(结论有点不对,两边应该差个负号。例如考虑1阶矩阵∧=λ,T=1,则左边=(λ-ω)^(-1),右边=1/(ω-λ))T*Tt为单位阵,即T和Tt互为逆矩阵。所以T*∧*Tt-ωI=T*(∧-ωI)*Tt,所以[T*∧*Tt-ωI]^(-1)=T*[(∧-ωI)^(-1)]*Tt,其中∧-ωI=diag{λ1-ω,λ2-ω,...,λN-ω},所以(∧-ωI)^(-1)=diag{(λ1-ω)^(-1),(λ2-ω)^(-1),...,(λN-ω)^(-1)}。记A=[T*∧*Tt-ωI]^(-1)=T*[(∧-ωI)^(-1)]*Tt,则由矩阵乘积的定义,A{ij}=∑_{k,l} T{ik}*[(∧-ωI)^(-1)]{kl}*Tt{lj},其中(∧-ωI)^(-1)是对角阵,所以[(∧-ωI)^(-1)]{kl}只有当k=l时不等于0。所以A{ij}=∑_{k} T{ik}*[(∧-ωI)^(-1)]{kk}*Tt{kj}=∑_{k} T{ik}*[(λk-ω)^(-1)]*T{jk}(由转置矩阵的定义)=∑_{k} T{ik}*T{jk}/(λk-ω),即为所求
1、在电脑上打开word应用程序,在界面的右上角找到公式选项,并点击打开。2、在跳转的公式编辑器界面中插入矩阵外边的括号。3、插入里面的行和列,点击,会出来一个矩阵对话框,我们在里面输入行数和列数。4、在跳转的矩阵界面中,输入矩阵的相关参数。5、之后在矩阵图中输入数字即可。
解决步骤:1、将题目与页面边缘的距离调近,调节到一个比较合适的位置上,居中的处理不变。2、处理第二行剩余的题目了,光标放置在第一行末尾,按下Enter键进入第二行,这样就可以单独处理剩余的题目了。3、第二行是居中处理,需要将多余的下划线删除,选中下环线,再点击下划线图标就可以删除下划线,下划线的长度要稍稍超出文字内容。
好写哦!科技论文,专业性这么强,写出来,也是只有专业人员才能明白。首先,序言:把矩阵的乘法原理,加以介绍、解释和说明,这些就是书上现成的东西。接着介绍其应用都有哪些,具体在哪些方面。最后说明本文主要介绍哪些方面的具体应用及事例。进入正文,集中写清楚,你要介绍的应用及事例。字数要多,就多写,写详细一些;字数一般,就写得一般,就可以啦。。。祝成功!
除了竖线|| 大括号{}不能用 其他两个都能用 ()和[]都可以的
我的毕业论文题目是矩阵的乘法及其应用~个人感觉相当简单~我是数学与应用数学专业
初等代数从最简单的一元一次方程开始,一方面进而讨论二元及三元的一次方程组,另一方面研究二次以上及可以转化为二次的方程组。沿着这两个方向继续发展,代数在讨论任意多个未知数的一次方程组,也叫线型方程组的同时还研究次数更高的一元方程组。发展到这个阶段,就叫做高等代数。 高等代数是代数学发展到高级阶段的总称,它包括许多分支。现在大学里开设的高等代数,一般包括两部分:线性代数初步、多项式代数。 高等代数在初等代数的基础上研究对象进一步的扩充,引进了许多新的概念以及与通常很不相同的量,比如最基本的有集合、向量和向量空间等。这些量具有和数相类似的运算的特点,不过研究的方法和运算的方法都更加繁复。 集合是具有某种属性的事物的全体;向量是除了具有数值还同时具有方向的量;向量空间也叫线性空间,是由许多向量组成的并且符合某些特定运算的规则的集合。向量空间中的运算对象已经不只是数,而是向量了,其运算性质也由很大的不同了。 高等代数发展简史 代数学的历史告诉我们,在研究高次方程的求解问题上,许多数学家走过了一段颇不平坦的路途,付出了艰辛的劳动。 人们很早就已经知道了一元一次和一元二次方程的求解方法。关于三次方程,我国在公元七世纪,也已经得到了一般的近似解法,这在唐朝数学家王孝通所编的《缉古算经》就有叙述。到了十三世纪,宋代数学家秦九韶再他所著的《数书九章》这部书的“正负开方术”里,充分研究了数字高次方程的求正根法,也就是说,秦九韶那时候以得到了高次方程的一般解法。 在西方,直到十六世纪初的文艺复兴时期,才由有意大利的数学家发现一元三次方程解的公式——卡当公式。 在数学史上,相传这个公式是意大利数学家塔塔里亚首先得到的,后来被米兰地区的数学家卡尔达诺(1501~1576)到了这个三次方程的解的公式,并发表在自己的著作里。所以现在人们还是叫这个公式为卡尔达诺公式(或称卡当公式),其实,它应该叫塔塔里亚公式。 三次方程被解出来后,一般的四次方程很快就被意大利的费拉里(1522~1560)解出。这就很自然的促使数学家们继续努力寻求五次及五次以上的高次方程的解法。遗憾的是这个问题虽然耗费了许多数学家的时间和精力,但一直持续了长达三个多世纪,都没有解决。 