OA图书馆 。输入相应英语关键词搜索。
范德蒙行列式的国内外正处于研究中。行列式是一个重要的数学工具,它不仅有着悠久的历史,更具有广泛的应用.范德蒙行列式是数学家范德蒙在1772年提出的,作为一种特殊的行列式--范德蒙行列式不仅结构独特、形式优美,而且具有十分广泛的应用.正确的掌握使用范德蒙行列式解题可以达到事半功倍的效果,利用范德蒙行列式解题的本质在于化复杂为简单,化繁琐为简便然而要正确、适当的构造和应用范德蒙行列式去有效解决问题绝非易事.因此,本毕业论文从计算行列式、求解n阶k循环行列式、解决多项式的求根问题、解答向量的线性相关性问题、解答整除问题和解答微积分问题六个方面较为系统的探讨了范德蒙行列式的应用,并对方法和技巧作了一点总结,希望帮助初学者更好的理解和掌握范德蒙行列式及其广泛的应用。
矩阵对角化方法探讨摘 要: 本文利用矩阵的相关知识,研究了矩阵可对角化的若干方法.关键词: 可对角化;对角化方法;特征值;特征向量1 引言 形式最简单的矩阵就是对角阵.矩阵对角化使矩阵论的重要组成部分,在矩阵论中占有重要的作用,研究矩阵对角化问题很有实用价值,矩阵对角化是线性变换和化二次型到主轴上问题中经常遇到并需要解决的一个关键问题,然而并非任何一个 阶矩阵都可以对角化.本文利用矩阵的相关知识,如矩阵秩的知识,矩阵乘法原理,对一些理论进行应用和举例,介绍了矩阵对角化的四种方法,分别是一般方法;用矩阵初等变换将矩阵对角化的方法;利用矩阵乘法运算,探讨矩阵对角化的方法;利用循环矩阵的性质寻找矩阵对角化的方法.2 基本定义定义1 设 是 阶方阵,如果存在数 和 维非零向量 ,使得 则称 是矩阵 的一个特征值, 是 的属于 的一个特征向量. 定义2 设 为 阶方阵,称行列式 为 的特征多项式,记为 ,而称 为 的特征方程. 定义3 阶方阵 称为可逆的,如果存在 阶方阵 ,使得 ,其中 是 阶单位矩阵.定义 4 设 , 是 阶方阵,若存在 阶可逆矩阵 ,使得 ,则称 与 相似, 称为 的相似矩阵. 定义 5 如果数域 上,对 级矩阵 存在一个可逆矩阵 使 为对角形矩阵,则称矩阵 在数域 上可对角化;当 可对角化时,我们说将 对角化,即指求可逆矩阵 使 为对角形矩阵. 3 矩阵对角化的几种方法 一般方法 几个定理定理 阶方阵 相似于对角矩阵的充分必要条件是 由 个线性无关的特征向量,且当 相似于对角矩阵 时, 的主对角线元素就是 的全部特征值.推论1 方阵 相似于对角矩阵的充分必要条件是 的属于每个特征值的线性无关的特征向量个数正好等于该特征值的重数.定理 如果 阶方阵 有 个互不相同的特征值(即 的特征值都是单特征值),则 必相似于对角矩阵. 求 阶方阵的特征值与特征向量的一般步骤.第一步:计算特征多项式 第二步:求出特征方程 的全部根 (重根按重数计算),则 就是 的全部特征值. 如果 为特征方程的单根,则称 为 的单特征根;如果 为特征方程的 重根,则称 为 的 重特征值,并称 为 的重数. 第三步:对 的相异特征值中的每个特征值 ,求出齐次线性方程 的一个基础解系 ,则 就是对应于特征值 的特征空间的一个基,而 的属于 的全部特征向量为 (其中 为不全为 的任意常数) 如果 阶方阵 相似于对角矩阵,则 的相似对角化的一般步骤如下: 第一步:求出 的全部特征值 ;第二步:对 的相异特征值中的每个特征值 ,求出齐次线性方程组 的一个基础解系,将所有这样的基础解系中的向量合在一起,假定这样的向量共有 个,它们就是 的 个线性无关的特征向量 ;第三步:令矩阵 = ,则有 ,其中 是属于特征值 的特征向量 .注意 的列向量的排列次序于与对角矩阵的主对角线元素的排列次序相一致.如图1所示: 图1 阶方阵 的相似对角化过程 应用实例例1 设矩阵 = 当 取何值时, 相似于对角矩阵?在 可对角化时,求可逆矩阵 ,使 成对角矩阵.