在1965年5月,陈景润发表了他的论文《大偶数表示一个素数及一个不超过2个素数的乘积之和》。论文的发表,受到世界数学界和著名数学家的高度重视和称赞。英国数学家哈伯斯坦和德国数学家黎希特把陈景润的论文写进数学书中,称为“陈氏定理”,陈景润终于攻克了“哥德巴赫猜想”这一世界数学之谜,这一世界数学 “悬案”终于被陈景润所破译,皇后王冠上的明珠终于被陈景润所摘取。1742年6月7日,德国数学家哥德巴赫提出一个未经证明的数学猜想“任何一个偶数均可表示两个素数之和”简称:“ 1+1”。这一猜想被称为“哥德巴赫猜想”。中国人运用新的方法,打开了“哥德巴赫猜想”的奥秘之门,摘取了此项桂冠,为世人所瞩目。这个人就是世界上攻克“哥德巴赫猜想”的第一个人——陈景润。
陈景润除了在哥德巴赫猜想方面取得1+2这个成果以外,还在纯数学的华林问题、球内格点、圆内格点等取得了一些成果,不过这些方面都不是很重要而且影响重大的领域,即使是1+2这个成果,虽然非常辉煌但没有我们想象的那么重要,数论在整个数学领域中都不是那么重要和影响重大,而且陈景润证明1+2用的方法还是别人创造的筛法。
陈景润没有创造出新的方法,他把筛法发挥到了一个极致的境地,这是非常了不起的成就,但不能和原创出一个方法相比,这就好比台积电能做出5nm工艺的芯片,但他的意义不能和发明集成电路的意义相比是一个道理。
这里顺便科普一下,我们谈到哥德巴赫猜想的时候用到的1+1或者1+2之类的表达式不能写成1+1=2或者1+2=3,陈景润证明的不是1+2=3,1+2=3已经不需要证明了,这里的表达式1+1是“一个偶数=一个素数+一个素数”的意思,就是哥德巴赫猜想,即任何一个大于4的偶数都可以表达成两个素数之和。
陈景润为什么不能直接证明1+1而是证明1+2,因为直接证明猜想太难了,所以数学家就想先证明一个比猜想弱一些的定律,即先证明一个偶数=一个素数+n个素数乘机,只要慢慢把n缩小就能接近猜想,当n =1时,就彻底证明了猜想,陈景润取得的成就就是n=2,即所谓的陈氏定理,任何一个充分大的偶数=一个素数+一个素数×一个素数。
数学家们公认陈景润这个成果是运用筛法取得的最好成果,也是筛法的一个极限,要最终证明猜想必须创造出新的方法,继续用筛法不可能最终证明哥德巴赫猜想。
首先,有从1859年被提出至今,没有得到证明的黎曼猜想。1900年,德国数学家希尔伯特在第二届国际数学家大会上提出了20世纪数学家应当努力解决的23个数学难题,被认为是20世纪数学的制高点,其中便包括黎曼猜想。时隔100年,黎曼猜想又被美国克雷数学研究所列为世界七大数学难题之一。同时还有ABC猜想,这些都是至今仍没有得到证明的数学猜想。
陈景润成功将最小素数从80推进到了16,他的筛选法也成为最有效办法。同时将组合数学成功的和经济学结合,他还在解析数学领域也做出了很大的贡献。
找老师修改一下,在投到一些杂志社去。
张益唐前中国科学院数学与系统科学研究院研究员):“零点猜想”是数学领域一个经典的猜想,由于被证明后的成果难以推广,张益唐长期受到学术界、新闻界、企业界等广泛关注。目前已有三位数学家完成了这一猜想的论文,分别是美国数学家、意大利数学家莱昂纳多、法国数学家马尔库塞(Marcus Maccuse)以及中国数学家张益唐。
数学家都知道,很多猜想在现实中难以找到真正正确的结果。而这篇论文的提出为人们提供了一个有可能破解这些未知数的方法。比如,在数学家眼中,猜想越多,证明越困难。一旦找到了答案,整个证明过程就可以被精确地描述出来,使得数学家可以进行深入的数学研究。这个工作不仅可以为数学界带来灵感和技术上的发展,也可以为各行各业提供有意义地解决问题的方法。