到了十九世纪初,挪威的一位青年数学家阿贝尔(1802~1829)证明了五次或五次以上的方程不可能有代数解。既这些方程的根不能用方程的系数通过加、减、乘、除、乘方、开方这些代数运算表示出来。阿贝尔的这个证明不但比较难,而且也没有回答每一个具体的方程是否可以用代数方法求解的问题。 后来,五次或五次以上的方程不可能有代数解的问题,由法国的一位青年数学家伽罗华彻底解决了。伽罗华20岁的时候,因为积极参加法国资产阶级革命运动,曾两次被捕入狱,1832年4月,他出狱不久,便在一次私人决斗中死去,年仅21岁。 伽罗华在临死前预料自己难以摆脱死亡的命运,所以曾连夜给朋友写信,仓促地把自己生平的数学研究心得扼要写出,并附以论文手稿。他在给朋友舍瓦利叶的信中说:“我在分析方面做出了一些新发现。有些是关于方程论的;有些是关于整函数的……。公开请求雅可比或高斯,不是对这些定理的正确性而是对这些定理的重要性发表意见。我希望将来有人发现消除所有这些混乱对它们是有益的。” 伽罗华死后,按照他的遗愿,舍瓦利叶把他的信发表在《百科评论》中。他的论文手稿过了14年,才由刘维尔(1809~1882)编辑出版了他的部分文章,并向数学界推荐。 随着时间的推移,伽罗华的研究成果的重要意义愈来愈为人们所认识。伽罗华虽然十分年轻,但是他在数学史上做出的贡献,不仅是解决了几个世纪以来一直没有解决的高次方程的代数解的问题,更重要的是他在解决这个问题中提出了“群”的概念,并由此发展了一整套关于群和域的理论,开辟了代数学的一个崭新的天地,直接影响了代数学研究方法的变革。从此,代数学不再以方程理论为中心内容,而转向对代数结构性质的研究,促进了代数学的进一步的发展。在数学大师们的经典著作中,伽罗华的论文是最薄的,但他的数学思想却是光辉夺目的。 高等代数的基本内容 代数学从高等代数总的问题出发,又发展成为包括许多独立分支的一个大的数学科目,比如:多项式代数、线性代数等。代数学研究的对象,也已不仅是数,还有矩阵、向量、向量空间的变换等,对于这些对象,都可以进行运算。虽然也叫做加法或乘法,但是关于数的基本运算定律,有时不再保持有效。因此代数学的内容可以概括为研究带有运算的一些集合,在数学中把这样的一些集合叫做代数系统。比如群、环、域等。 多项式是一类最常见、最简单的函数,它的应用非常广泛。多项式理论是以代数方程的根的计算和分布作为中心问题的,也叫做方程论。研究多项式理论,主要在于探讨代数方程的性质,从而寻找简易的解方程的方法。 多项式代数所研究的内容,包括整除性理论、最大公因式、重因式等。这些大体上和中学代数里的内容相同。多项式的整除性质对于解代数方程是很有用的。解代数方程无非就是求对应多项式的零点,零点不存在的时候,所对应的代数方程就没有解。 我们知道一次方程叫做线性方程,讨论线性方程的代数就叫做线性代数。在线性代数中最重要的内容就是行列式和矩阵。 行列式的概念最早是由十七世纪日本数学家关孝和提出来的,他在1683年写了一部叫做《解伏题之法》的著作,标题的意思是“解行列式问题的方法”,书里对行列式的概念和它的展开已经有了清楚的叙述。欧洲第一个提出行列式概念的是德国的数学家莱布尼茨。德国数学家雅可比于1841年总结并提出了行列式的系统理论。 行列式有一定的计算规则,利用行列式可以把一个线性方程组的解表示成公式,因此行列式是解线性方程组的工具。行列式可以把一个线性方程组的解表示成公式,也就是说行列式代表着一个数。 因为行列式要求行数等于列数,排成的表总是正方形的,通过对它的研究又发现了矩阵的理论。矩阵也是由数排成行和列的数表,可以行数和烈数相等也可以不等。 矩阵和行列式是两个完全不同的概念,行列式代表着一个数,而矩阵仅仅是一些数的有顺序的摆法。利用矩阵这个工具,可以把线性方程组中的系数组成向量空间中的向量;这样对于一个多元线性方程组的解的情况,以及不同解之间的关系等等一系列理论上的问题,就都可以得到彻底的解决。矩阵的应用是多方面的,不仅在数学领域里,而且在力学、物理、科技等方面都十分广泛的应用。 代数学研究的对象,不仅是数,也可能是矩阵、向量、向量空间的变换等,对于这些对象,都可以进行运算,虽然也叫做加法或乘法,但是关于数的基本运算定律,有时不再保持有效。因此代数学的内容可以概括称为带有运算的一些集合,在数学中把这样的一些集合,叫做代数系统。比较重要的代数系统有群论、环论、域论。群论是研究数学和物理现象的对称性规律的有力工具。现在群的概念已成为现代数学中最重要的,具有概括性的一个数学的概念,广泛应用于其他部门。 高等代数与其他学科的关系 代数学、几何学、分析数学是数学的三大基础学科,数学的各个分支的发生和发展,基本上都是围绕着这三大学科进行的。那么代数学与另两门学科的区别在哪儿呢? 首先,代数运算是有限次的,而且缺乏连续性的概念,也就是说,代数学主要是关于离散性的。尽管在现实中连续性和不连续性是辩证的统一的,但是为了认识现实,有时候需要把它分成几个部分,然后分别地研究认识,在综合起来,就得到对现实的总的认识。这是我们认识事物的简单但是科学的重要手段,也是代数学的基本思想和方法。代数学注意到离散关系,并不能说明这时它的缺点,时间已经多次、多方位的证明了代数学的这一特点是有效的。 其次,代数学除了对物理、化学等科学有直接的实践意义外,就数学本身来说,代数学也占有重要的地位。代数学中发生的许多新的思想和概念,大大地丰富了数学的许多分支,成为众多学科的共同基础。
