发过去了,刚好我有这个
根据行列式的定义,4阶行列式展开式中有4!=24项用对角线法则是不行的,画不出24条线计算方法大致有:用性质化三角行列式用行列式展开定理降阶(与性质结合使用)行列式分拆法laplace展开定理
利用对角线法则计算行列式D=【(2 0 1)( 1 -4 -1) (-1 8 3)】D=2×(-4)×8+1×1×8-1×(-4)×(-1)-2×(-1)×8=-64+8-4+16=-44.
除了主对角线上有非 0 元素外,其它元素全为0元素的行列式 即为对角形行列式。
主对角线(从左上角到右下角这条对角线)下方的元素全为零的行列式称为上三角行列式。一个n阶行列式若能通过变换。主对角线上方元素全为零的行列式,也即非零元素只出现在主对角线及下方的行列式,称为下三角形行列式。
三角形行列式(triangular determinant)是一种特殊的行列式,包括上三角形行列式和下三角形行列式,亦称上三角行列式和下三角行列式,统称三角形行列式。
每个行列式都可以只运用行或者列的性质化为一个与其相等的上(下)三角形行列式,上(或下)三角形行列式都等于它们主对角线上元素的乘积 。
扩展资料
利用以下三条性质,可以把所给n阶行列式化为上三角行列式,从而算出这个行列式的值。
(1) 互换行列式中某两行(或某列)位置,行列式前乘(-1);
(2) 行列式中某行(或某列)有公因子,这个公因子可以提到行列式外面去;
(3) 把行列式的某一行(或某一列)的任意倍加到另一行(或另一列)上去,行列式的值不变 。
参考资料来源:百度百科-上三角行列式
参考资料来源:百度百科-三角形行列式
OA图书馆 。输入相应英语关键词搜索。
范德蒙行列式的国内外正处于研究中。行列式是一个重要的数学工具,它不仅有着悠久的历史,更具有广泛的应用.范德蒙行列式是数学家范德蒙在1772年提出的,作为一种特殊的行列式--范德蒙行列式不仅结构独特、形式优美,而且具有十分广泛的应用.正确的掌握使用范德蒙行列式解题可以达到事半功倍的效果,利用范德蒙行列式解题的本质在于化复杂为简单,化繁琐为简便然而要正确、适当的构造和应用范德蒙行列式去有效解决问题绝非易事.因此,本毕业论文从计算行列式、求解n阶k循环行列式、解决多项式的求根问题、解答向量的线性相关性问题、解答整除问题和解答微积分问题六个方面较为系统的探讨了范德蒙行列式的应用,并对方法和技巧作了一点总结,希望帮助初学者更好的理解和掌握范德蒙行列式及其广泛的应用。
矩阵对角化方法探讨摘 要: 本文利用矩阵的相关知识,研究了矩阵可对角化的若干方法.关键词: 可对角化;对角化方法;特征值;特征向量1 引言 形式最简单的矩阵就是对角阵.矩阵对角化使矩阵论的重要组成部分,在矩阵论中占有重要的作用,研究矩阵对角化问题很有实用价值,矩阵对角化是线性变换和化二次型到主轴上问题中经常遇到并需要解决的一个关键问题,然而并非任何一个 阶矩阵都可以对角化.本文利用矩阵的相关知识,如矩阵秩的知识,矩阵乘法原理,对一些理论进行应用和举例,介绍了矩阵对角化的四种方法,分别是一般方法;用矩阵初等变换将矩阵对角化的方法;利用矩阵乘法运算,探讨矩阵对角化的方法;利用循环矩阵的性质寻找矩阵对角化的方法.2 基本定义定义1 设 是 阶方阵,如果存在数 和 维非零向量 ,使得 则称 是矩阵 的一个特征值, 是 的属于 的一个特征向量. 定义2 设 为 阶方阵,称行列式 为 的特征多项式,记为 ,而称 为 的特征方程. 定义3 阶方阵 称为可逆的,如果存在 阶方阵 ,使得 ,其中 是 阶单位矩阵.定义 4 设 , 是 阶方阵,若存在 阶可逆矩阵 ,使得 ,则称 与 相似, 称为 的相似矩阵. 定义 5 如果数域 上,对 级矩阵 存在一个可逆矩阵 使 为对角形矩阵,则称矩阵 在数域 上可对角化;当 可对角化时,我们说将 对角化,即指求可逆矩阵 使 为对角形矩阵. 3 矩阵对角化的几种方法 一般方法 几个定理定理 阶方阵 相似于对角矩阵的充分必要条件是 由 个线性无关的特征向量,且当 相似于对角矩阵 时, 的主对角线元素就是 的全部特征值.