目前研究Vc测定方法的报道较多,有关Vc的测定方法如荧光法、2,6-二氯靛酚滴定法、2,4-二硝基苯肼法、碘量法、光度分析法、化学发光法、电化学分析法及色谱法等,各种方法对实际样品的测定均有满意的效果。为了解国内Vc含量测定方法及其应用方面的现状及发展态势。方法以"Vc或抗坏血酸和测定"为检索词对1994~2002年中国期刊网全文数据库(CNKI)中的理工A、B和医药卫生专辑进行篇名检索,对所得有关Vc含量测定的文献数据分别以年代、作者区域、载刊等级、样品类型、测定方法等进行计量分析。结果核心期刊载刊文献占文献总量的45.06%,其中光度法占65.69%,电化法占18.63%,色谱法占12.75%;复杂被测样品文献占文献总量的45.06%,其中光度法占60.92%,色谱法占19.54%,电化法占10.34%。结论目前国内Vc含量测定仍以光度法为主流,但近年来色谱法,特别是HPLC法上升趋势尤为明显。 1.4.1还原型Vc的测定 1.4.1.1 2,6-二氯酚靛酚法(2,6-D法) 其原理是利用2,6-二氯酚靛酚钠盐(C12H6O2NCl2Na)在酸性条件下将还原型抗坏血酸氧化成氧化型抗坏血酸,而其本身被还原成无色的衍生物;当还原型抗坏血酸全部被氧化时,过量的2,6-二氯靛酚钠盐呈现红色,指示终点。该方法适于测定无色和浅色样液或提取液中的AsA,无须特殊仪器,操作简便、快速、准确[7]。 由于大多数果蔬和其制品有颜色,影响了终点的准确性。使用白陶土脱色[8]和加1,2-二氯乙烷[9]均不能得到理想的结果。作为对该法的改进,向一定量的AsA提取液中加入过量2,6-D与AsA作用后,剩余的2,6-D被二甲苯萃取、比色。样液中AsA含量与二甲苯萃取液中浅红色呈线性负相关。因花青素不溶于二甲苯,故可测定深色样品[10]。应用流动注射分析(Flow Injection Analysis,简称FIA),使该法的分析速度更快(120样品/h)、灵敏(检出限0.5 ug/ml)[11]。由于2,6-二氯靛酚和还原型抗坏血酸具有不同的电位(2,6-二氯靛酚的氧化还原电位是150mV,AsA的氧化还原电位是100 mV),利用铂和氯化银复合电极测定其电位差的变化,可准确地测定样液中AsA的含量。该法适宜色泽较深样品中AsA的测定。溶解氧测定是利用极谱分析法原理进行的,其基本电路与电位滴定相似[12]。但样品中同时存在的Fe2+、Sn2+、SO2、SO3、S2O32-等还原性杂质对本法则有干扰。扣除样品中内源还原性物质是对2,6-二氯靛酚法的一个改进[13]。 1.4.1.2 碘量法 其原理是基于AsA还原碘,自身氧化DAsA,而碘可由碘酸钾还原碘化钾来得到,当多余碘存在时,淀粉呈蓝色,指示终点。反应式如下: KI+KIO3+6H→2K++3H2O+I2 (1-1)还原型抗坏血酸+I2+2H+→氧化型抗坏血酸+2HI 该法简便,但在测定深色样品时,准确度欠佳[14]。 1.4.1.3 分光光度法 其原理是三价铁离子被AsA还原二价铁离子,后者与4,7-二苯基-1,10-菲咯啉(Bathophenanthroline, BP)生成红色络合物,其强度与样品中AsA含量有化学计量关系。该法具有快速,灵敏的优点;此外,样品中DAsA还可被Dithiothreitol (DTT)还原为AsA,同时测定DAsA的含量[15]。 采用流动注射分析停留技术还可实现AsA与果蔬常用抗褐变剂L-半胱氨酸的同时测定[16]。 1.4.1.4 间接光度法 测定是在pH=5.0的乙酸-乙酸钠缓冲溶液中,抗坏血酸与铁(III)和1,10-二氮杂菲溶液相互作用,形成橘红色的Fe(II)-二氮杂菲络合物,在波长510 nm处,吸光度与50mL抗坏血酸含量在10~200ug浓度内呈线性关系。该法的特点是简便快速,灵敏度高,干扰少[15]。 1.4.1.5 紫外光度法 其原理是还原型Vc(AsA)在紫外区243.8nm处有最大吸收峰,以Cu2+作催化剂,利用溶解氧,将在243.8nm处有最大吸收的AsA选择性氧化为243.8nm处无最大吸收峰的DAsA,进行本底校正,此法具有简便、快速、准确的特点[17]。 1.4.1.6 光电比浊法 其原理是在酸性提取液中的AsA,可被亚硒酸氧化成DAsA,后者还原成元素硒,在一定条件下,其溶液中形成稳定的悬浊液。当20~50mL浸出液中AsA含量在0~4mg时,浊度与AsA含量成正比。样品中含有单宁、山梨酸、还原酮类不干扰测定。Fe2+、SO2在常温下干扰不明显,仅亚锡离子有干扰[18]。 1.4.1.7 高效液相色谱法(HPLC) 此法的优点不仅操作简便,分离时间短,对结构不稳定的Vc尤为适合;缺点是所用仪器较为昂贵[20]。 1.4.1.8 极谱法 其原理是用溴水将AsA氧化成DAsA,而后者与邻苯二胺缩合,可用于极谱定量测定Vc含量。脱氢型的还原糖、还原酸等对测定有干扰,可用氯仿萃取分离干扰物质后进行测定[18]。 1.4.2 Vc总量的测定 1.4.2.1 2,4-二硝基苯肼法 此法为测定Vc总量最常用的方法。其原理是用活性炭把AsA氧化成DAsA,在pH5以上时,后者分子重排,其内酯环裂开生成2,3-二酮古乐糖酸(DKG),与硝基苯肼偶联,生成红色的脎,其呈色强度与DKG浓度成正比;如果再测定出DKG、DKG + DAsA的含量,则可计算出AsA、DAsA的含量。该法虽然测试过程长、须严格掌握测试条件,但其准确度和精密度均较高[20]。 1.4.2.2 荧光分光光度计法 其测定Vc的基本原理是:样品中的AsA被氧化成DAsA,并与邻苯二胺反应,生成荧光物质喹喔啉(Quinoxaline)衍生物,荧光强度与DAsA的浓度成正比,用荧光计测定荧光强度。该法具有较强的专一性,样品中有些成分会造成干扰,可作空白试验校正干扰物质所产生的荧光。此法的优点是,生成荧光物质所需时间短,操作简单,能在短时间内测定Vc总量和分开测定AsA、DAsA的含量[19]。 1.4.2.3 过氧化物酶法 果蔬中的Vc在过氧化氢存在下,添加合成底物1,4-二氨基苯,通过过氧化物酶氧化显色,作为Vc氧化终点,然后比色测定。该法的特点是不需要昂贵的仪器,适应性强,容易掌握,费用低,检测快速,不需要预先纯化所分析的试样[20]。这个是我论文的综述部分,你看看吧!