解 先求 的特征值,由 = = = ,得 的全部特征值为 . 只有一个重特征值-1,故由定理1的推论, 可对角化 属于2重特征值-1的线性无关特征向量正好有2个 齐次线性方程组 的基础解系含2个解向量 而矩阵 的秩为1当且仅当 ,故当且仅当 时 可对角化.当 时,矩阵 为 = .计算可得 的对应于特征值 的线性无关特征向量可取为 ,对应于 的特征值的特征向量可取为 .故所求的可逆矩阵可取为 ,它使得 .注 当 有 个互不相同的特征值时, 必可对角化;当 有重特征值时, 可对角化 的属于每个重特征值的线性无关特征向量的个数正好等于该特征值的重数 对于 的每个重特征值 (设 的重数为 ),矩阵 的秩为 .3 用矩阵初等变换将矩阵对角化的方法 理论依据若矩阵 在数域 上可对角化,则有 上可逆矩阵 使 为对角形矩阵.于是 的主对角线上的元素为 的全体特征值,并且可表示为 ,其中 为初等矩阵, .于是, ,又 也是初等矩阵,由初等矩阵与矩阵的初等变换的关系,即知 相当于对 施行了一次初等行变换与一次初等列变换.这里,我们称此种初等变换为对 施行了一次相似变换. 显然,可对 施行一系列的相似变换化为 . 又由 (注:此处 表单位矩阵)可如下进行初等变换,则可将 化为对角形矩阵 ,且可求得 ,对 只施行相应的初等列变换. 当 不可对角化时,也可经相似变换化简 后,求得其特征值,判定它可否对角化. 类似地,可由 ,做如下初等变换,则可将 化为对角形矩阵 ,且可求得 或由 求 的特征值,判定 可否对角化: ,对 只施行相应的初等行变换.并且在施行相似变换时,不必施行一次行变换后接着施行一次列变换这样进行,可施行若干次行(或列)变换后再施行若干次相应的列(或行)变换,只要保持变换后,最后所得矩阵与 相似即可. 用初等变换将矩阵对角化的方法 有 个特征单根的 阶可对角化矩阵的对角化方法引理1 设 是秩为 的 阶矩阵,且 其中 是秩为 的列满秩矩阵,则矩阵 所含的 个列向量就是齐次线性方程组 的一个基础解系.证明 设 ,对 施以列的初等变换相当于右乘一 阶初等矩阵. 设 其中 是一个 阶可逆矩阵, 是一个 阶矩阵,令 是矩阵 的列向量.由 线性无关,且 所以, 是方程 的 个线性无关的解向量.又 的秩为 ,则上述的 个向量正是该齐次线性方程组的一个基础解系.引理 -矩阵 经列的初等变换可化为下三角的 -矩阵 ,且 的主对角线上元素乘积的 多项式的根恰为 的所有特征根.引理 令 是数域 上一个 阶矩阵,如果 的特征多项式在 内有 个单根,那么由特征列向量构成的 阶可逆矩阵 ,使 .定理1 如果数域 上的 阶矩阵 的特征多项式 在 内有 个单根,则 可通过如下步骤对角化:设 ,且 .其中 为下三角矩阵,则 主对角线上全部元素乘积的 多项式的全部特征根为 的全部特征根,对 的每一特征根 , 中零向量所对应的 中的列向量是属于 的全部线性无关的特征向量.把属于 的特征向量作为列向量组合构成矩阵 ,使 .证明 易知 中非零向量的列构成列满秩矩阵,由引理1,2及引理3知结论成立.例1 设 = .问 是否可对角化?若 可以对角化,求可逆矩阵 ,使得 成对角形.解 .由 解得 的特征值 ,此时3阶矩阵 有3个不同的单根,故可对角化.当 时, 的零向量对应 中的列向量 是属于 的特征向量.同理可知 的属于 的特征向量分别是 和 ,可得 ,使得 . 有重特征根的可对角化矩阵的对角化方法对存在重特征根的矩阵同样可用上述方法,只是此时 中非零向量可能不构成列满秩矩阵,需将上述方法加以改进.我们先看引理4 设 是数域 上一个 阶矩阵, 可对角化的充要条件是 的特征根都在 内; 对于 的每一特征根 ,秩 ,这里 是 的重数.