推论1 方阵 相似于对角矩阵的充分必要条件是 的属于每个特征值的线性无关的特征向量个数正好等于该特征值的重数.定理 如果 阶方阵 有 个互不相同的特征值(即 的特征值都是单特征值),则 必相似于对角矩阵. 求 阶方阵的特征值与特征向量的一般步骤.第一步:计算特征多项式 第二步:求出特征方程 的全部根 (重根按重数计算),则 就是 的全部特征值. 如果 为特征方程的单根,则称 为 的单特征根;如果 为特征方程的 重根,则称 为 的 重特征值,并称 为 的重数. 第三步:对 的相异特征值中的每个特征值 ,求出齐次线性方程 的一个基础解系 ,则 就是对应于特征值 的特征空间的一个基,而 的属于 的全部特征向量为 (其中 为不全为 的任意常数) 如果 阶方阵 相似于对角矩阵,则 的相似对角化的一般步骤如下: 第一步:求出 的全部特征值 ;第二步:对 的相异特征值中的每个特征值 ,求出齐次线性方程组 的一个基础解系,将所有这样的基础解系中的向量合在一起,假定这样的向量共有 个,它们就是 的 个线性无关的特征向量 ;第三步:令矩阵 = ,则有 ,其中 是属于特征值 的特征向量 .注意 的列向量的排列次序于与对角矩阵的主对角线元素的排列次序相一致.如图1所示: 图1 阶方阵 的相似对角化过程 应用实例例1 设矩阵 = 当 取何值时, 相似于对角矩阵?在 可对角化时,求可逆矩阵 ,使 成对角矩阵.解 先求 的特征值,由 = = = ,得 的全部特征值为 . 只有一个重特征值-1,故由定理1的推论, 可对角化 属于2重特征值-1的线性无关特征向量正好有2个 齐次线性方程组 的基础解系含2个解向量 而矩阵 的秩为1当且仅当 ,故当且仅当 时 可对角化.当 时,矩阵 为 = .计算可得 的对应于特征值 的线性无关特征向量可取为 ,对应于 的特征值的特征向量可取为 .故所求的可逆矩阵可取为 ,它使得 .注 当 有 个互不相同的特征值时, 必可对角化;当 有重特征值时, 可对角化 的属于每个重特征值的线性无关特征向量的个数正好等于该特征值的重数 对于 的每个重特征值 (设 的重数为 ),矩阵 的秩为 .3 用矩阵初等变换将矩阵对角化的方法 理论依据若矩阵 在数域 上可对角化,则有 上可逆矩阵 使 为对角形矩阵.于是 的主对角线上的元素为 的全体特征值,并且可表示为 ,其中 为初等矩阵, .于是, ,又 也是初等矩阵,由初等矩阵与矩阵的初等变换的关系,即知 相当于对 施行了一次初等行变换与一次初等列变换.这里,我们称此种初等变换为对 施行了一次相似变换. 显然,可对 施行一系列的相似变换化为 . 又由 (注:此处 表单位矩阵)可如下进行初等变换,则可将 化为对角形矩阵 ,且可求得 ,对 只施行相应的初等列变换. 当 不可对角化时,也可经相似变换化简 后,求得其特征值,判定它可否对角化. 类似地,可由 ,做如下初等变换,则可将 化为对角形矩阵 ,且可求得 或由 求 的特征值,判定 可否对角化: ,对 只施行相应的初等行变换.并且在施行相似变换时,不必施行一次行变换后接着施行一次列变换这样进行,可施行若干次行(或列)变换后再施行若干次相应的列(或行)变换,只要保持变换后,最后所得矩阵与 相似即可. 用初等变换将矩阵对角化的方法 有 个特征单根的 阶可对角化矩阵的对角化方法引理1 设 是秩为 的 阶矩阵,且 其中 是秩为 的列满秩矩阵,则矩阵 所含的 个列向量就是齐次线性方程组 的一个基础解系.证明 设 ,对 施以列的初等变换相当于右乘一 阶初等矩阵. 设 其中 是一个 阶可逆矩阵, 是一个 阶矩阵,令 是矩阵 的列向量.由 线性无关,且 所以, 是方程 的 个线性无关的解向量.又 的秩为 ,则上述的 个向量正是该齐次线性方程组的一个基础解系.引理 -矩阵 经列的初等变换可化为下三角的 -矩阵 ,且 的主对角线上元素乘积的 多项式的根恰为 的所有特征根.引理 令 是数域 上一个 阶矩阵,如果 的特征多项式在 内有 个单根,那么由特征列向量构成的 阶可逆矩阵 ,使 .定理1 如果数域 上的 阶矩阵 的特征多项式 在 内有 个单根,则 可通过如下步骤对角化:设 ,且 .