒体网络通信等。主要识别技术有:
指纹识别
指纹识别是生物识别技术中一种最实用、最可靠和价格便宜的识别手段,主要应用于身份验证。指纹识别是生物特征的一个部分,它具有不变性:一个人的指纹是终身不变的;唯一性:几乎没有两个完全相同的指纹[3]。一个指纹识别系统主要由指纹取像、预处理与特征提取、比对、数据库管理组成。目前,指纹识别技术与我们的现实生活紧密相关,如信用卡、医疗卡、考勤卡、储蓄卡、驾驶证、准考证等。
人脸识别 目前大多数人脸识别系统使用可见光或红外图像进行人脸识别,可见光图像识别性能很容易受到光照变化的影响。在户外光照条件不均匀的情况下,其正确识别率会大大降低。而红外图像进行人脸识别时可以克服昏暗光照条件变化影响,但由于红外线不能穿透玻璃,如果待识别的对象戴有眼镜,那么在图像识别时,眼部信息全部丢失,将严重影响人脸识别的性能[4]。
文字识别
文字识别是将模式识别、文字处理、人工智能集与一体的新技术,可以自动地把文字和其他信息分离出来,通过智能识别后输入计算机,用于代替人工的输入。文字识别技术可以将纸质的文档转换为电子文档,如银行票据、文稿、各类公式和符号等自动录入,可以提供文字的处理效率,有助于查询、修改、保存和传播。文字识别方法主要有结构统计模式识别、结构模式识别和人工神经网络[5]。由于文字的数量庞大、结构复杂、字体字形变化多样,使得文字识别技术的研究遇到一定的阻碍。
3 结束语
人类在识别现实世界中的各种事物或复杂的环境是一件轻而易举的事,但对于计算机来讲进行复杂的图像识别是非常困难的[6]。在环境较为简单的情况下,图像识别技术取得了一定的成功,但在复杂的环境下,仍面临着许多问题:如在图像识别过程中的图像分割算法之间的性能优越性比较没有特定的标准,以及算法本身存在一定的局限性,这使得图像识别的最终结果不十分精确等。
参考文献:
[1] 胡爱明,周孝宽.车牌图像的快速匹配识别方法[J].计算机工程与应用,2003,39(7):90—91.
[2] 胡学龙.数字图像处理[M].北京:电子工业出版社,2011.
[3] 范立南,韩晓微,张广渊.图像处理与模式识别[M].北京:科学出版社,2007.
[4] 晓慧,刘志镜.基于脸部和步态特征融合的身份识别[J].计算机应用,2009,1(29):8.
[5] 陈良育,曾振柄,张问银.基于图形理解的汉子构型自动分析系统[J].计算机应用,2005,25(7):1629-1631.
[6] Sanderson C,Paliwal K Fusion and Person Verification Using Speech & Face Information[C].IDIAP-RR 02-33,Martigny,Swizerland,2002.
点击下页还有更多>>>图像识别技术论文
中国知网也好!万方数据也好都有例子!甚至百度文库都有!==================论文写作方法===========================论文网上没有免费的,与其花人民币,还不如自己写,万一碰到人的,就不上算了。写作论文的简单方法,首先大概确定自己的选题,然后在网上查找几份类似的文章通读一些相关资料,对这方面的内容有个大概的了解!参照你们学校的论文的格式,列出提纲,补充内容!实在不会,把这几份论文综合一下,从每篇论文上复制一部分,组成一篇新的文章!然后把按自己的语言把每一部分换下句式或词,经过换词不换意的办法处理后,网上就查不到了!最后,到万方等地进行检测,将扫红部分进行再次修改!祝你顺利完成论文!