人工智能和机器学习都离不开数学,因为它们需要解决的问题十分复杂,例如“零点猜想”等。机器学习是计算机科学中最重要的方向之一,它将使我们认识到计算机如何理解世界;同时也能使我们意识到许多问题不是由一个简单的、机械的解决方案来解决的,而是复杂的数学问题。而这些应用则需要用到数学基础知识来进行验证,从而能更好地指导算法;与此同时,它们也有助于计算能力及算法成本的降低,这将会是对人工智能发展非常有利的方向。
“零点猜想”提出之后,如果没有被证明,那么这个猜想的意义就不会被认可,甚至会被搁置,它的价值也就没有了。张益唐说,因为“零点猜想”被证明,意味着它只是一个没有被证明的猜想罢了。它被证明之后,因为没有被验证出来,而且不能被用来证明其他猜想,所以它的价值也就无法得到推广。
国际知名数学家张益唐宣布完成“零点猜想”论文。他认为,这一证明几何学中一个极其重要的命题,它有助于揭示拓扑学、数学物理以及其他一些基本数学问题。张益唐,清华大学教授、博士生导师。起从事非欧几里得几何领域的研究,提出了“零点猜想”这一著名的数学猜想。在“零点猜想”的猜想中,有一个重要组成部分被称为——曲面论。
“零点猜想”是著名数学家杨振宁提出的。这是一组由几何专家和数学家共同提出的猜想。其中杨振宁曾提出“百步方程组不存在零点;张益唐和李雪两人给出了一个明确的结论:‘零点猜想’中所涉及到的几何空间是‘零点’。”可以看出张益唐在这个数学难题上的突出贡献。对于这些方程组和曲面中每一个零点所对应的值是不同的。
哥德堡和弗雷德・米勒证明了曲面是有两个点相等的。他们分别在发表了论文《一个新方向:代数几何证明曲面论》。首先通过这篇论文,他们将张益唐引力场中两个正交空间上一个曲面叫做“曲面”的两个点相等或者几乎相等(如图1所示).这便是著名为“零点猜想”的一个重要组成部分。
张益唐的“零点猜想”与数学家巴斯德提出的“代数几何猜想”相似。巴斯德提出了“有限项”和“无限项”两种不同模式来描述三维曲面。无限项有两个含义:如果曲面上有两个零点是对称的或者三个对偶点则称为零点;如果两个曲面上有三个零点(不相等)接近或等于一点,那么这个曲面就称之为“零点”;如果两个曲面都有四个边型和三个倒立球体(或者四条曲线)组成了四个球体(例如两个六边形组成)或一个倒立球体(或者其他形状)——这就是“四维空间”
1、在现有的科学模式下,有想法,要想被数学团体承认,你需要公开发表论文发表论文,一般是发表你的结论,即对你的猜想进行证明,把整个证明结果公布2、如果是猜想,无法证明,抱歉,论文的形式无法发布,那么你有两个路径选择1)在网上发布你的猜想,或是博客,这需要有科学界的圈子,被他们看到,他们认为有研究价值,可能成为一个数学猜想;或是数学专业论坛,被更多的人认可。2)将你的猜想通过信件的方式,让有名的数学家了解,借他们之手去被数学界了解 所以,如果你已是数学专业研究人员,一般是博士以上,你可以去走上述途径;如果你水平有限,请将你的猜想与你的老师讨论,他或许可以帮你解惑,更或许能激发你的数学潜能。至于挣钱,呃,数学家没有有钱的……因为再有成就,也就是国家院士,再厉害,在国际上获大奖,最高奖也没有诺贝尔奖金多……好好学习吧,如果不是学生的话,好好钻研你自己的工作,一步步踏实走才是正道。(顺便提一句:投稿到期刊也是不能挣钱的,因为给你的稿费才50,而你需要交纳200~500不等的版本费,当然,如果真能发表,相信你的老师会帮你解决这个版面费问题)