其中 为下三角矩阵,则 主对角线上全部元素乘积的 多项式的全部特征根为 的全部特征根,对 的每一特征根 , 中零向量所对应的 中的列向量是属于 的全部线性无关的特征向量.把属于 的特征向量作为列向量组合构成矩阵 ,使 .证明 易知 中非零向量的列构成列满秩矩阵,由引理1,2及引理3知结论成立.例1 设 = .问 是否可对角化?若 可以对角化,求可逆矩阵 ,使得 成对角形.解 .由 解得 的特征值 ,此时3阶矩阵 有3个不同的单根,故可对角化.当 时, 的零向量对应 中的列向量 是属于 的特征向量.同理可知 的属于 的特征向量分别是 和 ,可得 ,使得 . 有重特征根的可对角化矩阵的对角化方法对存在重特征根的矩阵同样可用上述方法,只是此时 中非零向量可能不构成列满秩矩阵,需将上述方法加以改进.我们先看引理4 设 是数域 上一个 阶矩阵, 可对角化的充要条件是 的特征根都在 内; 对于 的每一特征根 ,秩 ,这里 是 的重数.再由引理2,可知要判断 是否可对角化只需考察 的秩,并可得对角化步骤如下:定理 2 设 ( 是数域 一个 阶矩阵),则 ,其中 是下三角矩阵,且 主对角线元素乘积而得的 多项式的根恰为 的特征根. 若 的特征根都在 内, 可对角化的充要条件是:对 的每一特征根 ,秩 ,这里 是 的重数; 若 可对角化,对 的每一特征根 ,若 中非零向量构成列满秩矩阵,则 的零向量对应的 中的列向量是属于 的全部线性无关的特征向量,可组合而得 ,使 成对角形.否则继续施以列的初等变换: ,使 中非零向量构成列满秩矩阵,由 可得属于 的全部线性无关的特征向量. 证明由引理1,引理2的证明及引理4可得.例2 设(1) (2) 问 , 是否可对角化?若可以对角化,求可逆矩阵 ,使 成对角形.解 ,得 的特征根 (二重根), 由于秩 秩 ,秩 秩 ,故 可对角化.因 的非零向量不构成列满秩矩阵,需继续进行列的初等变换: .此时 的非零向量构成列满秩矩阵,可得 的全部线性无关的特征向量是 和 ,同理可得属于 的线性无关的特征向量是 从而 使 . .由 得 的特征根 (二重), 易判断 可对角化,属于 的特征向量是 和 ,属于 的特征向量是 ,从而 使 .上述方法与传统方法比较显然具有优越性,但对于结果较多的矩阵,计算量仍然很大,可利用计算机采用此方法求解. 利用矩阵的乘法运算,探讨矩阵对角化的方法.定理1 设 是 在数域 上的全部互不相同的特征值.作多项式 则 在 上可以对角化的充要条件是 注 对于阶数较低的矩阵是否可以对角化,可以先求得所有互异特征值 ,再验证是否有 若 则 可以对角化; 若 则 不可以对角化.定理2 设 是 在数域 上的全部互不相同的特征值.若 则 的属于 的 的特征子空间是 的列空间.推论1 设 是 在数域 上的全部互不相同的特征值,其重数分别为 且 若 可对角化.则矩阵 的列向量组中有对应于 的 个线性无关的特征向量 .定理 3 设 是 在数域 上的全部互不相同的特征值.如果对每个 都有 ,那么 这里记 的属于 的特征子空间为 ,而 的列空间为 .推论2 设 是 在数域 上的全部互不相同的特征值,其重数分别为 则 与对角矩阵相似的充要条件是 的秩 .推论3 若 阶可对角化矩阵 只有两个相异的特征值 ( 重)和 ( 重),则矩阵 (或 )的 (或 )个线性无关的列向量就是对应 (或 )的特征向量组的极大线性无关组.例1 判断下列矩阵是否可以对角化,若可以,求可逆矩阵 ,使 成对角形. 解 易知 的特征值是 (2重根), 它们都在数域 中,尽管如此, 不能对角化,因为 . 易求得 的特征值是 (2重根).由于 ,故 可以对角化.并且通过 ,可得 属于 的一个线性无关的特征向量 通过 ,可得 属于 的一个线性无关的特征向量 通过 ,可得 属于 的2个线性无关的特征向量 和 令 ,则 利用循环矩阵性质寻找矩阵对角化的方法 基本循回阵相似于对角阵 阶矩阵 称为基本循回阵.它满足于如下性质: 求出基本循回阵 的特征多项式: 因为特征多项式 有 个不同特征根: 所以,基本循回阵 相似于对角阵.