矩阵的应用是很多的。尤其是在程序处理方面。在世界上存在的,都是离散的,那些理想的才是连续的~而矩阵可以很好地诠释世界上的各种东西~例如我们经常处理的图片,我们平时的数据等等。
如果这两个不行,你可以把这两篇论文综合一下哦
组合数学概述 组合数学,又称为离散数学,但有时人们也把组合数学和图论加在一起算成是离散数学。组合数学是计算机出现以后迅速发展起来的一门数学分支。计算机科学就是算法的科学,而计算机所处理的对象是离散的数据,所以离散对象的处理就成了计算机科学的核心,而研究离散对象的科学恰恰就是组合数学。组合数学的发展改变了传统数学中分析和代数占统治地位的局面。现代数学可以分为两大类:一类是研究连续对象的,如分析、方程等,另一类就是研究离散对象的组合数学。组合数学不仅在基础数学研究中具有极其重要的地位,在其它的学科中也有重要的应用,如计算机科学、编码和密码学、物理、化学、生物等学科中均有重要应用。微积分和近代数学的发展为近代的工业革命奠定了基础。而组合数学的发展则是奠定了本世纪的计算机革命的基础。计算机之所以可以被称为电脑,就是因为计算机被人编写了程序,而程序就是算法,在绝大多数情况下,计算机的算法是针对离散的对象,而不是在作数值计算。正是因为有了组合算法才使人感到,计算机好象是有思维的。 组合数学不仅在软件技术中有重要的应用价值,在企业管理,交通规划,战争指挥,金融分析等领域都有重要的应用。在美国有一家用组合数学命名的公司,他们用组合数学的方法来提高企业管理的效益,这家公司办得非常成功。此外,试验设计也是具有很大应用价值的学科,它的数学原理就是组合设计。用组合设计的方法解决工业界中的试验设计问题,在美国已有专门的公司开发这方面的软件。最近,德国一位著名组合数学家利用组合数学方法研究药物结构,为制药公司节省了大量的费用,引起了制药业的关注。 在1997年11月的南开大学组合数学研究中心成立大会上,吴文俊院士指出,每个时代都有它特殊的要求,使得数学出现一个新的面貌,产生一些新的数学分支,组合数学这个新的分支也是在时代的要求下产生的。最近,吴文俊院士又指出,信息技术很可能会给数学本身带来一场根本性的变革,而组合数学则将显示出它的重要作用。杨乐院士也指出组合数学无论在应用上和理论上都具有越来越重要的位置,它今后的发展是很有生命力,很有前途的,中国应该倡导这个方面的研究工作。万哲先院士甚至举例说明了华罗庚,许宝禄,吴文俊等中国老一辈的数学家不仅重视组合数学,同时还对组合数学中的一些基本问题作了重大贡献。迫于中国组合数学发展自身的需要,以及中国信息产业发展的需要,在中国发展组合数学已经迫在眉睫,刻不容缓。 2. 组合数学与计算机软件 随着计算机网络的发展,计算机的使用已经影响到了人们的工作,生活,学习,社会活动以及商业活动,而计算机的应用根本上是通过软件来实现的。我在美国听到过一种说法,将来一个国家的经济实力可以直接从软件产业反映出来。我国在软件上的落后,要说出根本的原因可能并不是很简单的事,除了技术和科学上的原因外,可能还跟我们的文化,管理水平,教育水平,思想素质等诸多因素有关。除去这些人文因素以外,一个最根本的原因就是我国的信息技术的数学基础十分薄弱,这个问题不解决,我们就难成为软件强国。然而问题决不是这么简单,信息技术的发展已经涉及到了很深的数学知识,而数学本身也已经发展到了很深、很广的程度并不是单凭几个聪明的头脑去想想就行了,而更重要的是需要集体的合作和力量,就象软件的开发需要多方面的人员的合作。美国的软件之所以能领先,其关键就在于在数学基础上他们有很强的实力,有很多杰出的人才。一般人可能会认为数学是一门纯粹的基础科学,1+1的解决可能不会有任何实际的意义。如果真是这样,一门纯粹学科的发展落后几年,甚至十年,关系也不大。然而中国的软件产业的发展已向数学基础提出了急切的需求:网络算法和分析,信息压缩,网络安全,编码技术,系统软件,并行算法,数学机械化和计算机推理,等等。此外,与实际应用有关的还有许多许多需要数学基础的算法,如运筹规划,金融工程,计算机辅助设计等。