今天计算机科学家特德·尼尔森(Ted Nelson)在YouTube上爆料化名中本聪(Satoshi Nakamoto)的比特币创始人其实是京都大学的数学教授望月新一(Shinichi Mochizuki)。原文来自Business Insider,由网易科技翻译。没有人知道是谁发明了比特币。开发者使用化名,中本聪,但从比特币出现的那一刻起,人们就没停止过对中本聪身份的挖掘。并且从比特币上线那天开始,就有一台计算机在进行比特币挖矿工作,盛传这台机器就是中本聪的。所以如果望月新一真的是中本聪,他的身价显然已经过亿。望月新一16岁进入普林斯顿大学,22岁读完博士。33岁成为京都大学全职教授。33岁是一个在学术界显得年轻的荒谬的年龄。望月新一最大的成就是著名的ABC猜想。尼尔森证据有三点(来自华尔街见闻网):一、望月新一是那种能创造比特币的天才。Nelson表示,无论是谁创造了比特币,他都具有可能和牛顿一样的智力。望月新一作为数学家已经在其领域破解一些最简单也是最艰难的难题,并吸引了全球媒体的报道。二、就像比特币的创造者一样,望月新一喜欢将其工作成果发布在互联网上,然后退出。比特币由匿名程序员(或程序员们)以中本聪的名义发布,之后就从互联网消失。望月新一的风格不是将学术成果发表在学术期刊上,而是简单的将之忘互联网上一扔,然后就离开了。Nelson将这两者的风格联系起来对比。(注意,这是Nelson比特币理论的一个错误的地方:中本聪并不是将比特币放到互联网上,然后消失。他、她或者他们在消失之前曾通过聊天和电子邮件与社区成员交流。)三、望月新一很容易写出中本聪的那些通信。Nelson表示,尽管望月新一是日本大学的日本教授,但是他的英语非常好,因为他曾是普林斯顿大学毕业生致辞代表,并且他只用了3年时间就完成了其本科教育。(Nelson并没有注意到,望月新一的母语其实是英语,当他5岁的时候,他跟随父母移居到了美国。)视频中,尼尔森极尽对望月新一的溢美之词,称他为伟大的经济学家、社会学家和计算机学家,并觉得他应该因为比特币而获得诺贝尔经济学奖。最后他希望望月新一可以将未来的工作重点放在解决人类最复杂的问题上,比如核武器、恐怖主义以及污染问题。值得注意的是,至少有一位在比特币加密方面的专家不认同尼尔森的理论。世界第一个数据港的创始人Ryan Lackey反驳了尼尔森,他在YouTube上留言:尼尔森提到的这个人有任何软件开发的经验吗?他看起来只不过是个数学家,数学理论对比特币非常有用,但是不足以据此开发出第一代比特币。比特币有一些理论突破,也对现有的协议进行了扩展,但是其代码实现得相当合理。我认为绝对没有理由认为数学家望月新一是中本聪。随后,Quartz新闻网站联系了望月新一,但是还没有得到回复。不过,尼尔森回答了Quartz的提问。在采访中,Nelson称,他在得出结论的过程中并没有获得其他人的帮助,这一推测是受到最近望月新一的一个特征的启发。他没有直接联系望月新一,“我尽可能快地将我的发现公布出来,希望成为第一个认识到这一真相的人,否则,我就不是第一个了。”
abc猜想被证明了。
数论中的abc猜想(亦以Oesterlé–Masser猜想 而闻名)最先由乔瑟夫·奥斯达利(Joseph Oesterlé)及大卫·马瑟(David Masser)在1985年提出,2012年数学家望月新一声称证明了此猜想。
数学家用三个相关的正整数a,b和c(满足a + b = c)声明此猜想(也因此得名abc猜想)。若d是abc不同素因数的乘积,这个猜想本质上是要说d通常不会比c小太多。换句话来说,如果a,b的因数中有某些素数的高幂次,那c通常就不会被素数的高幂次整除。
abc猜想因它所带来的一些关于数论的有趣的结论而著名,很多著名的猜想和定理都紧接着abc猜想问世 。数学家Goldfeld (1996)认为abc猜想是“the most important unsolved problem in Diophantine analysis”。