下面求出特征向量:取 则有 (因 ), 从而 为特征根 对应的 的特征向量.作矩阵: ,因为 为 行列式, 所以 可逆,则: . 循回方阵相似于对角阵矩阵 称为循回阵, 可以由基本循回阵的多项式求出来: .设: ,所以循回阵可以对角化. 任意 阶矩阵 可以对角化的充要条件是 相似于一个 阶循回阵证明 充分性 若 相似于循回阵.即存在可逆阵 使 ,但 所以 即 相似于对角阵.必要性 若 可以对角化,即存在可逆方阵 使得 .用 次多项式 作一方程组如下: ,即 该方程组的系数行列式为 行列式, 从而由 法则知方程由唯一解.设阶为 则 次多项式为 ,取矩阵 ,其中 为基本循回矩阵,从而 为循回阵,且有 所以, 即 相似于循回阵 . 结束语综上所述,复数域上的 阶矩阵,如果按相似关系分类后,含有循回阵的类可以对角化.参考文献【1】 魏站线.线性代数要点与解题 陕西:西安交通大学出版社,2006.【2】 高吉全.矩阵特征根与特征向量的同步求解方法探讨 数学通报,. 【3】 张禾瑞,郝鈵新.高等代数 北京:高等教育出版社,1993.【4】 陈汉藻.矩阵可对角化的一个重要条件 数学通报,1990. 2.【5】 周伯.高等代数 北京:人民教育出版社,1978.【6】 王萼芳,石生明.高等代数 北京:高等教育出版社, The Method of The Diagonalization of MatrixZhao Shuang-ling(Mathematics & Statistics Industry School, Anyang Normal University, Anyang, Henan 455002)Abstract:In this paper, by the use of the matrix-related knowledge, three methods of the diagonalization of matrix were words: diagonalizable; the method of diagonalization ; eigenvalues; eigenvectorsI hope that it could help you a little!!!
1、论文题目:要求准确、简练、醒目、新颖。2、目录:目录是论文中主要段落的简表。(短篇论文不必列目录)3、提要:是文章主要内容的摘录,要求短、精、完整。字数少可几十字,多不超过三百字为宜。4、关键词或主题词:关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。 每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。主题词是经过规范化的词,在确定主题词时,要对论文进行主题,依照标引和组配规则转换成主题词表中的规范词语。5、论文正文:(1)引言:引言又称前言、序言和导言,用在论文的开头。 引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。〈2)论文正文:正文是论文的主体,正文应包括论点、论据、 论证过程和结论。主体部分包括以下内容:a.提出-论点;b.分析问题-论据和论证;c.解决问题-论证与步骤;d.结论。6、一篇论文的参考文献是将论文在和写作中可参考或引证的主要文献资料,列于论文的末尾。参考文献应另起一页,标注方式按《GB7714-87文后参考文献著录规则》进行。中文:标题--作者--出版物信息(版地、版者、版期):作者--标题--出版物信息所列参考文献的要求是:(1)所列参考文献应是正式出版物,以便读者考证。(2)所列举的参考文献要标明序号、著作或文章的标题、作者、出版物信息。
线性代数行列式的计算技巧:
1.利用行列式定义直接计算
例1 计算行列式
解 Dn中不为零的项用一般形式表示为
该项列标排列的逆序数t(n-1 n-2„1n)等于,故
2.利用行列式的性质计算
例2 一个n阶行列式的元素满足
则称Dn为反对称行列式,证明:奇数阶反对称行列式为零.