如果我们的软件产业还是把眼光一直盯在应用软件和第二次开发,那么我们在应用软件这个领域也会让国外的企业抢去很大的市场。如果我们现在在信息技术的数学基础上,大力支持和投入,那将是亡羊补牢,犹未为晚;只要我们能抢回信息技术的数学基地,那么我们还有可能在软件产业的竞争中,扭转局面,甚至反败为胜。吴文俊院士开创和领导的数学机械化研究,为中国在信息技术领域占领了一个重要的阵地,有了雄厚的数学基础,自然就有了软件开发的竞争力。这样的阵地多几个,我们的软件产业就会产生新的局面。值得注意的是,印度有很好的统计和组合数学基础,这可能也是印度的软件产业近几年有很大发展的原因。 3. 组合数学在国外的状况 纵观全世界软件产业的情况,易见一个奇特的现象:美国处于绝对的垄断地位。造成这种现象的一个根本的原因就是计算机科学在美国的飞速发展。当今计算机科学界的最权威人士很多都是研究组合数学出身的。美国最重要的计算机科学系(MIT,Princeton,Stanford,Harvard,Yale,….)都有第一流的组合数学家。计算机科学通过对软件产业的促进,带来了巨大的效益,这已是不争之事实。组合数学在国外早已成为十分重要的学科,甚至可以说是计算机科学的基础。一些大公司,如IBM,AT&T都有全世界最强的组合研究中心。Microsoft 的Bill Gates近来也在提倡和支持计算机科学的基础研究。例如,Bell实验室的有关线性规划算法的实现,以及有关计算机网络的算法,由于有明显的商业价值,显然是没有对外公开的。美国已经有一种趋势,就是与新的算法有关的软件是可以申请专利的。如果照这种趋势发展,世界各国对组合数学和计算机算法的投入和竞争必然日趋激烈。美国政府也成立了离散数学及理论计算机科学中心DIMACS(与Princeton大学,Rutgers大学,AT&T 联合创办的,设在Rutgers大学),该中心已是组合数学理论计算机科学的重要研究阵地。美国国家数学科学研究所(Mathematical Sciences Research Institute,由陈省身先生创立)在1997年选择了组合数学作为研究专题,组织了为期一年的研究活动。日本的NEC公司还在美国的设立了研究中心,理论计算机科学和组合数学已是他们重要的研究课题,该中心主任R. Tarjan即是组合数学的权威。我所熟悉的美国重要的国家实际室(Los Alamos国家实验室,以造出第一颗原子弹著称于世),从曼哈顿计划以来一直重视应用数学的研究,包括组合数学的研究。我所接触到的有关组合数学的计算机模拟项目经费达三千万美元。不仅如此,该实验室最近还在积极充实组合数学方面的研究实力。美国另外一个重要的国家实验室Sandia国家实验室有一个专门研究组合数学和计算机科学的机构,主要从事组合编码理论和密码学的研究,在美国政府以及国际学术界都具有很高的地位。由于生物学中的DNA的结构和生物现象与组合数学有密切的联系,各国对生物信息学的研究都很重视,这也是组合数学可以发挥作用的一个重要领域。前不久召开的北京香山会议就体现了国家对生物信息学的高度重视。据说IBM也将成立一个生物信息学研究中心。由于DNA就是组合数学中的一个序列结构,美国科学院院士,近代组合数学的奠基人Rota教授预言,生物学中的组合问题将成为组合数学的一个前沿领域。 美国的大学,国家研究机构,工业界,军方和情报部门都有许多组合数学的研究中心,在研究上投入了大量的经费。但他们得到的收益远远超过了他们的投入,更主要的是他们还聚集了组合数学领域全世界最优秀的人才。高层次的软件产品处处用到组合数学,更确切地说就是组合算法。传统的计算机算法可以分为两大类,一类是组合算法,一类是数值算法(包括计算数学和与处理各种信息数据有关的信息学)。依我个人的浅见,近年来计算机算法又多了一类:那就是符号计算算法。吴文俊院士开创的机器证明方法就属于符号计算,引起了国际上的高度评价,被称为吴方法。而国际上还有专门的符号计算杂志。符号算法和吴方法跟代数组合学也有十分密切的联系。组合数学,数值计算(包括计算数学,科学计算,非线性科学,和与处理各种信息数据有关的信息学)和统计学可能是应用最广的数学分支,而组合数学的价值甚至不亚于统计学和数值计算。由于数学机械化近年来的发展和在计算机科学中的重要性,把数学机械化,科学计算和组合数学组合起来,就可以说是中国信息产业的基础。组合数学家H. Wilf和D. Zeilberger1998因为在组合恒等式的机械化证明方面的成果,获得1998年美国数学会的Steele奖。 Gian-Carlo Rota教授在他去年不幸逝世之前,还专门向我提出,希望我向中国有关部门和领导人呼吁,组合数学是计算机软件产业的基础,中国最终一定能成为一个软件大国,但是要实现这个目标的一个突破点就是发展组合数学。