再由引理2,可知要判断 是否可对角化只需考察 的秩,并可得对角化步骤如下:定理 2 设 ( 是数域 一个 阶矩阵),则 ,其中 是下三角矩阵,且 主对角线元素乘积而得的 多项式的根恰为 的特征根. 若 的特征根都在 内, 可对角化的充要条件是:对 的每一特征根 ,秩 ,这里 是 的重数; 若 可对角化,对 的每一特征根 ,若 中非零向量构成列满秩矩阵,则 的零向量对应的 中的列向量是属于 的全部线性无关的特征向量,可组合而得 ,使 成对角形.否则继续施以列的初等变换: ,使 中非零向量构成列满秩矩阵,由 可得属于 的全部线性无关的特征向量. 证明由引理1,引理2的证明及引理4可得.例2 设(1) (2) 问 , 是否可对角化?若可以对角化,求可逆矩阵 ,使 成对角形.解 ,得 的特征根 (二重根), 由于秩 秩 ,秩 秩 ,故 可对角化.因 的非零向量不构成列满秩矩阵,需继续进行列的初等变换: .此时 的非零向量构成列满秩矩阵,可得 的全部线性无关的特征向量是 和 ,同理可得属于 的线性无关的特征向量是 从而 使 . .由 得 的特征根 (二重), 易判断 可对角化,属于 的特征向量是 和 ,属于 的特征向量是 ,从而 使 .上述方法与传统方法比较显然具有优越性,但对于结果较多的矩阵,计算量仍然很大,可利用计算机采用此方法求解. 利用矩阵的乘法运算,探讨矩阵对角化的方法.定理1 设 是 在数域 上的全部互不相同的特征值.作多项式 则 在 上可以对角化的充要条件是 注 对于阶数较低的矩阵是否可以对角化,可以先求得所有互异特征值 ,再验证是否有 若 则 可以对角化; 若 则 不可以对角化.定理2 设 是 在数域 上的全部互不相同的特征值.若 则 的属于 的 的特征子空间是 的列空间.推论1 设 是 在数域 上的全部互不相同的特征值,其重数分别为 且 若 可对角化.则矩阵 的列向量组中有对应于 的 个线性无关的特征向量 .定理 3 设 是 在数域 上的全部互不相同的特征值.如果对每个 都有 ,那么 这里记 的属于 的特征子空间为 ,而 的列空间为 .推论2 设 是 在数域 上的全部互不相同的特征值,其重数分别为 则 与对角矩阵相似的充要条件是 的秩 .推论3 若 阶可对角化矩阵 只有两个相异的特征值 ( 重)和 ( 重),则矩阵 (或 )的 (或 )个线性无关的列向量就是对应 (或 )的特征向量组的极大线性无关组.例1 判断下列矩阵是否可以对角化,若可以,求可逆矩阵 ,使 成对角形. 解 易知 的特征值是 (2重根), 它们都在数域 中,尽管如此, 不能对角化,因为 . 易求得 的特征值是 (2重根).由于 ,故 可以对角化.并且通过 ,可得 属于 的一个线性无关的特征向量 通过 ,可得 属于 的一个线性无关的特征向量 通过 ,可得 属于 的2个线性无关的特征向量 和 令 ,则 利用循环矩阵性质寻找矩阵对角化的方法 基本循回阵相似于对角阵 阶矩阵 称为基本循回阵.它满足于如下性质: 求出基本循回阵 的特征多项式: 因为特征多项式 有 个不同特征根: 所以,基本循回阵 相似于对角阵.下面求出特征向量:取 则有 (因 ), 从而 为特征根 对应的 的特征向量.作矩阵: ,因为 为 行列式, 所以 可逆,则: . 循回方阵相似于对角阵矩阵 称为循回阵, 可以由基本循回阵的多项式求出来: .设: ,所以循回阵可以对角化. 任意 阶矩阵 可以对角化的充要条件是 相似于一个 阶循回阵证明 充分性 若 相似于循回阵.即存在可逆阵 使 ,但 所以 即 相似于对角阵.必要性 若 可以对角化,即存在可逆方阵 使得 .用 次多项式 作一方程组如下: ,即 该方程组的系数行列式为 行列式, 从而由 法则知方程由唯一解.设阶为 则 次多项式为 ,取矩阵 ,其中 为基本循回矩阵,从而 为循回阵,且有 所以, 即 相似于循回阵 . 结束语综上所述,复数域上的 阶矩阵,如果按相似关系分类后,含有循回阵的类可以对角化.