证明:由 知,即
故行列式Dn可表示为
由行列式的性质
当n为奇数时,得Dn =-Dn,因而得Dn = 0.。
3.化为三角形行列式
若能把一个行列式经过适当变换化为三角形,其结果为行列式主对角线上元素的乘积。因此化三角形是行列式计算中的一个重要方法。
4.降阶法
降阶法是按某一行(或一列)展开行列式,这样可以降低一阶,更一般地是用拉普拉斯定理,这样可以降低多阶,为了使运算更加简便,往往是先利用列式的性质化简,使行列式中有较多的零出现,然后再展开。
5.递推公式法
递推公式法:对n阶行列式Dn找出Dn与Dn-1或Dn与Dn-1, Dn-2之间的一种关系——称为递推公式(其中Dn, Dn-1, Dn-2等结构相同),再由递推公式求出Dn的方法称为递推公式法。
6.利用范德蒙行列式
7.加边法(升阶法)
加边法(又称升阶法)是在原行列式中增加一行一列,且保持原行列式不变的方法。
8.数学归纳法
9.拆开法
把某一行(或列)的元素写成两数和的形式,再利用行列式的性质将原行列式写成两行列式之和,使问题简化以利计算。
首先以第一行第一列的数据为基础,通过初等行变换将第一列中a11下面的数据变为0;再以第二行第二列的数据为基础,通过初等行变换将第二列中a22下面的数据变为0;以此类推,直至将行列式变为正三角行列式的形式,将对角线上的数据相乘计算即可。(可根据自己的计算习惯进行改进) 一般思路就是将行列式转化为三角行列式的形式进行计算。
行列式化简技巧?技巧的话肯定有的啊,但要具体问题具体分析,我自己学线性代数时的经验是1.记清楚性质,比如矩阵乘上一个数和行列式乘上一个数有什么不同,矩阵行行互换一次符号怎么变,行列式互换一次符号怎么变,等等。2.多做题,做多了第一可以把以上性质记熟,第二就是慢慢找到题目的规律。因为我印象中刚开始学线性代数的时候很难知道学这些有什么用,所以只好先把怎么算记住,等以后学到专业课用到的时候再学怎么用。我记得大学时好像发现一种“无脑流”,可以把矩阵变换到最简型,也就是不用技巧一个一个消去化简3.一定搞清楚,矩阵和行列式的本质区别。比如行列式就是一个数值;而矩阵在教科书一开始是从解线性方程组提出来的,比如下面这个这三个方程的系数就可以看成3x3的矩阵,后面的我觉得你肯定会的吧。但我觉得用这种方法了解一个矩阵实在是很糟糕,但又没有办法。因为矩阵所代表的线性映射一开始不太好理解你的问题中提到“行列式和矩阵都涉及到好多变换”和“怎么加减乘除互换行列”。我感觉你对矩阵和行列式是有一些混淆的。因为行列式是没有像矩阵那种“变换操作”的。还有要注意对于矩阵来说只能行变换或列变换,二选一,不能行列混着变。建议你对这二者再看看定义,慢慢的做一两道题,仔细想一想在“变换”的过程中它们都发生了什么变换,可以一个方程组为例。我不清楚你学什么专业,比如我现在做的内容和刚柔混合建模有关,一个弹性体简化后,描述它的矩阵也差不多是100x100的样子。如果是在有限元,那矩阵可能几十万到几百万阶不等。所以说线性代数是非常有用但又需要下点功夫才能学好的。
一般来讲我们会在行列式为二阶或者三阶的时候采取直接展开的方法,那种按照对角线法则展开的也只适用于二阶或者三阶。
四阶以上的行列式我们通常有三种做法:
在行列式计算时我们通常采用的就是前两种方法,第三种仅对一些特殊的行列式适用。
至于你所说的技巧,实际上就可以概括为通过行列变换以及代数余子式方法结合,我们将矩阵通过一些特殊的变换直接变成我们一眼就能看出答案的矩阵,这需要大量的练习,正所谓熟能生巧。有些题目类型是相同的,只有你见过了才知道举一反三,不可能一上手就会太多技巧的,毕竟是数学,数学中的技巧大多都是做题多了自然就会一些套路。题主加油!!!