基于频域多尺度小波变换的CR图像超分辨率增强,吉林大学学报(信息科学版),2009(3) (通讯作者)李哲,黄廉卿,李鹤:”基于数学形态学的CR图像实时快速分割算法”[J]. 光学技术33(1):6-10,2007(EI)李哲,黄廉卿.”基于自动选取最佳阈值的X光图像快速分割方法”[J].计算机应用研究24(3):286-288,2007李哲,黄廉卿. 基于自动选取多个阈值的乳腺X光图像分割方法[OL]. 2005 中国科技论文在线李哲,夏秀娟:“医疗保险管理信息系统的设计及需注意的几个问题”计算机与现代化 著作教材1.多媒体技术实验与习题指导 清华大学出版社20122.高等计算机教材系列·多媒体技术教程 机械工业出版社20093.高等院校计算机教材系列·多媒体技术实验与习题指导 机械工业出 版社20094、多媒体技术实验与习题指导(21世纪高等学校规划教材·计算机应用) 清华大学出版社 2012 获奖情况: 2008年吉林大学仪器科学与电气工程学院青年教师教学比赛一等奖
随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。我整理了图像识别技术论文,欢迎阅读!
图像识别技术研究综述
摘要:随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。图像识别是利用计算机对图像进行处理、分析和理解,由于图像在成像时受到外部环境的影响,使得图像具有特殊性,复杂性。基于图像处理技术进一步探讨图像识别技术及其应用前景。
关键词:图像处理;图像识别;成像
中图分类号:TP391 文献标识码:A 文章编号:1009-3044(2013)10-2446-02
图像是客观景物在人脑中形成的影像,是人类最重要的信息源,它是通过各种观测系统从客观世界中获得,具有直观性和易理解性。随着计算机技术、多媒体技术、人工智能技术的迅速发展,图像处理技术的应用也越来越广泛,并在科学研究、教育管理、医疗卫生、军事等领域已取得的一定的成绩。图像处理正显著地改变着人们的生活方式和生产手段,比如人们可以借助于图像处理技术欣赏月球的景色、交通管理中的车牌照识别系统、机器人领域中的计算机视觉等,在这些应用中,都离不开图像处理和识别技术。图像处理是指用计算机对图像进行处理,着重强调图像与图像之间进行的交换,主要目标是对图像进行加工以改善图像的视觉效果并为后期的图像识别大基础[1]。图像识别是利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。但是由于获取的图像本事具有复杂性和特殊性,使得图像处理和识别技术成为研究热点。
1 图像处理技术
图像处理(image processing)利用计算机对图像进行分析,以达到所需的结果。图像处理可分为模拟图像处理和数字图像图像处理,而图像处理一般指数字图像处理。这种处理大多数是依赖于软件实现的。其目的是去除干扰、噪声,将原始图像编程适于计算机进行特征提取的形式,主要包括图像采样、图像增强、图像复原、图像编码与压缩和图像分割。
1)图像采集,图像采集是数字图像数据提取的主要方式。数字图像主要借助于数字摄像机、扫描仪、数码相机等设备经过采样数字化得到的图像,也包括一些动态图像,并可以将其转为数字图像,和文字、图形、声音一起存储在计算机内,显示在计算机的屏幕上。图像的提取是将一个图像变换为适合计算机处理的形式的第一步。
2)图像增强,图像在成像、采集、传输、复制等过程中图像的质量或多或少会造成一定的退化,数字化后的图像视觉效果不是十分满意。为了突出图像中感兴趣的部分,使图像的主体结构更加明确,必须对图像进行改善,即图像增强。通过图像增强,以减少图像中的图像的噪声,改变原来图像的亮度、色彩分布、对比度等参数。图像增强提高了图像的清晰度、图像的质量,使图像中的物体的轮廓更加清晰,细节更加明显。图像增强不考虑图像降质的原因,增强后的图像更加赏欣悦目,为后期的图像分析和图像理解奠定基础。
3)图像复原,图像复原也称图像恢复,由于在获取图像时环境噪声的影响、运动造成的图像模糊、光线的强弱等原因使得图像模糊,为了提取比较清晰的图像需要对图像进行恢复,图像恢复主要采用滤波方法,从降质的图像恢复原始图。图像复原的另一种特殊技术是图像重建,该技术是从物体横剖面的一组投影数据建立图像。