参考文献【1】 魏站线.线性代数要点与解题 陕西:西安交通大学出版社,2006.【2】 高吉全.矩阵特征根与特征向量的同步求解方法探讨 数学通报,. 【3】 张禾瑞,郝鈵新.高等代数 北京:高等教育出版社,1993.【4】 陈汉藻.矩阵可对角化的一个重要条件 数学通报,1990. 2.【5】 周伯.高等代数 北京:人民教育出版社,1978.【6】 王萼芳,石生明.高等代数 北京:高等教育出版社, The Method of The Diagonalization of MatrixZhao Shuang-ling(Mathematics & Statistics Industry School, Anyang Normal University, Anyang, Henan 455002)Abstract:In this paper, by the use of the matrix-related knowledge, three methods of the diagonalization of matrix were words: diagonalizable; the method of diagonalization ; eigenvalues; eigenvectorsI hope that it could help you a little!!!
1、论文题目:要求准确、简练、醒目、新颖。2、目录:目录是论文中主要段落的简表。(短篇论文不必列目录)3、提要:是文章主要内容的摘录,要求短、精、完整。字数少可几十字,多不超过三百字为宜。4、关键词或主题词:关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。 每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。主题词是经过规范化的词,在确定主题词时,要对论文进行主题,依照标引和组配规则转换成主题词表中的规范词语。5、论文正文:(1)引言:引言又称前言、序言和导言,用在论文的开头。 引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。〈2)论文正文:正文是论文的主体,正文应包括论点、论据、 论证过程和结论。主体部分包括以下内容:a.提出-论点;b.分析问题-论据和论证;c.解决问题-论证与步骤;d.结论。6、一篇论文的参考文献是将论文在和写作中可参考或引证的主要文献资料,列于论文的末尾。参考文献应另起一页,标注方式按《GB7714-87文后参考文献著录规则》进行。中文:标题--作者--出版物信息(版地、版者、版期):作者--标题--出版物信息所列参考文献的要求是:(1)所列参考文献应是正式出版物,以便读者考证。(2)所列举的参考文献要标明序号、著作或文章的标题、作者、出版物信息。
题目太乱了……第2题,利用的是方阵、伴随矩阵之间的关系,也就是AA*=|A|E=3E得到A*=3A^(-1)带进行列式得到原式等于|3A^(-1)|=27/|A|=9第4题利用行列式值等于所有特征值乘积,还有方阵的多项式的特征值是特征值的多项式,可以知道要求行列式的方阵的特征值为1,3,7,所以行列式为三个特征值的乘积,也就是21后面的说明,比如A是n阶方阵,则|kA|=k^n|A|,所以对于三阶方阵A,|-2A|=-8|A|,从而有|-2A|=2,可以得到|A|=-1/4A的个行元素之和是0,说明A的每行乘以(1……1)^T这个向量是0,由矩阵乘法的定义知道A(1……1)^T=0,从而(1……1)^T是方程组的一个非零解向量,又由系数矩阵秩是n-1知道基础解系含有一个向量,所以(1,……,1)^T就是基础解系向量,于是通解为k(1,……,1)^T(注:在矩阵定义了乘法的前提下,解向量应该表示为列向量)下面的选择题1的第一个选项由行列式的运算性质,左边是|A|^n|B|右边是|B|^n|A|,所以未必相等第二个选项就是行列式的运算性质,等式两侧行列式值都为|A||B|,所以正确第三个选项不正确,可以举反例,比如A是单位阵,B是单位阵的负矩阵,则A,B的行列式都是1,但是A+B是零矩阵行列式为0,所以等式不真第四个选项等式成立当且仅当矩阵是偶数阶方阵下面的填空,第一个利的行列式等于2^3|A^T B^(-1)|^2=8|A|^2 |B|^(-2)=8.