回答问题不易,有帮助请采纳,谢谢!!!!
第一、行列式的计算利用的是行列式的性质,而行列式的本质是一个数字,所以行列式的变化都是建立在已有性质的基础上的等量变化,改变的是行列式的“外观”。
第二、行列式的计算的一个基本思路就是通过行列式的性质把一个普通的行列式变化成为一个我们可以口算的行列式(比如,上三角,下三角,对角型,反对角,两行成比例等)
第三、行列式的计算最重要的两个性质:
(1)对换行列式中两行(列)位置,行列式反号
(2)把行列式的某一行(列)的倍数加到另一行(列),行列式不变
对于(1)主要注意:每一次交换都会出一个负号;换行(列)的主要目的就是调整0的位置,例如下题,只要调整一下第一行的位置,就能变成下三角。
矩阵的加法与减法运算将接收两个矩阵作为输入,并输出一个新的矩阵。矩阵的加法和减法都是在分量级别上进行的,因此要进行加减的矩阵必须有着相同的维数。
为了避免重复编写加减法的代码,先创建一个可以接收运算函数的方法,这个方法将对两个矩阵的分量分别执行传入的某种运算。
范德蒙行列式的国内外正处于研究中。行列式是一个重要的数学工具,它不仅有着悠久的历史,更具有广泛的应用.范德蒙行列式是数学家范德蒙在1772年提出的,作为一种特殊的行列式--范德蒙行列式不仅结构独特、形式优美,而且具有十分广泛的应用.正确的掌握使用范德蒙行列式解题可以达到事半功倍的效果,利用范德蒙行列式解题的本质在于化复杂为简单,化繁琐为简便然而要正确、适当的构造和应用范德蒙行列式去有效解决问题绝非易事.因此,本毕业论文从计算行列式、求解n阶k循环行列式、解决多项式的求根问题、解答向量的线性相关性问题、解答整除问题和解答微积分问题六个方面较为系统的探讨了范德蒙行列式的应用,并对方法和技巧作了一点总结,希望帮助初学者更好的理解和掌握范德蒙行列式及其广泛的应用。
行列式的计算方法:
1、利用行列式定义直接计算:行列式是由排成n阶方阵形式的n²个数aij确定的一个数,其值为n!项之和。
2、利用行列式的性质计算。
3、化为三角形行列式计算:若能把一个行列式经过适当变换化为三角形,其结果为行列式主对角线上元素的乘积。
行列式的重要性质:
如果行列式的值为0,则矩阵是奇异矩阵,也就是矩阵没有逆。将某一行的乘以某个数加到另一行上,行列式的值不会变。这一条是我们计算行列式的重要方法,实际上,在很多计算软件中,都是先进行消元过程将矩阵转化为上三角矩阵,然后再进行计算。
第一、行列式的计算利用的是行列式的性质,而行列式的本质是一个数字,所以行列式的变化都是建立在已有性质的基础上的等量变化,改变的是行列式的“外观”。
第二、行列式的计算的一个基本思路就是通过行列式的性质把一个普通的行列式变化成为一个我们可以口算的行列式(比如,上三角,下三角,对角型,反对角,两行成比例等)。
第三、行列式的计算最重要的两个性质:
1、对换行列式中两行(列)位置,行列式反号。
2、把行列式的某一行(列)的倍数加到另一行(列),行列式不变。
行列式的性质
1、行列式A中某行(或列)用同一数k乘,其结果等于kA。
2、行列式A等于其转置行列式AT(AT的第i行为A的第i列)。
3、若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。
4、行列式A中两行(或列)互换,其结果等于-A。 ⑤把行列式A的某行(或列)中各元同乘一数后加到另一行(或列)中各对应元上,结果仍然是A。
行列式是线性代数中的一种重要工具,用于解决线性方程组、矩阵求逆、行列式的秩等问题。行列式的计算方法有多种,以下是其中几种常用的方法:
