首页

> 学术发表知识库

首页 学术发表知识库 问题

毕业论文函数最值问题的求解方法

发布时间:

毕业论文函数最值问题的求解方法

分析:f(x)为关于x的函数,确定定义域后,应该可以求f(x)的值域,值域区间内,就是函数的最大值和最小值。一般而言,可以把函数化简,化简成为f(x)=k(ax+b)²+c 的形式,在x的定义域内取值。当k>0时,k(ax+b)²≥0,f(x)有极小值c当k<0时,k(ax+b)²≤0,f(x)有最大值c

最大值,即为已知的数据中的最大的一个值,在数学中,常常会求函数的最大值,一般求解方法有换元法、判别式求法、函数单调性求法、数形结合法和求导方法。

1.判别式求最值

主要适用于可化为关于自变量的二次方程的函数。根据二次方程图像的特点,求开口方向及极值点即可。

2.函数单调性

先判定函数在给定区间上的单调性,而后依据单调性求函数的最值

3.数形结合

主要适用于几何图形较为明确的函数,通过几何模型,寻找函数最值。

拓展资料:

示范解法

资料参考:百度百科 最大值  百度百科 最小值

中学范围内,常用的有四种方法:1.利用二次函数求最值2.利用均值不等式求最值3.利用导数求最值4.利用单调性和闭区间求最值。除此无它。

求函数最值毕业论文

函数的零点等价于对应方程的根,计算方法主要是解方程。对区间上的可导函数而言,函数的极值点是导函数的变号零点,这时极值点的计算方法是先求导,再求导函数的零点,再讨论零点两侧的导数符号,最后结论。所以要经历求导运算,解方程,解不等式等。对于区间上的不可导函数而言,函数的极值可能存在,因而极值点存在。往往用初等方法。需讨论。例如y=|x|,因为y=|x|≥0,当且仅当x=0时,y min=0.所以极值点x=0.亲,以上是提供,供参考。您可以发散一下,并举些具体例子。必要时把零点和极值点的定义加进去。

我知道能函授问题明白道理

函数极限的求解方法毕业论文

有5种方法,如下:

(1)利用洛必达法则与等价无穷小代换对抽象函数的00型极限可得结论:设当x→x0时f(x)与g(x)为无穷小,g(x)~(x-x0)β,取k为正实数,使得fk(x)=A(x-x0)α+o[(x-x0)α]。

其中A〉0,α≥2,β〉0为实数,则有limx→x0f(x)g(x)=1.该方法对求常见的00型极限都适用.当使用洛必达法则求li mx→x0f(x)g(x)很复杂时,使用该方法可简化计算.

(2)因式分解法,约去零因式,从而把未定式转化为普通的极限问题。

(3)如果分子分母不是整式,而且带根号,就用根式有理化的方法,约去零因子。

(4)考虑应用重要极限的结论,从而把问题转化,可以很容易求解。

(5)如果满足等价无穷小代换条件,那么就可以用代换无穷小的方法求解。

扩展资料:

极限的思想方法贯穿于数学分析课程的始终。可以说数学分析中的几乎所有的概念都离不开极限。在几乎所有的数学分析著作中,

都是先介绍函数理论和极限的思想方法,然后利用极限的思想方法给出连续函数、导数、定积分、级数的敛散性、多元函数的偏导数,广义积分的敛散性、重积分和曲线积分与曲面积分的概念。如:

(1)函数在 点连续的定义,是当自变量的增量趋于零时,函数值的增量趋于零的极限。

(2)函数在 点导数的定义,是函数值的增量 与自变量的增量 之比 ,当 时的极限。

(3)函数在 点上的定积分的定义,是当分割的细度趋于零时,积分和式的极限。

(4)数项级数的敛散性是用部分和数列 的极限来定义的。

(5)广义积分是定积分其中 为,任意大于 的实数当 时的极限,等等。

运算法则:设  ,  存在,且令  ,则有以下运算法则:

加减:

数乘:

(其中c是一个常数)

乘除:

( 其中B≠0 )

幂运算:

参考资料:极限(数学术语)_百度百科

求函数的极限,需要分析函数在极限点处的行为。这可以通过使用定义、极限定义、或者某些特殊函数的性质来完成。例如,对于函数 f(x),假设我们想要求出它在 x=a 处的极限。我们可以使用以下方法:定义法:对于任意 ε > 0,都存在 δ > 0,使得当 0 < |x - a| < δ 时,|f(x) - L| < ε。这意味着,当 x 足够接近 a 时,f(x) 就会足够接近 L。极限定义:当 x 足够接近 a 时,f(x) 就会足够接近 L。这是极限的定义,但是它并不告诉我们如何去计算极限。特殊函数的性质:对于一些常见的函数,例如幂函数、对数函数、三角函数等,我们可以使用它们的性质来求解极限。例如,对于函数 f(x)=x^2,我们可以使用定义法求出它在 x=0 处的极限:设 L=0,对于任意 ε > 0,我们可以设 δ=ε。当 0 < |x - 0| < δ 时,|f(x) - L| = |x^2 - 0| = |x^2| = x^2。由于 x^2 > 0,所以 x^2 < ε,当 x 足够接近 0 时,f(x) 就会足够接近