中国在软件技术上远远落后于美国,而在组合数学上则更是落后于美国和欧洲。如果中国只是想在软件技术上跟着西方走,而不在组合数学上下功夫,那么中国的软件将一直处于落后的状态。他特别强调组合数学在计算机科学中的作用,以及在大学计算机系加强组合数学教学和人才培养。 最近Thomson Science公司创刊的一份电子刊物《离散数学和理论计算机科学》即是一个很好的说明。它的内容涉及离散数学和计算机科学的众多方面。由于计算机软件的促进和需求,组合数学已成为一门既广博又深奥的学科,需要很深的数学基础,逐渐成为了数学的主流分支。本世纪公认的伟大数学家盖尔芳德预言组合数学和几何学将是下一世纪数学研究的前沿阵地。这一观点不仅得到国际数学界的赞同,也得到了中国数学界的赞同和响应。 加拿大在Montreal成立了试验数学研究中心,他们的思路可能和吴文俊院士的数学机械化研究中心的发展思路类似,使数学机械化,算法化,不仅使数学为计算机科学服务,同时也使计算机为数学研究服务。吴文俊院士指出,中国传统数学中本身就有浓厚的算法思想。 今后的计算机要向更加智能化的方向发展,其出路仍然是数学的算法,和数学的机械化。另外的一个有说服力的现象是,组合数学家总是可以在大学的计算机系或者在计算机公司找到很好的工作,一个优秀的组合数学家自然就是一个优秀的计算机科学家。相反,美国所有大学计算机系都有组合数学的课程。 除上述以外,欧洲也在积极发展组合数学,英国、法国、德国、荷兰、丹麦、奥地利、瑞典、意大利、西班牙等国家都建立了各种形式的组合数学研究中心。近几年,南美国家也在积极推动组合数学的研究。澳大利亚,新西兰也组建了很强的组合数学研究机构。值得一提的是亚洲的发达国家也十分重视组合数学的研究。日本有组合数学研究中心,并且从美国引进人才,不仅支持日本国内的研究,还出资支持美国的有关课题的研究,这样使日本的组合数学这几年的发展极为迅速。台湾、香港两地也从美国引进人才,大力发展组合数学。新加坡,韩国,马来西亚也在积极推动组合数学的研究和人才培养。台湾的数学研究中心也正在考虑把组合数学作为重点方向来发展。世界各地对组合数学的如此钟爱显然是有原因的,那就是没有组合数学就没有计算机科学,没有计算机软件。 4. 组合数学花絮 ** 在日常生活中我们常常遇到组合数学的问题。如果你仔细留心一张世界地图,你会发现用一种颜色对一个国家着色,那么一共只需要四种颜色就能保证每两个相邻的国家的颜色不同。这样的着色效果能使每一个国家都能清楚地显示出来。但要证明这个结论确是一个著名的世界难题,最终借助计算机才得以解决,最近人们才发现了一个更简单的证明。 ** 我国古代的河洛图上记载了三阶幻方,即把从一到九这九个数按三行三列的队行排列,使得每行,每列,以及两条对角线上的三个数之和都是一十五。组合数学中有许多象幻方这样精巧的结构。1977年美国旅行者1号、2号宇宙飞船就带上了幻方以作为人类智慧的信号。 ** 当你装一个箱子时,你会发现要使箱子尽可能装满不是一件很容易的事,你往往需要做些调整。从理论上讲,装箱问题是一个很难的组合数学问题,即使用计算机也是不容易解决的。 ** 在中小学的数学游戏中,有这样一个问题,一个船夫要把一只狼,一只羊和一棵白菜运过河。问题是当人不在场时,狼要吃羊,羊要吃白菜,而他的船每趟只能运其中的一个。他怎样才能把三者都运过河呢?这就是一个很典型、很简单的组合数学问题。 ** 我们还会遇到更复杂的调度和安排问题。例如,在生产原子弹的曼哈顿计划中,涉及到很多工序,许多人员的安排,很多元件的生产,怎样安排各种人员的工作,以及各种工序间的衔接,从而使整个工期的时间尽可能短?这些都是组合数学典型例子。 ** 航空调度和航班的设定也是组合数学的问题。怎样确定各个航班以满足 不同旅客转机的需要,同时也使得每个机场的航班起落分布合理。此外,在一些航班有延误等特殊情况下,怎样作最合理的调整,这些都是 组合数学的问题。 ** 对于城市的交通管理,交通规划,哪些地方可能是阻塞要地,哪些地方 应该设单行道,立交桥建在哪里最合适,红绿灯怎样设定最合理, 如此等等,全是组合数学的问题。 ** 一个邮递员从邮局出发,要走完他所管辖的街道,他应该怎样选择什么样的路径,这就是著名的"中国邮递员问题",由中国组合数学家管梅谷教授提出,著名组合数学家,J. Edmonds和他的合作者给出了一个解答。 ** 一个通讯网络怎样布局最节省?美国的贝尔实验室和IBM公司都有世界一流的组合数学家在研究这个问题,这个问题直接关系到巨大的经济利益。 ** 据说,假日饭店的管理中,也严格规定了有关的工序,如清洁工的第一步是换什么,清洗什么,第二步又做什么,总之,他进出房间的次数应该最少。