Lucien Szpiro(法国数学家,因其在数论、算术代数几何和交换代数上的贡献而知其名)在2007年时尝试攻克此猜想,但后被证明其中有误。
在2012年8月,日本的京都大学数学家望月新一(mochizuki shin'ichi)发布了其四篇预印文稿,介绍了他的Inter-universal Teichmüller theory(宇宙际Teichmüller理论),并声称用此理论可证明包括abc猜想在内的几个著名猜想。
他的论文在数学期刊上刊登以供参考查阅,很多人也开始学习他的理论。很多数学家对他的文章持怀疑态度,也正是因为他这篇古怪晦涩的证明,我们知道了,要解决这个猜想或许还是要走上孤独的漫漫长路。
2008年11月1日,一个自称中本聪(Satoshi Nakamoto)的人在一个隐秘的密码学评论组上贴出了一篇研讨陈述,陈述了他对电子货币的新设想——比特币就此面世,比特币的首笔交易完成。比特币用揭露散布总账摆脱了第三方机构的制约,中本聪称之为“区域链”。用户乐于奉献出CPU的运算能力,运转一个特别的软件来做一名“挖矿工”,这会构成一个网络共同来保持“区域链”。这个过程中,他们也会生成新货币。买卖也在这个网络上延伸,运转这个软件的电脑真相破解不可逆暗码难题,这些难题包含好几个买卖数据。第一个处理难题的“矿工”会得到50比特币奖赏,相关买卖区域加入链条。跟着“矿工”数量的添加,每个迷题的艰难程度也随之进步,这使每个买卖区的比特币生产率保持约在10分钟一枚。(币汇数字货币交易平台)
2009年,中本聪设计出了一种数字货币,即比特币,风风火火的比特币市场起了又落,而其创始人“中本聪”的身份一直都是个谜,关于“比特币之父”的传闻牵涉到从美国国家安全局到金融专家,也给比特币罩上了神秘光环。
据外媒报道称,计算机科学家TedNelson周日在网络上发布视频称,他已经确定出,比特币的创始人是京都大学数学教授望月新一(ShinichiMochizuki)。比特币的创始人一直以来使用的都是中本聪(SatoshiNakamoto)的假名,互联网领域也对其真实身份展开了大量推测。纳尔逊发布视频称,他已确定望月新一就是比特币的真正创始人。
望月新一2013年因为证明ABC猜想而名声大噪。他高中时就读于菲利普埃克塞特学院,后者是美国最具声望的高中之一,仅仅两年后就毕业。望月新一16岁进入美国普林斯顿大学,22岁时以博士身份离校,33岁就成为正教授,这么年轻就获得正教授职称在学术界极为罕见。这个数学界的巨星可能已经攻破了该领域最为重要的难题之一。
比特币的概念创始人是中本聪。人物介绍:中本聪是比特币的开发者兼创始者,是一位1949年出生的日裔美国人。他爱好收集火车模型,职业生涯中有多处保密,曾为大型企业还有美工军方执行保密的工作。 2008年中本聪在互联网上一个讨论信息加密的邮件组中发表了一篇文章, 勾画了比特币系统的基本框架。 2009年他为该系统建立了一个开放源代码项目 (open source project),正式宣告了比特币的诞生。 2010年12月12日当比特币渐成气候时,他却悄然离去,从互联网上销声匿迹。
你的这个可能还谈不上猜想。如果说要发表的话,可以把论文寄往国家数学研究所之类的科研机构。不过,如果说在数学界你还名不见经传,估计专家些可能给你看一下的可能都没有。大概在上世纪8-90年代的时候,曾经有人声称证明了哥德巴赫猜想(所谓的1+1)。应该在当时还是引起了国内数学界的关注,因为声称已经证明了哥猜的人比较多,据当时的国家数学所所长杨乐说,他们收到关于证明哥猜的论文有几大麻袋。但最后的结论是,用初等数学证明哥猜犹如骑自行车上月球。我不敢肯定这些声称能够证明哥猜的人中是不是真的有人已经证明了猜想本身。但是就算你已经证明了又怎么样呢?因为那些所谓的科学家可能看都不会给你看你的所谓论文,就一句话你算啥,你能够证明的话,我们是干什么吃的。