4)图像编码与压缩,数字图像的显著特点是数据量庞大,需要占用相当大的存储空间。但基于计算机的网络带宽和的大容量存储器无法进行数据图像的处理、存储、传输。为了能快速方便地在网络环境下传输图像或视频,那么必须对图像进行编码和压缩。目前,图像压缩编码已形成国际标准,如比较著名的静态图像压缩标准JPEG,该标准主要针对图像的分辨率、彩色图像和灰度图像,适用于网络传输的数码相片、彩色照片等方面。由于视频可以被看作是一幅幅不同的但有紧密相关的静态图像的时间序列,因此动态视频的单帧图像压缩可以应用静态图像的压缩标准。图像编码压缩技术可以减少图像的冗余数据量和存储器容量、提高图像传输速度、缩短处理时间。
5)图像分割技术,图像分割是把图像分成一些互不重叠而又具有各自特征的子区域,每一区域是像素的一个连续集,这里的特性可以是图像的颜色、形状、灰度和纹理等。图像分割根据目标与背景的先验知识将图像表示为物理上有意义的连通区域的集合。即对图像中的目标、背景进行标记、定位,然后把目标从背景中分离出来。目前,图像分割的方法主要有基于区域特征的分割方法、基于相关匹配的分割方法和基于边界特征的分割方法[2]。由于采集图像时会受到各种条件的影响会是图像变的模糊、噪声干扰,使得图像分割是会遇到困难。在实际的图像中需根据景物条件的不同选择适合的图像分割方法。图像分割为进一步的图像识别、分析和理解奠定了基础。
2 图像识别技术
图像识别是通过存储的信息(记忆中存储的信息)与当前的信息(当时进入感官的信息)进行比较实现对图像的识别[3]。前提是图像描述,描述是用数字或者符号表示图像或景物中各个目标的相关特征,甚至目标之间的关系,最终得到的是目标特征以及它们之间的关系的抽象表达。图像识别技术对图像中个性特征进行提取时,可以采用模板匹配模型。在某些具体的应用中,图像识别除了要给出被识别对象是什么物体外,还需要给出物体所处的位置和姿态以引导计算初工作。目前,图像识别技术已广泛应用于多个领域,如生物医学、卫星遥感、机器人视觉、货物检测、目标跟踪、自主车导航、公安、银行、交通、军事、电子商务和多媒体网络通信等。主要识别技术有:
指纹识别
指纹识别是生物识别技术中一种最实用、最可靠和价格便宜的识别手段,主要应用于身份验证。指纹识别是生物特征的一个部分,它具有不变性:一个人的指纹是终身不变的;唯一性:几乎没有两个完全相同的指纹[3]。一个指纹识别系统主要由指纹取像、预处理与特征提取、比对、数据库管理组成。目前,指纹识别技术与我们的现实生活紧密相关,如信用卡、医疗卡、考勤卡、储蓄卡、驾驶证、准考证等。
人脸识别 目前大多数人脸识别系统使用可见光或红外图像进行人脸识别,可见光图像识别性能很容易受到光照变化的影响。在户外光照条件不均匀的情况下,其正确识别率会大大降低。而红外图像进行人脸识别时可以克服昏暗光照条件变化影响,但由于红外线不能穿透玻璃,如果待识别的对象戴有眼镜,那么在图像识别时,眼部信息全部丢失,将严重影响人脸识别的性能[4]。
文字识别
文字识别是将模式识别、文字处理、人工智能集与一体的新技术,可以自动地把文字和其他信息分离出来,通过智能识别后输入计算机,用于代替人工的输入。文字识别技术可以将纸质的文档转换为电子文档,如银行票据、文稿、各类公式和符号等自动录入,可以提供文字的处理效率,有助于查询、修改、保存和传播。文字识别方法主要有结构统计模式识别、结构模式识别和人工神经网络[5]。由于文字的数量庞大、结构复杂、字体字形变化多样,使得文字识别技术的研究遇到一定的阻碍。
3 结束语
人类在识别现实世界中的各种事物或复杂的环境是一件轻而易举的事,但对于计算机来讲进行复杂的图像识别是非常困难的[6]。在环境较为简单的情况下,图像识别技术取得了一定的成功,但在复杂的环境下,仍面临着许多问题:如在图像识别过程中的图像分割算法之间的性能优越性比较没有特定的标准,以及算法本身存在一定的局限性,这使得图像识别的最终结果不十分精确等。
参考文献:
[1] 胡爱明,周孝宽.车牌图像的快速匹配识别方法[J].计算机工程与应用,2003,39(7):90—91.