(-1)(-1)/4=2最后一题利用伴随矩阵和A之间的关系,AA*=|A|E=6E可以知道A*=6A^(-1)所以已知的矩阵是6A^(-2)是A的逆矩阵的多项式,A的特征值是1,2,3所以A的逆矩阵的特征值为1,1/2,1/3,所以所求矩阵的特征值为6,6/4,6/9也就是6,3/2,2/3
代数学的一个分支,主要处理线性关系问题。线性关系意即数学对象之间的关系是以一次形式来表达的。例如,在解析几何里,平面上直线的方程是二元一次方程;空间平面的方程是三元一次方程,而空间直线视为两个平面相交,由两个三元一次方程所组成的方程组来表示。含有 n个未知量的一次方程称为线性方程。关于变量是一次的函数称为线性函数。线性关系问题简称线性问题。解线性方程组的问题是最简单的线性问题。 九章算术线性代数作为一个独立的分支在20世纪才形成,然而它的历史却非常久远。最古老的线性问题是线性方程组的解法,在中国古代的数学著作《九章算术·方程》章中,已经作了比较完整的叙述,其中所述方法实质上相当于现代的对方程组的增广矩阵的行施行初等变换,消去未知量的方法。随着研究线性方程组和变量的线性变换问题的深入,行列式和矩阵在18~19世纪期间先后产生,为处理线性问题提供了有力的工具,从而推动了线性代数的发展。向量概念的引入,形成了向量空间的概念。凡是线性问题都可以用向量空间的观点加以讨论。因此,向量空间及其线性变换,以及与此相联系的矩阵理论,构成了线性代数的中心内容。线性代数的含义随数学的发展而不断扩大。线性代数的理论和方法已经渗透到数学的许多分支,同时也是理论物理和理论化学所不可缺少的代数基础知识。
我认为用代数余子式解比较简单,也可用对角线的方法,行列式应用,我认为是为矩阵打基础
数学专业毕业论文选题方向
1动态规划及其应用问题。
2计算方法中关于误差的分析。
3微分中值定理的应用。
4模糊聚类分析在学生素质评定中的应用。
5关于古典概型的几点思考。
6浅谈数形结合在数学解题中的应用。
7高校毕业生就业竞争力分析。
8最大模原理及其推广和应用。
9 最大公因式求解算法。
10行列式的计算。
如图
数学专业毕业论文选题方向如下:
1、并行组合数学模型方式研究及初步应用。
2、数学规划在非系统风险投资组合中的应用。
3、金融经济学中的组合数学问题。
4、竞赛数学中的组合恒等式。
5、概率方法在组合数学中的应用。
6、组合数学中的代数方法。
7、组合电器局部放电超高频信号数学模型构建和模式识别研究。
8、概率方法在组合数学中的某些应用。
9、组合投资数学模型发展的研究。
10、高炉炉温组合预报和十字测温数学建模。
11、基于数学形态学-小波分析组合算法的牵引网故障判定方法。
12、证券组合投资的灰色优化数学模型的研究。
13、一些算子在组合数学中的应用。
14、概率方法在组合数学及混合超图染色理论中的应用。
15、竞赛数学中的组合恒等式。
毕业论文(graduation study),按一门课程计,是普通中等专业学校、高等专科学校、本科院校、高等教育自学考试本科及研究生学历专业教育学业的最后一个环节,为对本专业学生集中进行科学研究训练而要求学生在毕业前总结性独立作业、撰写的论文。
数学专业毕业论文选题方向
1动态规划及其应用问题。
2计算方法中关于误差的分析。