既然,这样一个简单的工作都需要讲究工序,那么一个复杂的工程就更不用说了。 ** 库房和运输的管理也是典型的组合数学问题。怎样安排运输使得库房充分发挥作用,进一步来说,货物放在什么地方最便于存取(如存储时间短的应该放在容易存取的地方)。 ** 我们知道,用形状相同的方型砖块可以把一个地面铺满(不考虑边缘的情况),但是如果用不同形状,而又非方型的砖块来铺一个地面,能否铺满呢?这不仅是一个与实际相关的问题,也涉及到很深的组合数学问题。 ** 组合数学中有一个著名问题:是否存在稳定婚姻的问题。假如能找到两对夫妇(如张(男)--李(女)和赵(男)--王(女)),如果张(男)更喜欢王(女),而王(女)也更喜欢张(男),那么这样就可能有潜在的不稳定性。组合数学的方法可以找到一种婚姻的安排方法,使得没有上述的不稳定情况出现(当然这只是理论上的结论)。这种组合数学的方法却有 一个实际的用途:美国的医院在确定录取住院医生时,他们将考虑申请者的志愿的先后次序,同时也给申请排序。按这样的 次序考虑出的总的方案将没有医院和申请者两者同时后悔的情况。 实际上,高考学生的最后录取方案也可以用这种方法。 ** 组合数学还可用于金融分析,投资方案的确定,怎样找出好的投资组合以降低投资风险。南开大学组合数学研究中心开发出了"金沙股市风险分析系统"现已投放市场,为短线投资者提供了有效的风险防范工具。 总之,组合数学无处不在,它的主要应用就是在各种复杂关系中找出最优的方案。所以组合数学完全可以看成是一门量化的关系学,一门量化了的运筹学,一门量化了的管理学。 胡锦涛同志在1998年接见"五四"青年奖章时发表的讲话中指出,组合数学不同于传统的纯数学的一个分支,它还是一门应用学科,一门交叉学科。他希望中国的组合数学研究能够为国家的经济建设服务。 如果21世纪是信息社会的世纪,那么21世纪也必将是组合数学大有可为的世纪。
论文写作的内容和标准格式⑴题名.是以最恰当,最简明的语词反映论文中最重要的特定内容的逻辑组合,应避免使用的不常见的省略词,首字母缩写字,字符,代号和公式,字数一般不宜超过20个题名用语.⑵作者姓名和单位,两人以上,一般按贡献大小排列名次.①文责自负;②记录成果;③便于检索⑶摘要:是论文的内容不加注释和评论的简短陈述,中文摘要一般不会超过300字,不阅读全文,即可从中获得重要信息.外文250实词.包括:①本研究重要性;②主要研究内容,使用方法;③总研究成果,突出的新见解,阐明最终结论.重点是结果和结论.⑷关键词.是从论文中选取出以表示全文主题内容信息款目的单词或术语,一般3-7个,有专用《主题词表》.
具体的范文模板链接:
标准论文格式 一:包含内容 1、题目。应能概括整个论文最重要的内容,言简意赅,引人注目,一般不宜超过20个字。 论文摘要和关键词。 2、论文摘要应阐述学位论文的主要观点。说明本论文的目的、研究方法、成果和结论。尽可能保留原论文的基本信息,突出论文的创造性成果和新见解。而不应是各章节标题的简单罗列。摘要以500字左右为宜。 3、关键词是能反映论文主旨最关键的词句,一般3-5个。 4、目录。既是论文的提纲,也是论文组成部分的小标题,应标注相应页码。 5、引言(或序言)。内容应包括本研究领域的国内外现状,本论文所要解决的问题及这项研究工作在经济建设、科技进步和社会发展等方面的理论意义与实用价值。 6、正文。是毕业论文的主体。 7、结论。论文结论要求明确、精炼、完整,应阐明自己的创造性成果或新见解,以及在本领域的意义。 8、参考文献和注释。按论文中所引用文献或注释编号的顺序列在论文正文之后,参考文献之前。图表或数据必须注明来源和出处。 (参考文献是期刊时,书写格式为: [编号]、作者、文章题目、期刊名(外文可缩写)、年份、卷号、期数、页码。 参考文献是图书时,书写格式为: [编号]、作者、书名、出版单位、年份、版次、页码。) 9、附录。包括放在正文内过份冗长的公式推导,以备他人阅读方便所需的辅助性数学工具、重复性数据图表、论文使用的符号意义、单位缩写、程序全文及有关说明等。