这是一篇有关“素数定理”的论文。数学界的几大猜想中,“素数猜想”一直饱受质疑,如今张益唐教授终于将其攻破。据《澎湃新闻》报道,日前,美国国家科学院院士、英国皇家学会会士张益唐教授在国际知名学术期刊《Nature Communications》上发表论文,对“素数猜想”这一数学界尚未攻克的难题进行了详尽、系统、深入的研究,该工作在理论上为零点猜想这一世界级数学难题的解答开了一个好头。
此前,张益唐已成功解决了国际同行最难的素数猜想——“阿贝尔奇偶性”、并且证明了该猜想对于数理论界基本问题之一——黎曼猜想是具有重要意义。在国际数学联盟(微分几何领域中最具权威的组织)第29届大会上,代表中国学者发表获奖论文《关于素数闭区间1≤ R 0< n> Bi 2-12 a》。
素数猜想,是对数论中素数定义理论、数论和拓扑学基本问题提出的一系列数学问题。它对一般数论、数理逻辑和计算机科学等多个学科具有重大影响。素数猜想由数学家华罗庚于1919年提出,这个问题对数论和微分几何产生了重大影响。这个猜想包括:素数关于每一个数字都是唯一不可变数、素数是唯一有固定数量级或者素数是零点对称性、素数是个整数。
张益唐团队一直认为,阿贝尔奇偶性和“阿贝尔奇奇性”不能同时被证明。因此,研究人员进行了长达12年的讨论。“这项研究不仅将证明素数闭区间1≤ R 0< n> Bi 2-12 a≤ R 0< n> Bi 2-12 a的性质,还将这些发现扩展到与素数闭区间1≤ R 0< n> Bi 2-12 a相邻的四个非平凡素数闭区间,并将这些发现与多个素数闭区间中发生的有趣现象联系起来。”研究人员说。
如果你的学术生涯中遇到这样的论文,相信你会感到惊讶。这是来自美国加州大学洛杉矶分校的数学家张益唐博士带领团队完成,他们证明了其为Landau-Siegel零点猜想。这一“中国人”这是全世界华人数学家向全世界发出的祝贺之声!此前,张益唐团队曾获得数个重要的成果及论文。
该论文从理论到应用证明了该猜想是数理逻辑的“基石”,其重要性将影响人类对数学问题的解决以及知识获取。其在数学和物理学界引起了广泛的关注。论文引用自美国数学协会(AAA)的统计,张益唐领导的研究团队在一年内向学术界公布了4个Landau-Siegel零点猜想的证明。同时张博士还表示,这些结果对于未来数理逻辑相关领域的研究将产生重要影响并引发全世界数学家向该方向迈进;而对于数学界来说,这也是值得纪念与庆贺的事情。
虽然中国数学家已经为世界数学做出了巨大贡献,但与国际上相比,中国的数学家还很少。近年来,我国取得的杰出贡献在国际上已经越来越受瞩目。特别是在数理逻辑领域上取得杰出的成就,特别是在Landau-Siegel零点猜想上取得突破性进展对整个数理逻辑领域起到极大的推动作用。张益唐获得这一结果显示出他在这一领域中超群精湛的数学水平及卓越的推理能力具有重要意义。
此外与张益唐同在加州大学洛杉矶分校的杨柳岩教授也在今年6月在《数学年刊》上发表了论文,证明了其对零点猜想所做出的工作。张益唐在文章中提到这个猜想是由他的同事们共同努力而得到的结果。我们也希望该论文能够影响到更多人对Landau-Siegel零点猜想提出相关质疑及研究热情。
找老师修改一下,在投到一些杂志社去。
