1、利用奇偶函数的定义来判断(这是最基本,最常用的方法)定义:如果对于函数y=f(x)的定义域A内的任意一个值x,都有f(-x)=-f(x)则这个函数叫做奇函数f(-x)=f(x),则这个函数叫做偶函数
2、用求和(差)法判断:
若f(x)-f(-x)=2f(x),则f(x)为奇函数。
若f(x)+f(-x)=2f(x),则f(x)为偶函数。
奇函数在其对称区间[a,b]和[-b,-a]上具有相同的单调性,即已知是奇函数,它在区间[a,b]上是增函数(减函数),则在区间[-b,-a]上也是增函数(减函数)。
偶函数在其对称区间[a,b]和[-b,-a]上具有相反的单调性,即已知是偶函数且在区间[a,b]上是增函数(减函数),则在区间[-b,-a]上是减函数(增函数)。但由单调性不能倒导其奇偶性。验证奇偶性的前提要求函数的定义域必须关于原点对称。
扩展资料
1、奇偶函数图像的特征:
定理奇函数的图像关于原点成中心对称图表,偶函数的图象关于y轴或轴对称图形。
f(x)为奇函数《==》f(x)的图像关于原点对称
点(x,y)→(-x,-y)
奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。
偶函数在某一区间上单调递增,则在它的对称区间上单调递减。
2、奇偶函数运算
(1)两个偶函数相加所得的和为偶函数。
(2)两个奇函数相加所得的和为奇函数。
(3)一个偶函数与一个奇函数相加所得的和为非奇函数与非偶函数。
(4)两个偶函数相乘所得的积为偶函数。
(5)两个奇函数相乘所得的积为偶函数。
(6)一个偶函数与一个奇函数相乘所得的积为奇函数。
参考资料来源:百度百科-函数奇偶性