[2] 胡学龙.数字图像处理[M].北京:电子工业出版社,2011.
[3] 范立南,韩晓微,张广渊.图像处理与模式识别[M].北京:科学出版社,2007.
[4] 晓慧,刘志镜.基于脸部和步态特征融合的身份识别[J].计算机应用,2009,1(29):8.
[5] 陈良育,曾振柄,张问银.基于图形理解的汉子构型自动分析系统[J].计算机应用,2005,25(7):1629-1631.
[6] Sanderson C,Paliwal K Fusion and Person Verification Using Speech & Face Information[C].IDIAP-RR 02-33,Martigny,Swizerland,2002.
点击下页还有更多>>>图像识别技术论文
你应该好好了解自己研究的题目,论文与专业不一样,看来你的能力超强。希望你很快进入这个领域。名副其实的写出一篇有硕士水平的论文。到此为止,超出问答的范围不是到这回答问题的目的。
图像处理是利用计算机对图像信息进行加工以满足人的视觉心理或者应用需求的行为,应用广泛,多用于测绘学、大气科学、天文学、美图、使图像提高辨识等。学术堂在这里为大家整理了一些图像处理本科毕业论文题目,希望对你有用。1、基于模糊分析的图像处理方法及其在无损检测中的应用研究2、数字图像处理与识别系统的开发3、关于数字图像处理在运动目标检测和医学检验中若干应用的研究4、基于ARM和DSP的嵌入式实时图像处理系统设计与研究5、基于图像处理技术的齿轮参数测量研究6、图像处理技术在玻璃缺陷检测中的应用研究7、图像处理技术在机械零件检测系统中的应用8、基于MATLAB的X光图像处理方法9、基于图像处理技术的自动报靶系统研究10、多小波变换及其在数字图像处理中的应用11、基于图像处理的检测系统的研究与设计12、基于DSP的图像处理系统的设计13、医学超声图像处理研究14、基于DSP的视频图像处理系统设计15、基于FPGA的图像处理算法的研究与硬件设计
跟我说说具体要求
数字图像处理是利用计算机对图像信息进行加工以满足人的视觉心理或者应用需求的行为,应用广泛,多用于测绘学、大气科学、天文学、美图、使图像提高辨识等。这里学术堂为大家整理了一些数字图像处理毕业论文题目,希望对你有用。1、基于模糊分析的图像处理方法及其在无损检测中的应用研究2、数字图像处理与识别系统的开发3、关于数字图像处理在运动目标检测和医学检验中若干应用的研究4、基于ARM和DSP的嵌入式实时图像处理系统设计与研究5、基于图像处理技术的齿轮参数测量研究6、图像处理技术在玻璃缺陷检测中的应用研究7、图像处理技术在机械零件检测系统中的应用8、基于MATLAB的X光图像处理方法9、基于图像处理技术的自动报靶系统研究10、多小波变换及其在数字图像处理中的应用11、基于图像处理的检测系统的研究与设计12、基于DSP的图像处理系统的设计13、医学超声图像处理研究14、基于DSP的视频图像处理系统设计15、基于FPGA的图像处理算法的研究与硬件设计
(一)选题毕业论文(设计)题目应符合本专业的培养目标和教学要求,具有综合性和创新性。本科生要根据自己的实际情况和专业特长,选择适当的论文题目,但所写论文要与本专业所学课程有关。(二)查阅资料、列出论文提纲题目选定后,要在指导教师指导下开展调研和进行实验,搜集、查阅有关资料,进行加工、提炼,然后列出详细的写作提纲。(三)完成初稿根据所列提纲,按指导教师的意见认真完成初稿。(四)定稿初稿须经指导教师审阅,并按其意见和要求进行修改,然后定稿。一般毕业论文题目的选择最好不要太泛,越具体越好,而且老师希望学生能结合自己学过的知识对问题进行分析和解决。不知道你是否确定了选题,确定选题了接下来你需要根据选题去查阅前辈们的相关论文,看看人家是怎么规划论文整体框架的;其次就是需要自己动手收集资料了,进而整理和分析资料得出自己的论文框架;最后就是按照框架去组织论文了。