极限理论是数学分析课程的理论依据,就因为引入极限思想,微积分才有了理论根基,从而可以解决很多初等数学不能解决的实际问题.极限理论贯穿于数学分析课程的始终.因此,教学中让学生深刻理解极限理论对学好整门课程起到至关重要的作用.作者就自己多年教授数学分析课程的经验,谈谈数列极限与函数极限的联系与本质区别.1.关于数列极限1.1数列初等数学中对数列这样定义:按照一定顺序排列的一列数称为数列.数学分教材[1]关于数列的定义:若函数f的定义域是全体正整数集N,则称f:N→R或f(n),n∈N为数列.正因为正整数集的元素可按从小到大的顺序排列,所以数列f(n)也可写作a,a,…a…,或简单地记作{a},其中a是该数列的通项.看得出来,数列就是一正整数集为定义域的函数,即所有数列的定义域都是正整数集.1.2数列的极限的定义定义1设{a}为数列,a为定数.若对任给的正数?藓,总存在正整数N,使得当n>N时,有|a-a|<?藓,则称数列{a}收敛于a,定数a为数列{a}的极限,并记作a=a.2.关于函数极限2.1x→∞时函数极限定义2设f为定义[a,+∞)在上的函数,A为定数,若对任给的正数?藓,存在正数M(≥a),使得当x>M时有|f(x)-A|<?藓,则称函数当x→+∞时以A为极限,记作f(x)=A.现设f为定义在U(-∞)或U(∞)上的函数,当x→-∞或x→∞时,若函数值无限地接近某定数A,则称f当x→-∞或x→∞时以A为极限,f(x)=A或f(x)=A.2.2x→x时函数极限定义3(函数极限的?藓-δ定义)设函数f在点x的某个空心邻域U(x;δ′)内有定义,A为定数,若对任给的正数ε,存在正数δ(<δ′),使得当0<|x-x|<δ时有|f(x)-A|<0ε,则称函数f当x→x时以A为极限,记作f(x)=A.类似可定义f(x)=A及f(x)=A.3.数列极限与函数极限的异同及根本原因从以上定义可以看出,数列极限与函数极限有相同点也有不同点,研究二者的方法大同小异,相同点是数列极限与函数极限中当x→+∞时的类型完全相似,因此可以用相同的方法研究.二者的不同点在于,数列极限只有一种类型,就是n→∞时的极限;而函数极限细分有六种类型x→+∞;x→-∞;x→∞;x→x;x→x;x→x的极限,分类的标准是根据的趋向的不同来分类.二者的相同点源自二者都是函数,数列可以认为是特殊情况的函数,任何一个不同的数列都以正整数集为定义域;而通常意义下的函数在数学分析课程中是定义在实数范围的,其定义域可以是实数集也可以是实数集的某个子集.正因为将二者同看成函数的情况下,由于二者的定义域范围不同,导致二者极限类型的不同.数列的定义域是正整数集,那自变量的取值为1、2、3……,自变量的最小取1,因此不可能趋向于-∞,又因为数列各项必须取整数,所以它不可能趋近于某个定数,自变量n只可能有一种趋向于+∞;而通常意义下的函数是在实数范围内的讨论,因此,自变量x既可以趋近于+∞,又可以趋近于-∞;如果自变量x同时趋近于+∞和-∞时函数极限存在,则称x→∞时函数极限存在.同理,因为实数集的稠密性,自变量x会趋近于某个定数x,根据自变量x趋近于x的方向不同又可以分为x点处的左极限和右极限,于是某定点处有三种类型x→x;x→x;x→x函数极限.综上,数列是特殊的函数,正因为数列作为函数的特殊性,使数列极限相对简单并且具有相对理想的性质,收敛数列的所有性质都具有整体性;而收敛函数的所有性质都只能满足局部性质.导致二者性质差别的真正原因也在于二者作为函数定义域的范围不同.笔者认为,还要真正学透极限,一定要从本质上研究导致他们不同的原因,相同的理论完全可以通过类比的方式学习,而学习的重点应该放在二者的不同上,弄懂有什么不同,为什么不同,只有懂得了“为什么”,才能真正学懂相应知识.