3微分中值定理的应用。
4模糊聚类分析在学生素质评定中的应用。
5关于古典概型的几点思考。
6浅谈数形结合在数学解题中的应用。
7高校毕业生就业竞争力分析。
8最大模原理及其推广和应用。
9 最大公因式求解算法。
10行列式的计算。
行列式是线性代数中的一种重要工具,用于解决线性方程组、矩阵求逆、行列式的秩等问题。行列式的计算方法有多种,以下是其中几种常用的方法:
1. 拉普拉斯展开法:将行列式按照某一行或某一列展开成多个小行列式的和。对于每个小行列式,可以递归地继续展开,直到得到一个1阶行列式,即一个数。最后将所有小行列式的结果相加即可得到原行列式的值。
2. 三角形法则:将行列式通过初等变换,化为一个上三角行列式或下三角行列式。上三角行列式的值等于对角线上的元素之积,下三角行列式的值等于对角线下面的元素之积。因此,可以通过初等变换将行列式化为上三角或下三角形式,然后直接计算行列式的值。
3. 克拉默法则:如果线性方程组的系数矩阵为A,解向量为x,常数向量为b,那么线性方程组的解可以用行列式的形式表示:对于第i个未知量,它的解为该未知量在A的第i列上加上一个常数项,该常数项等于将A的第i列替换为常数向量b后,得到的行列式值除以A的行列式值。因此,可以通过计算行列式和一些简单的矩阵运算,求解线性方程组的解。
4. 巴塞罗那定理:对于一个n阶行列式,将其展开后,每个元素的系数等于它所在行的逆序对数与它所在列的逆序对数之和的奇偶性。因此,可以通过计算行列式展开式中每个元素的系数,来判断行列式的值的正负性。
这些方法的适用范围和精度不同,但都可以用来计算行列式的值。在实际应用中,需要根据具体情况选择合适的计算方法。
1、DNA序列对比
在生物信息学中,人类基因的染色体图谱在进行DNA序列对比是就用到了矩阵的相似。
基于生物学中序列决定结构,结构决定功能的普遍规律,将核酸序列和蛋白质一级结构上的序列都看成由基本字符组成的字符串,检测序列之间的相似性,发现生物序列中的功能、结构和进化的信息。
2、遥感图像对比
图像配准就是将不同时间、不同传感器(成像设备)或不同条件下(天候、照度、 摄像位置和角度等)获取的两幅或多幅图像进行匹配、叠加的过程,它已经被广泛地应用 于遥感数据分析、计算机视觉、图像处理等领域。
由于同一场景拍摄的图像是真实的三维,世界在不同时间向成像平面的一系列投影,而图像与图像之间具有较大的相关性和信息冗 余,所以无论所处理的图像是发生何种形式的变化。
3、行列式进行保密编译码
在英文中有一种对消息进行保密的措施,就是把英文字母用一个整数来表示。然后传送这组整数。这种方法是很容易根据数字出现的频率来破译,例如出现频率特别高的数字,很可能对应于字母E。
可以用乘以行列式和矩阵A的方法来进一步加密。假如A是一个行列式等于±1的整数矩阵,则A1的元素也必定是整数。而经过这样变换过的消息,同样两个字母对应的数字不同,所以就较难破译。接收方只要将这个消息乘以A-1就可以复原。
4、行列式在企业设备更新中的应用
企业为了创造更大的价值,需要购买新设备,但买新设备花钱较多。而继续使用旧设备需要大量的维修费。为了解决这一问题,行列式和矩阵就可以计算出在哪一年更新设备,使企业的经济效益最好。
5、行列式在文献管理中的应用
比如现代搜索中往往包括几百万个文件和成千的关键词,但可以利用矩阵和行列式的稀疏性,节省计算机的存储空间和搜索时间。
行列式的进一步知识可以参看高等院校的《线性代数》课程有关章节。行列式的性质很多,这些性质大多是用于行列式的计算的。中学所学的行列式应该是2阶与3阶行列式,线性代数中的行列式阶数可以更大。行列式的引进是为了方便计数,当线性问题遇到大量的数据时,可以用矩阵和行列式来方便的进行计算。比如有的线性方程组求解,就可以用行列式来计算。解析几何中,已知三个顶点的坐标,要求三角形的面积,通过计算可以得知其面积刚好等于以这三个顶点坐标为元素的行列式。行列式的应用 希望对你有帮助。