你的这个可能还谈不上猜想。如果说要发表的话,可以把论文寄往国家数学研究所之类的科研机构。不过,如果说在数学界你还名不见经传,估计专家些可能给你看一下的可能都没有。大概在上世纪8-90年代的时候,曾经有人声称证明了哥德巴赫猜想(所谓的1+1)。应该在当时还是引起了国内数学界的关注,因为声称已经证明了哥猜的人比较多,据当时的国家数学所所长杨乐说,他们收到关于证明哥猜的论文有几大麻袋。但最后的结论是,用初等数学证明哥猜犹如骑自行车上月球。我不敢肯定这些声称能够证明哥猜的人中是不是真的有人已经证明了猜想本身。但是就算你已经证明了又怎么样呢?因为那些所谓的科学家可能看都不会给你看你的所谓论文,就一句话你算啥,你能够证明的话,我们是干什么吃的。
这是一篇有关“素数定理”的论文。数学界的几大猜想中,“素数猜想”一直饱受质疑,如今张益唐教授终于将其攻破。据《澎湃新闻》报道,日前,美国国家科学院院士、英国皇家学会会士张益唐教授在国际知名学术期刊《Nature Communications》上发表论文,对“素数猜想”这一数学界尚未攻克的难题进行了详尽、系统、深入的研究,该工作在理论上为零点猜想这一世界级数学难题的解答开了一个好头。
此前,张益唐已成功解决了国际同行最难的素数猜想——“阿贝尔奇偶性”、并且证明了该猜想对于数理论界基本问题之一——黎曼猜想是具有重要意义。在国际数学联盟(微分几何领域中最具权威的组织)第29届大会上,代表中国学者发表获奖论文《关于素数闭区间1≤ R 0< n> Bi 2-12 a》。
素数猜想,是对数论中素数定义理论、数论和拓扑学基本问题提出的一系列数学问题。它对一般数论、数理逻辑和计算机科学等多个学科具有重大影响。素数猜想由数学家华罗庚于1919年提出,这个问题对数论和微分几何产生了重大影响。这个猜想包括:素数关于每一个数字都是唯一不可变数、素数是唯一有固定数量级或者素数是零点对称性、素数是个整数。
张益唐团队一直认为,阿贝尔奇偶性和“阿贝尔奇奇性”不能同时被证明。因此,研究人员进行了长达12年的讨论。“这项研究不仅将证明素数闭区间1≤ R 0< n> Bi 2-12 a≤ R 0< n> Bi 2-12 a的性质,还将这些发现扩展到与素数闭区间1≤ R 0< n> Bi 2-12 a相邻的四个非平凡素数闭区间,并将这些发现与多个素数闭区间中发生的有趣现象联系起来。”研究人员说。
数学系张义堂教授声称,他已经解决了兰道·西格尔的零猜测,这引起了数学界的关注。数学的定义在数学中真的很少见,“迟来的大工具”,这是一个罕见的奇迹。成就引起了很多关注,因为数学是一门非常深刻的学科,要在数学上取得成功并不容易,而且要知道写已发表的文章需要更长的时间。许多人同时,由于缺乏耐心,也要放弃一半。
许多人不知道这种猜测有多令人兴奋,简单地说,如果兰道·西格尔的猜测推翻了黎曼的猜测,那么现代数学可能就是一切。数学课涉及的范围非常广泛,黎曼猜测是七种猜测之一物理学领域的伟大猜测,适用于世界上许多数学问题,如果黎曼猜想是一击,那么利用黎曼猜想解决世界数学问题的这一阶段将是一击,这将是所有物理学都是一个根本性的变化。
这是一个令人兴奋的消息,立即让很多人愿意尝试,许多人正在等待张义堂正式发布书面信息,在这个阶段,张义堂只是口头上实现了兰道·西格尔的猜测兰道·西格尔的猜测只是一种黎曼猜测,如果他相信的话,黎曼猜测就是验证。
兰道·西格尔的猜测实际上是零猜测,其本质是证明传统零区域中是否有任何零。黎曼猜测,除1/2的真实部分外,所有非微不足道的零功能都位于平行线上。从零开始。2013年,他在顶级数学杂志上发表了第一篇论文,表明部长们的数量是无限距离的。此后,在双重猜想方面取得了重大进展,震惊了数学界。后来,张义堂在朋友的推荐下,前往新罕布什尔大学数学和统计系担任助教和讲师,教授微积分、代数、质数理论等课程。最后,他回到了在学院的梦想。
找老师修改一下,在投到一些杂志社去。