陈景润除了在哥德巴赫猜想方面取得1+2这个成果以外,还在纯数学的华林问题、球内格点、圆内格点等取得了一些成果,不过这些方面都不是很重要而且影响重大的领域,即使是1+2这个成果,虽然非常辉煌但没有我们想象的那么重要,数论在整个数学领域中都不是那么重要和影响重大,而且陈景润证明1+2用的方法还是别人创造的筛法。
陈景润没有创造出新的方法,他把筛法发挥到了一个极致的境地,这是非常了不起的成就,但不能和原创出一个方法相比,这就好比台积电能做出5nm工艺的芯片,但他的意义不能和发明集成电路的意义相比是一个道理。
这里顺便科普一下,我们谈到哥德巴赫猜想的时候用到的1+1或者1+2之类的表达式不能写成1+1=2或者1+2=3,陈景润证明的不是1+2=3,1+2=3已经不需要证明了,这里的表达式1+1是“一个偶数=一个素数+一个素数”的意思,就是哥德巴赫猜想,即任何一个大于4的偶数都可以表达成两个素数之和。
陈景润为什么不能直接证明1+1而是证明1+2,因为直接证明猜想太难了,所以数学家就想先证明一个比猜想弱一些的定律,即先证明一个偶数=一个素数+n个素数乘机,只要慢慢把n缩小就能接近猜想,当n =1时,就彻底证明了猜想,陈景润取得的成就就是n=2,即所谓的陈氏定理,任何一个充分大的偶数=一个素数+一个素数×一个素数。
数学家们公认陈景润这个成果是运用筛法取得的最好成果,也是筛法的一个极限,要最终证明猜想必须创造出新的方法,继续用筛法不可能最终证明哥德巴赫猜想。