行列式要求行数等于列数,排成的表总是正方形的,通过对它的研究又发现了矩阵的理论.矩阵也是由数排成行和列的数表,可以行数和列数相等也可以不等. 矩阵和行列式是两个完全不同的概念,行列式代表着一个数,而矩阵仅仅是一些数的有顺序的摆法.利用矩阵这个工具,可以把线性方程组中的系数组成向量空间中的 向量;这样对于一个多元线性方程组的解的情况,以及不同解之间的关系等等一系列理论上的问题,就都可以得到彻底的解决. 矩阵是数学中的一个重要的基本概念,是代数学的一个主要研究对象,也是数学研究和应用的一个重要工具.“矩阵”这个词是由西尔维斯特首先使用的,他是为了将 数字的矩形阵列区别于行列式而发明了这个述语.而实际上,矩阵这个课题在诞生之前就已经发展的很好了.从行列式的大量工作中明显的表现出来,为了很多目 的,不管行列式的值是否与问题有关,方阵本身都可以研究和使用,矩阵的许多基本性质也是在行列式的发展中建立起来的.在逻辑上,矩阵的概念应先于行列式的 概念,然而在历史上次序正好相反. 先 把矩阵作为一个独立的数学概念提出来,并首先发表了关于这个题目的一系列文章.凯莱同研究线性变换下的不变量相结合,首先引进矩阵以简化记号.1858 年,他发表了关于这一课题的第一篇论文《矩阵论的研究报告》,系统地阐述了关于矩阵的理论.文中他定义了矩阵的相等、矩阵的运算法则、矩阵的转置以及矩阵 的逆等一系列基本概念,指出了矩阵加法的可交换性与可结合性.另外,凯莱还给出了方阵的特征方程和特征根(特征值)以及有关矩阵的一些基本结果.凯莱出生 于一个古老而有才能的英国家庭,剑桥大学三一学院大学毕业后留校讲授数学,三年后他转从律师职业,工作卓有成效,并利用业余时间研究数学,发表了大量的数 学论文. 1855 年,埃米特(~1901)证明了别的数学家发现的一些矩阵类的特征根的特殊性质,如现在称为埃米特矩阵的特征根性质等.后 来,克莱伯施(~1872)、布克海姆()等证明了对称矩阵的特征根性质.泰伯()引入 矩阵的迹的概念并给出了一些有关的结论. 在 矩阵论的发展史上,弗罗伯纽斯()的贡献是不可磨灭的.他讨论了最小多项式问题,引进了矩阵的秩、不变因子和 初等因子、正交矩阵、矩阵的相似变换、合同矩阵等概念,以合乎逻辑的形式整理了不变因子和初等因子的理论,并讨论了正交矩阵与合同矩阵的一些重要性质.1854 年,约当研究了矩阵化为标准型的问题.1892年,梅茨勒()引进了矩阵的超越函数概念并将其写成矩阵的幂级数的形式.傅立叶、西尔和 庞加莱的著作中还讨论了无限阶矩阵问题,这主要是适用方程发展的需要而开始的. 矩 阵本身所具有的性质依赖于元素的性质,矩阵由最初作为一种工具经过两个多世纪的发展,现在已成为独立的一门数学分支——矩阵论.而矩阵论又可分为矩阵方程 论、矩阵分解论和广义逆矩阵论等矩阵的现代理论.矩阵的应用是多方面的,不仅在数学领域里,而且在力学、物理、科技等方面都十分广泛的应用
还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考! 1、导数在不等式证明中的应用 2、导数在不等式证明中的应用 3、导数在不等式证明中的应用 4、等价无穷小在求函数极限中的应用及推广 5、迪克斯特拉(Dijkstra)算法及其改进 6、第二积分中值定理“中间点”的性态 7、对均值不等式的探讨 8、对数学教学中开放题的探讨 9、对数学教学中开放题使用的几点思考 10、对现行较普遍的彩票发行方案的讨论 11、对一定理证明过程的感想 12、对一类递推数列收敛性的讨论 13、多扇图和多轮图的生成树计数 14、多维背包问题的扰动修复 15、多项式不可约的判别方法及应用 16、多元函数的极值 17、多元函数的极值及其应用 