你如果需要什么参考资料和范文我可以提供给你。还有什么不了解的可以直接问我,希望可以帮到你,祝写作过程顺利毕业论文选题的方法:一、尽快确定毕业论文的选题方向 在毕业论文工作布置后,每个人都应遵循选题的基本原则,在较短的时间内把选题的方向确定下来。从毕业论文题目的性质来看,基本上可以分为两大类:一类是社会主义现代化建设实践中提出的理论和实际问题;另一类是专业学科本身发展中存在的基本范畴和基本理论问题。大学生应根据自己的志趣和爱好,尽快从上述两大类中确定一个方向。二、在初步调查研究的基础上选定毕业论文的具体题目在选题的方向确定以后,还要经过一定的调查和研究,来进一步确定选题的范围,以至最后选定具体题目。下面介绍两种常见的选题方法。 浏览捕捉法 :这种方法就是通过对占有的文献资料快速地、大量地阅读,在比较中来确定论文题目地方法。浏览,一般是在资料占有达到一定数量时集中一段时间进行,这样便于对资料作集中的比较和鉴别。浏览的目的是在咀嚼消化已有资料的过程中,提出问题,寻找自己的研究课题。这就需要对收集到的材料作一全面的阅读研究,主要的、次要的、不同角度的、不同观点的都应了解,不能看了一些资料,有了一点看法,就到此为止,急于动笔。也不能“先入为主”,以自己头脑中原有的观点或看了第一篇资料后得到的看法去决定取舍。而应冷静地、客观地对所有资料作认真的分析思考。在浩如烟海,内容丰富的资料中吸取营养,反复思考琢磨许多时候之后,必然会有所发现,这是搞科学研究的人时常会碰到的情形。 浏览捕捉法一般可按以下步骤进行:第一步,广泛地浏览资料。在浏览中要注意勤作笔录,随时记下资料的纲目,记下资料中对自己影响最深刻的观点、论据、论证方法等,记下脑海中涌现的点滴体会。当然,手抄笔录并不等于有言必录,有文必录,而是要做细心的选择,有目的、有重点地摘录,当详则详,当略则略,一些相同的或类似的观点和材料则不必重复摘录,只需记下资料来源及页码就行,以避免浪费时间和精力。第二步,是将阅读所得到的方方面面的内容,进行分类、排列、组合,从中寻找问题、发现问题,材料可按纲目分类,如分成: 系统介绍有关问题研究发展概况的资料; 对某一个问题研究情况的资料; 对同一问题几种不同观点的资料; 对某一问题研究最新的资料和成果等等。第三步,将自己在研究中的体会与资料分别加以比较,找出哪些体会在资料中没有或部分没有;哪些体会虽然资料已有,但自己对此有不同看法;哪些体会和资料是基本一致的;哪些体会是在资料基础上的深化和发挥等等。经过几番深思熟虑的思考过程,就容易萌生自己的想法。把这种想法及时捕捉住,再作进一步的思考,选题的目标也就会渐渐明确起来。希望可以帮到你,有什么不懂的可以问我
人类与基于模型学习的计算机视觉算法区分开来的一个特点是,能够获取关于世界的知识,并利用这些知识对视觉世界进行推理。人类可以了解物体的特性以及它们之间的关系,从而学习各种各样的视觉概念,通常只用很少的例子。本文研究了结构化先验知识在知识图谱形式下的应用,表明利用该知识可以提高图像分类的性能。我们在最近关于图端到端学习的工作的基础上,引入了图搜索神经网络(Graph Search Neural Network)作为一种有效地将大的知识图谱合并到视觉分类管道中的方法。我们在许多实验中表明,对于多标签分类,我们的方法优于标准的神经网络基线。
(a)将GSNN()作为一种将潜在的大知识图谱合并到端到端的学习系统中的方法,该系统在计算上对大图是可行的; (b)一个使用噪声知识图谱进行图像分类的框架; (c)解释我们的图像分类的能力。使用传播模型。我们的方法明显优于多标签分类的基线。
将GGNN用于图像任务的最大问题是计算可伸缩性。例如,尼尔(NEIL)[4]有超过2000个概念,而内尔(NELL)[3]有超过200万个自信的信念。即使对我们的任务进行了删减,这些图仍然是巨大的。标准GGNN上的正向传播是( ), 是节点数,反向传播是( ),其中 是传播步骤数。我们在合成图上对GGNNs进行了简单的实验,发现在超过500个节点之后,一个向前和向后的传递在一个实例上会超过1秒钟,即使在做出大量参数假设时也是如此。在2000个节点上,单个图像需要一分钟多的时间。不可能在盒子外(out of the box)使用GGNN。