1. 拉普拉斯展开法:将行列式按照某一行或某一列展开成多个小行列式的和。对于每个小行列式,可以递归地继续展开,直到得到一个1阶行列式,即一个数。最后将所有小行列式的结果相加即可得到原行列式的值。
2. 三角形法则:将行列式通过初等变换,化为一个上三角行列式或下三角行列式。上三角行列式的值等于对角线上的元素之积,下三角行列式的值等于对角线下面的元素之积。因此,可以通过初等变换将行列式化为上三角或下三角形式,然后直接计算行列式的值。
3. 克拉默法则:如果线性方程组的系数矩阵为A,解向量为x,常数向量为b,那么线性方程组的解可以用行列式的形式表示:对于第i个未知量,它的解为该未知量在A的第i列上加上一个常数项,该常数项等于将A的第i列替换为常数向量b后,得到的行列式值除以A的行列式值。因此,可以通过计算行列式和一些简单的矩阵运算,求解线性方程组的解。
4. 巴塞罗那定理:对于一个n阶行列式,将其展开后,每个元素的系数等于它所在行的逆序对数与它所在列的逆序对数之和的奇偶性。因此,可以通过计算行列式展开式中每个元素的系数,来判断行列式的值的正负性。
这些方法的适用范围和精度不同,但都可以用来计算行列式的值。在实际应用中,需要根据具体情况选择合适的计算方法。
1、DNA序列对比
在生物信息学中,人类基因的染色体图谱在进行DNA序列对比是就用到了矩阵的相似。
基于生物学中序列决定结构,结构决定功能的普遍规律,将核酸序列和蛋白质一级结构上的序列都看成由基本字符组成的字符串,检测序列之间的相似性,发现生物序列中的功能、结构和进化的信息。
2、遥感图像对比
图像配准就是将不同时间、不同传感器(成像设备)或不同条件下(天候、照度、 摄像位置和角度等)获取的两幅或多幅图像进行匹配、叠加的过程,它已经被广泛地应用 于遥感数据分析、计算机视觉、图像处理等领域。
由于同一场景拍摄的图像是真实的三维,世界在不同时间向成像平面的一系列投影,而图像与图像之间具有较大的相关性和信息冗 余,所以无论所处理的图像是发生何种形式的变化。
3、行列式进行保密编译码
在英文中有一种对消息进行保密的措施,就是把英文字母用一个整数来表示。然后传送这组整数。这种方法是很容易根据数字出现的频率来破译,例如出现频率特别高的数字,很可能对应于字母E。
可以用乘以行列式和矩阵A的方法来进一步加密。假如A是一个行列式等于±1的整数矩阵,则A1的元素也必定是整数。而经过这样变换过的消息,同样两个字母对应的数字不同,所以就较难破译。接收方只要将这个消息乘以A-1就可以复原。
4、行列式在企业设备更新中的应用
企业为了创造更大的价值,需要购买新设备,但买新设备花钱较多。而继续使用旧设备需要大量的维修费。为了解决这一问题,行列式和矩阵就可以计算出在哪一年更新设备,使企业的经济效益最好。
5、行列式在文献管理中的应用
比如现代搜索中往往包括几百万个文件和成千的关键词,但可以利用矩阵和行列式的稀疏性,节省计算机的存储空间和搜索时间。
行列式的进一步知识可以参看高等院校的《线性代数》课程有关章节。行列式的性质很多,这些性质大多是用于行列式的计算的。中学所学的行列式应该是2阶与3阶行列式,线性代数中的行列式阶数可以更大。行列式的引进是为了方便计数,当线性问题遇到大量的数据时,可以用矩阵和行列式来方便的进行计算。比如有的线性方程组求解,就可以用行列式来计算。解析几何中,已知三个顶点的坐标,要求三角形的面积,通过计算可以得知其面积刚好等于以这三个顶点坐标为元素的行列式。行列式的应用 希望对你有帮助。