18、多元函数的极值及其应用 19、多元函数的极值问题 20、多元函数极值问题 21、二次曲线方程的化简 22、二元函数的单调性及其应用 23、二元函数的极值存在的判别方法 24、二元函数极限不存在性之研究 25、反对称矩阵与正交矩阵、对角形矩阵的关系 26、反循环矩阵和分块对称反循环矩阵 27、范德蒙行列式的一些应用 28、方阵A的伴随矩阵 29、放缩法及其应用 30、分块矩阵的应用 31、分块矩阵行列式计算的若干方法 32、辅助函数在数学分析中的应用 33、复合函数的可测性 34、概率方法在其他数学问题中的应用 35、概率论的发展简介及其在生活中的若干应用 36、概率论在彩票中的应用 37、概率统计在彩票中的应用 38、概率统计在实际生活中的应用 39、概率在点名机制中的应用 40、高阶等差数列的通项,前n项和公式的探讨及应用 41、给定点集最小覆盖快速近似算法的进一步研究及其应用 42、关联矩阵的一些性质及其应用 43、关于Gauss整数环及其推广 44、关于g-循环矩阵的逆矩阵 45、关于二重极限的若干计算方法 46、关于反函数问题的讨论 47、关于非线性方程问题的求解 48、关于函数一致连续性的几点注记 49、关于矩阵的秩的讨论 _ 50、关于两个特殊不等式的推广及应用 51、关于幂指函数的极限求法 52、关于扫雪问题的数学模型 53、关于实数完备性及其应用 54、关于数列通项公式问题探讨 55、关于椭圆性质及其应用地探究、推广 56、关于线性方程组的迭代法求解 57、关于一类非开非闭的商映射的构造 58、关于一类生态数学模型的几点思考 59、关于圆锥曲线中若干定值问题的求解初探 60、关于置信区间与假设检验的研究 61、关于周期函数的探讨 62、函数的一致连续性及其应用 63、函数定义的发展 64、函数级数在复分析中与在实分析中的关系 65、函数极值的求法 66、函数幂级数的展开和应用 67、函数项级数的收敛判别法的推广和应用 68、函数项级数一致收敛的判别 69、函数最值问题解法的探讨 70、蝴蝶定理的推广及应用 71、化归中的矛盾分析法研究 72、环上矩阵广义逆的若干性质 73、积分中值定理的再讨论 74、积分中值定理正反问题‘中间点’的渐近性 75、基于高中新教材的概率学习 76、基于最优生成树的'海底油气集输管网策略分析 77、级数求和的常用方法与几个特殊级数和 78、级数求和问题的几个转化 79、级数在求极限中的应用 80、极限的求法与技巧 81、极值的分析和运用 82、极值思想在图论中的应用 83、几个广义正定矩阵的内在联系及其区别 84、几个特殊不等式的巧妙证法及其推广应用 85、几个重要不等式的证明及应用 86、几个重要不等式在数学竞赛中的应用 87、几种特殊矩阵的逆矩阵求法
数学专业毕业论文选题方向如下:
1、并行组合数学模型方式研究及初步应用。
2、数学规划在非系统风险投资组合中的应用。
3、金融经济学中的组合数学问题。
4、竞赛数学中的组合恒等式。
5、概率方法在组合数学中的应用。
6、组合数学中的代数方法。
7、组合电器局部放电超高频信号数学模型构建和模式识别研究。
8、概率方法在组合数学中的某些应用。
9、组合投资数学模型发展的研究。
10、高炉炉温组合预报和十字测温数学建模。
11、基于数学形态学-小波分析组合算法的牵引网故障判定方法。
12、证券组合投资的灰色优化数学模型的研究。
13、一些算子在组合数学中的应用。
14、概率方法在组合数学及混合超图染色理论中的应用。
15、竞赛数学中的组合恒等式。
毕业论文(graduation study),按一门课程计,是普通中等专业学校、高等专科学校、本科院校、高等教育自学考试本科及研究生学历专业教育学业的最后一个环节,为对本专业学生集中进行科学研究训练而要求学生在毕业前总结性独立作业、撰写的论文。