我们解决这个问题的方法是图搜索神经网络(Graph Search Neural Network ,GSNN)。顾名思义,我们的想法是,不要一次对图形的所有节点执行循环更新,而是从一些基于输入的初始节点开始,只选择扩展对最终输出有用的节点。因此,我们只计算图子集上的更新步骤。那么,我们如何选择要用哪个节点子集初始化图呢?在训练和测试期间,我们根据目标检测器或分类器确定的概念存在的可能性来确定图中的初始节点。在我们的实验中,我们对80个COCO类别中的每一个都使用了更快的R-CNN(Faster R-CNN)[28]。对于超过某个选定阈值的分数,我们选择图中的相应节点作为初始激活节点集。
一旦我们有了初始节点,我们还将与初始节点相邻的节点添加到激活集。考虑到初始节点,我们首先要将关于初始节点的信念传播到所有相邻节点。然而,在第一个时间步骤之后,我们需要一种方法来决定下一个扩展哪个节点。因此,我们学习了一个每个节点的评分函数,它估计该节点有多“重要”。在每个传播步骤之后,对于当前图中的每个节点,我们预测一个重要性得分
是一个学习网络,重要性网络(importance network)。
一旦我们有了 的值,我们就将从未扩展到的得分最高的 个节点添加到我们的扩展集(expanded set),并将与这些节点相邻的所有节点添加到激活集(active set)。图2说明了这种扩展。t=1时,仅扩展检测到的节点。t=2时,我们根据重要性值扩展所选节点,并将其邻居添加到图中。在最后一个时间步骤 中,我们计算每个节点的输出,并重新排序和零填充(per-node-output and re-order and zero-pad)输出到最终分类网络中。
为了训练重要性网络(importance net),我们将目标重要性值分配给图中给定图像的每个节点。与图像中真值概念(ground-truth concepts)相对应的节点被赋予1的重要性值。这些节点的邻居被分配了一个值 。两跳(two-hop)之外的节点具有值 ,以此类推等等。其思想是,最接近最终输出的节点是最重要的扩展。
现在我们有了一个端到端的网络,它将一组初始节点和注释作为输入,并为图中的每个激活节点输出每个节点的输出。它由三组网络组成:传播网、重要性网和输出网(the propagation net, the importance net, and the output net)。图像问题的最终损失可以通过输出网络从管道的最终输出反向传播,而重要性损失则通过每个重要性输出反向传播。参见图3查看GSNN架构。首先 ,检测信任初始化(detection confidences initialize) ,初始检测到的节点的隐藏状态。然后我们初始化 相邻节点的隐藏状态,使用0。然后我们使用传播网络(propagation net)更新隐藏状态。然后使用 的值预测重要性分数 ,该分数用于选择要添加到 的下一个节点。.然后用 初始化这些节点,并通过传播网络再次更新隐藏状态。T步之后,我们采取所有的累积隐藏状态来预测所有激活节点的GSNN输出。在反向传播过程中,二元交叉熵(binary cross entropy,BCE)损失通过输出层反馈,重要性损失通过重要性网络反馈,以更新网络参数。