1、拟写题目。题目不能太短,一般在6-20字以内,当然,也可以添加副标题,选用标题样式,也可以自己设置。下一行写上自己的名字。再下一行,是摘要,内容主要是对你写的论文的介绍,一般300字左右。摘要写完后再下一行,是关键字,跟标签差不多,一般是你写论文中常出现的词。 2、“摘要”和“关键字”用黑体,小四号。 3、写完之后开始正文部分,有的论文是用“一、(一);二、(二)……”来表示,有的则是用“1、1.1、1.1.1;2、2.1、2.1.1……”若老师要求没那么严格的话,用前一条,否则是后一条。在写的过程中,每个序号后面要有题目,即对你写内容的概括。不能照搬照抄其他论文资料上的,必须是你自己的话,除非是引用,并且要在后面注解。 4、一般正文部分写完会有一个总结,这是必须要写的。另外则是参考文献。有两种格式:第一种是在文中引用后直接在那一页的下方注解;另一种则是引用之后直接在文后一起写的。前一种适用于书籍,后一种适用于论文,格式为:序号、作者、书名(论文名)、出版社(期刊名)、出版时间(期刊时间),如下图。 5、论文写完之后,我们要开始编辑了(手写体的论文下面就不用看了)。除了标题、摘要、关键字、各个小标题都是黑体外,标题字号为初号,其他为小四号,正文部分为宋体、五号字。标题名字居中,摘要和关键字、小标题不用首字缩进,页边距设置为:上边距为:30 mm,下边距25mm;左边距和右边距为:25mm;装订线:10mm;页眉: 16mm;页脚:15mm。字间距为标准,1.5倍行距。若有图片表格,图表题目放在下方,序号用阿拉伯数字。 6、需要注意的是,页眉要标明”xxxx大学毕业(设计)论文“,有学校标识的可以添加,五号宋体;页脚放在正中。 7、论文的要求除了格式外,必须保持画面整洁,切忌眼花缭乱。
论文怎么写 一、标题 标题是文章的眉目。各类文章的标题,样式繁多,但无论是何种形式,总要以全部或不同的侧面体现作者的写作意图、文章的主旨。毕业论文的标题一般分为总标题、副标题、分标题几种。 (一)总标题 总标题是文章总体内容的体现。常见的写法有: ①揭示课题的实质。这种形式的标题,高度概括全文内容,往往就是文章的中心论点。它具有高度的明确性,便于读者把握全文内容的核心。诸如此类的标题很多,也很普遍。如《关于经济体制的模式问题》、《经济中心论》、《县级行政机构改革之我见》等。 ②提问式。这类标题用设问句的方式,隐去要回答的内容,实际上作者的观点是十分明确的,只不过语意婉转,需要读者加以思考罢了。这种形式的标题因其观点含蓄,容易激起读者的注意。如《家庭联产承包制就是单干吗?》、《商品经济等同于资本主义经济吗?》等。 ②交代内容范围。这种形式的标题,从其本身的角度看,看不出作者所指的观点,只是对文章内容的范围做出限定。拟定这种标题,一方面是文章的主要论点难以用一句简短的话加以归纳;另一方面,交代文章内容的范围,可引起同仁读者的注意,以求引起共鸣。这种形式的标题也较普遍。如《试论我国农村的双层经营体制》、《正确处理中央和地方、条条与块块的关系》、《战后西方贸易自由化剖析》等。 ④用判断句式。这种形式的标题给予全文内容的限定,可伸可缩,具有很大的灵活性。文章研究对象是具体的,面较小,但引申的思想又须有很强的概括性,面较宽。这种从小处着眼,大处着手的标题,有利于科学思维和科学研究的拓展。如《从乡镇企业的兴起看中国农村的希望之光》、《科技进步与农业经济》、《从“劳动创造了美”看美的本质》等。 ⑤用形象化的语句。如《激励人心的管理体制》、《科技史上的曙光》、《普照之光的理论》等。 标题的样式还有多种,作者可以在实践中大胆创新。 (二)副标题和分标题 为了点明论文的研究对象、研究内容、研究目的,对总标题加以补充、解说,有的论文还可以加副标题。特别是一些商榷性的论文,一般都有一个副标题,如在总标题下方,添上“与××商榷”之类的副标题。 另外,为了强调论文所研究的某个侧重面,也可以加副标题。如《如何看待现阶段劳动报酬的差别——也谈按劳分配中的资产阶级权利》、《开发蛋白质资源,提高蛋白质利用效率——探讨解决吃饭问题的一种发展战略》等。 设置分标题的主要目的是为了清晰地显示文章的层次。有的用文字,一般都把本层次的中心内容昭然其上;也有的用数码,仅标明“一、二、三”等的顺序,起承上启下的作用。需要注意的是:无论采用哪种形式,都要紧扣所属层次的内容,以及上文与下文的联系紧密性。 对于标题的要求,概括起来有三点:一要明确。要能够揭示论题范围或论点,使人看了标题便知晓文章的大体轮廓、所论述的主要内容以及作者的写作意图,而不能似是而非,藏头露尾,与读者捉迷藏。二要简炼。.论文的标题不宜过长,过长了容易使人产生烦琐和累赘的感觉,得不到鲜明的印象,从而影响对文章的总体评价。标题也不能过于抽象、空洞,标题中不能采用非常用的或生造的词汇,以免使读者一见标题就如堕烟海,百思不得其解,待看完全文后才知标题的哗众取宠之意。三要新颖。标题和文章的内容、形式一样,应有自己的独特之处。做到既不标新立异,又不落案臼,使之引人入胜,赏心悦目,从而激起读者的阅读兴趣。 二、目录 一般说来,篇幅较长的毕业论文,都没有分标题。设置分标题的论文,因其内容的层次较多,整个理论体系较庞大、复杂,故通常设目录。 设置目录的目的主要是: 1.使读者能够在阅读该论文之前对全文的内容、结构有一个大致的了解,以便读者决定是读还是不读,是精读还是略读等。 