对勾函数是一种类似于反比例函数的一般函数。所谓的对勾函数,是形如f(x)=ax+b/x的函数,是一种教材上没有但考试老喜欢考的函数,所以更加要注意和学习。一般的函数图像形似两个中心对称的对勾,故名。当x>0时,f(x)=ax+b/x有最小值(这里为了研究方便,规定a>0,b> 0),也就是当x=sqrt(b/a)的时候(sqrt表示求二次方根)。同时它是奇函数,就可以推导出x<0时的性质。令k=sqrt(b /a),那么,增区间:{x|x≤-k}∪{x|x≥k};减区间:{x|-k≤x<0}和{x|00的基础上的,不过对勾函数是奇函数,所以研究出正半轴图像的性质后,自然能补出对称的图像。如果出现平移了的问题(图像不再规则),就先用平移公式或我总结出的平移规律还原以后再研究,这个能力非常重要,一定要多练,争取做到特别熟练的地步。 对勾函数实际是反比例函数的一个延伸,至于它是不是双曲线还众说不一。 面对这个函数 f(x)=ax+b/x, 我们应该想得更多,需要我们深入探究:(1)它的单调性与奇偶性有何应用?而值域问题恰好与单调性密切相关,所以命题者首先想到的问题应该与值域有关;(2)函数与方程之间有密切的联系,所以命题者自然也会想到函数与方程思想的运用;(3)众所周知,双曲线中存在很多定值问题,所以很容易就想到定值的存在性问题。因此就由特殊引出了一般结论;继续拓展下去,用所猜想、探索的结果来解决较为复杂的函数最值问题