求一元函数的极值的方法毕业论文

函数的零点等价于对应方程的根,计算方法主要是解方程。对区间上的可导函数而言,函数的极值点是导函数的变号零点,这时极值点的计算方法是先求导,再求导函数的零点,再讨论零点两侧的导数符号,最后结论。所以要经历求导运算,解方程,解不等式等。对于区间上的不可导函数而言,函数的极值可能存在,因而极值点存在。往往用初等方法。需讨论。例如y=|x|,因为y=|x|≥0,当且仅当x=0时,y min=0.所以极值点x=0.亲,以上是提供,供参考。您可以发散一下,并举些具体例子。必要时把零点和极值点的定义加进去。

应该是先求导吧

若得到ac-b^2=0,还不能得到是否有极值的结论。

先求导,然后使导函数等于零,求出x值,接着确定定义域,画表格。最后找出极值。

注意:极值是把导函数中的x值代入原函数。

求解函数的极值:

寻求函数整个定义域上的最大值和最小值是数学优化的目标。如果函数在闭合区间上是连续的,则通过极值定理存在整个定义域上的最大值和最小值。

此外,整个定义域上最大值(或最小值)必须是域内部的局部最大值(或最小值),或必须位于域的边界上。

三角函数最值问题毕业论文题目

(1) 将 (sin5/2x-sin1/2x)/(sin1/2x) 转化为cosx型 解: (sin5/2x-sinx)/(sin1/2x)= sin5/2x sin1/2x- (sin1/2x)^2=-1/2(cos3x-cos2x)+1/2(cosx-1)=1/2(-cos3x+cos2x+cosx-1)=1/2(3cosx-4(cosx)^3+2(cosx)^2-1-1)=-2(cosx)^3+(cosx)^2+3/2cosx-1(2) 已知00,tany>0,tanz>0又(tanx)^2 (tany)^2(tanz)^2-1>=0所以tanx*tany*tanz>=1所以(tanx*tany*tanz)min=1 当tanx= tany= tanz=1,即x=y=z=pai/4时取到等号(4) 关于x,y的方程 xcosa +ycosa=2 和 x^2+3(y^2)=6(a<[0,pai]) 有解,则a的范围是??解:因为xcosa +ycosa=2所以cosa不等于0所以y=2/cosa-x所以x^2+3((2/cosa-x) ^2)=6即2x^2-(6/cosa)x+6/-3=0△ =36/(cosa)^2-8(6/(cosa)^2-3)>=0(cosa)^2>=1/2cosa>=√2或cosa<=-√2又因为a<[0,],所以a<[0,pai/4]U[3pai/4,pai]

(1)最大值3/2x/2-π/6=π+2kπx=7π/3+4kπ其中k为整数最小值-3/2x/2-π/6=2kπx=π/3+4kπ其中k为整数(2)最大值1/2x/2+π/3=π/2+2kπx=π/3+4kπ其中k为整数最小值-3/2x/2+π/3=3π/2+2kπx=7π/3+4kπ其中k为整数极值常用方法:对于三角函数只要记住结论sinx:x=π/2+2kπ取最大值x=3π/2+2kπ取最小值cosx:x=2kπ取最大值x=π+2kπ取最小值对于一般函数可以对函数求导,找出导数为0的点就是极值点

三角函数的最值问题是三角函数基础知识的综合应用,近几年的高考题中经常出现。其出现的形式,或者是在小题中单纯地考察三角函数的值域问题;或者是隐含在解答题中,作为解决解答题所用的知识点之一;或者在解决某一问题时,应用三角函数有界性会使问题更易于解决(比如参数方程)。题目给出的三角关系式往往比较复杂,进行化简后,再进行归纳,主要有以下几种类型。掌握这几种类型后,几乎所有的三角函数最值问题都可以解决。 1.y=asinx+bcosx型的函数特点是含有正余弦函数,并且是一次式。解决此类问题的指导思想是把正、余弦函数转化为只有一种三角函数。2.y=asin2x+bsinxcosx+cos2x型的函数。 特点是含有sinx, cosx的二次式,处理方式是降幂,再化为型1的形式来解。 3.y=asin2x+bcosx+c型的函数特点是含有sinx, cosx,并且其中一个是二次,处理方式是应用sin2x+cos2x=1,使函数式只含有一种三角函数,再应用换元法,转化成二次函数来求解。 4.y=asinx+c/bcosx+d型的函数 特点是一个分式,分子、分母分别会有正、余弦的一次式。几乎所有的分式型都可以通过分子,分母的化简,最后整理成这个形式,它的处理方式有多种。 5.y=sinxcos2x型的函数。 它的特点是关于sinx,cosx的三次式(cos2x是cosx的二次式)。因为高中数学不涉及三次函数的最值问题,故几乎所有的三次式的最值问题(不只是在三角)都用均值不等式来解(没有其它的方法)。但需要注意是否符合应用的条件(既然题目让你求,多半是符合使用条件的,但做题不能少这一步),及等号是否能取得。 6.含有sinx与cosx的和与积型的函数式。 根据二次函数的图象,解出y的最大值是1+根号2。 相信通过这一归纳整理,大家对有关三角函数最值的问题就不会陌生了。并且好多其它的求最值的问题可以通过代换转化成三角求最值的问题。望同学们在做有关的问题时结合上面的知识。

相关百科

热门百科

首页
发表服务