最后一个细节是在GSNN中添加节点偏置(node bias)。在GGNN中,每个节点的输出函数 接受节点 的隐藏状态和初始注释,计算它的输出。在某种意义上,它与节点的意义不可知(agnostic)。也就是说,在训练或测试时,GSNN采用了一个可能从未见过的图,以及对于每个节点一些初始注释 。然后,它使用图的结构通过网络传播这些注释,然后计算输出。图中的节点可以表示任何东西,从人际关系到计算机程序。然而,在我们的图网络中,一个特定的节点表示“horse”或“cat”这一事实可能是相关的,我们也可以将自己约束到一个静态图而不是图像概念。因此,我们引入节点偏差项,对于图中的每个节点,都有一些学习值。我们的输出方程 , 是一个与整体图中的特定节点 相关联的偏差项。该值存储在一个表中,其值由backpropagation更新。
. 图像管道和基线(Image pipeline and baselines) 另一个使图形网络适应视觉问题的问题是如何将图形网络合并到图像管道中。对于分类,这是相当简单的。我们获取图形网络的输出,对其进行重新排序,使节点始终以相同的顺序出现在最终网络中,并对未展开的任何节点进行零填充。因此,如果我们有一个具有316个节点输出的图形,并且每个节点预测一个5维隐藏变量,那么我们将从该图形创建一个1580维特征向量。我们还将该特征向量与微调后的VGG-16网络的FC7层(4096 dim)连接起来[35],并将更快的R-CNN(80 dim)预测的每个COCO类别的最高得分连接起来。这个5756维特征向量被输入到一层最终分类网络中,该网络经过辍学训练。 对于基线,我们比较:(1)VGG基线-仅将FC7输入最终分类网;(2)检测基线将FC7和最高COCO分数输入最终分类网。
[1] 论文笔记:GSNN: The More You Know: Using Knowledge Graphs for Image Classification [2] The More You Know: Using Knowledge Graphs for Image Classification ——用知识图谱进行图像分类论文阅读笔记
[1] KMarino / GSNN_TMYN [2] SteinsGate9 / gsnn_demo
图像处理是利用计算机对图像信息进行加工以满足人的视觉心理或者应用需求的行为,应用广泛,多用于测绘学、大气科学、天文学、美图、使图像提高辨识等。学术堂在这里为大家整理了一些图像处理本科毕业论文题目,希望对你有用。1、基于模糊分析的图像处理方法及其在无损检测中的应用研究2、数字图像处理与识别系统的开发3、关于数字图像处理在运动目标检测和医学检验中若干应用的研究4、基于ARM和DSP的嵌入式实时图像处理系统设计与研究5、基于图像处理技术的齿轮参数测量研究6、图像处理技术在玻璃缺陷检测中的应用研究7、图像处理技术在机械零件检测系统中的应用8、基于MATLAB的X光图像处理方法9、基于图像处理技术的自动报靶系统研究10、多小波变换及其在数字图像处理中的应用11、基于图像处理的检测系统的研究与设计12、基于DSP的图像处理系统的设计13、医学超声图像处理研究14、基于DSP的视频图像处理系统设计15、基于FPGA的图像处理算法的研究与硬件设计
数字图像处理是利用计算机对图像信息进行加工以满足人的视觉心理或者应用需求的行为,应用广泛,多用于测绘学、大气科学、天文学、美图、使图像提高辨识等。这里学术堂为大家整理了一些数字图像处理毕业论文题目,希望对你有用。1、基于模糊分析的图像处理方法及其在无损检测中的应用研究2、数字图像处理与识别系统的开发3、关于数字图像处理在运动目标检测和医学检验中若干应用的研究4、基于ARM和DSP的嵌入式实时图像处理系统设计与研究5、基于图像处理技术的齿轮参数测量研究6、图像处理技术在玻璃缺陷检测中的应用研究7、图像处理技术在机械零件检测系统中的应用8、基于MATLAB的X光图像处理方法9、基于图像处理技术的自动报靶系统研究10、多小波变换及其在数字图像处理中的应用11、基于图像处理的检测系统的研究与设计12、基于DSP的图像处理系统的设计13、医学超声图像处理研究14、基于DSP的视频图像处理系统设计15、基于FPGA的图像处理算法的研究与硬件设计
数字图像处理方面了解的了。