2.为读者选读论文中的某个分论点时提供方便。长篇论文,除中心论点外,还有许多分论点。当读者需要进一步了解某个分论点时,就可以依靠目录而节省时间。 目录一般放置在论文正文的前面,因而是论文的导读图。要使目录真正起到导读图的作用,必须注意: 1.准确。目录必须与全文的纲目相一致。也就是说,本文的标题、分标题与目录存在着一一对应的关系。 2.清楚无误。目录应逐一标注该行目录在正文中的页码。标注页码必须清楚无误。 3.完整。目录既然是论文的导读图,因而必然要求具有完整性。也就是要求文章的各项内容,都应在目录中反映出来,不得遗漏。 目录有两种基本类型: 1.用文字表示的目录。 2.用数码表示的目录。这种目录较少见。但长篇大论,便于读者阅读,也有采用这种方式的。 三、内容提要 内容提要是全文内容的缩影。在这里,作者以极经济的笔墨,勾画出全文的整体面目;提出主要论点、揭示论文的研究成果、简要叙述全文的框架结构。 内容提要是正文的附属部分,一般放置在论文的篇首。 写作内容提要的目的在于: 1.为了使指导老师在未审阅论文全文时,先对文章的主要内容有个大体上的了解,知道研究所取得的主要成果,研究的主要逻辑顺序。 2.为了使其他读者通过阅读内容提要,就能大略了解作者所研究的问题,如果产生共鸣,则再进一步阅读全文。在这里,内容提要成了把论文推荐给众多读者的“广告”。 因此,内容提要应把论文的主要观点提示出来,便于读者一看就能了解论文内容的要点。论文提要要求写得简明而又全面,不要罗哩罗嗦抓不住要点或者只是干巴巴的几条筋,缺乏说明观点的材料。 内容提要可分为报道性提要和指示性提要。 报道性提要,主要介绍研究的主要方法与成果以及成果分析等,对文章内容的提示较全面。 指示性提要,只简要地叙述研究的成果(数据、看法、意见、结论等),对研究手段、方法、过程等均不涉及。毕业论文一般使用指示性提要。举例如下: ●市场经济条件下的政府,固然应服从上级规划部署的全局,但主要的着眼点应放在对下负责,对本地的经济发展,对本地的人民生活水平提高负责,这才是发展全局经济的前提,从而也自然在根本上符合对上负责。 ●变部门“齐抓共管”企业为共同服务于企业,应成为部门工作的主要重点。(摘自《政府在市场经济中 如何定位》一文的内容提要) 内容提要的写作要求可以概括为“全、精、简、实、活”。具体说来: 1.内容提要要求具有完整性。即不能把论文中所阐述的主要内容(或观点)遗漏。提要应写成一篇完整的短文,可以独立使用。 2.重点要突出。内容提要须突出论文的研究成果(或中心论点)和结论性意义的内容,其他各项可写得简明扼要。 3.文字要简炼。内容提要的写作必须字斟句酌,用精练、概括的语言表述,每项内容不宜展开论证说明。 4.陈述要客观。内容提要一般只写课题研究的客观情况,对工作过程、工作方法以及研究成果等,不宜作主观评价,也不宜与别人的研究作对比说明。一项研究成果的价值,自有公论,大可不必自我宣扬。因而,实事求是也是写作内容提要的基本原则。 5.语言要生动。提要既要写得简明扼要,又要生动活泼,引人入胜,在词语润色、表达方法和章法结构上要尽可能体现文彩,以求唤起读者阅读正文的欲望。 四、正文 正文包括绪论、本论、结论三部分。这是毕业论文最重要的组成部分,其它章节有专门详细论述,这里不再重复。 五、参考文献 参考文献又叫参考书目,它是指作者在撰写毕业论文过程中所查阅参考过的著作和报刊杂志,它应列在毕业论文的末尾。列出参考文献有三个好处:一是当作者本人发现引文有差错时,便于查找校正。二是可以使毕业论文答辩委员会的教师了解学生阅读资料的广度,作为审查毕业论文的一种参考依据。三是便于研究同类问题的读者查阅相关的观点和材料。 当然,论文所列的参考文献必须是主要的,与本论文密切相关的,对自己写成毕业论文起过重要参考作用的专著、论文及其它资料。不要轻重不分,开列过多。 列出的参考文献一般要写清书名或篇名、作者、出版者和出版年份。 参考资料: (论文荟萃)
矩阵的秩一般有2种方式定义1. 用向量组的秩定义矩阵的秩 = 行向量组的秩 = 列向量组的秩2. 用非零子式定义矩阵的秩等于矩阵的最高阶非零子式的阶单纯计算矩阵的秩时, 可用初等行变换把矩阵化成梯形梯矩阵中非零行数就是矩阵的秩
将矩阵做初等行变换后,非零行的个数叫行秩将其进行初等列变换后,非零列的个数叫列秩矩阵的秩是方阵经过初等行变换或者列变换后的行秩或列秩
这个应该是比较简单的,关于这个命题的证明好象很多书上都是有的,而且好象还不址一种.找找最古老的一本高等代数或者线性代数的书看看就可以了我推荐北京大学的,好象是不错的,武汉大学的有个教材也不错.主要是证明乘积后的秩的规律性
是基本概念,体现了矩阵行向量或列向量的相关程度