首页

> 期刊投稿知识库

首页 期刊投稿知识库 问题

一般级数的敛散性判别研究论文

发布时间:

一般级数的敛散性判别研究论文

1.先看级数通项是不是趋于0。如果不是,直接写“发散”,OK得分,做下一题;如果是,转到2.2.看是什么级数,交错级数转到3;正项级数转到4.3.交错级数用莱布尼兹审敛法,通项递减趋于零就是收敛。4.正项级数用比值审敛法,比较审敛法等,一般能搞定。搞不定转5.5.看看这个级数是不是哪个积分定义式,或许能写成积分的形式来判断,如果积分出来是有限值就收敛,反之发散。如果还搞不定转6。6.在卷子上写“通项是趋于0的,因此可以进一步讨论”。写上这句话,多少有点分。回去烧香保佑及格,OVER!

前提:两个正项级数∑n=1→ ∞an,∑n=1→ ∞bn满足0<=an<=bn

结论:若∑n=1→ ∞bn收敛,则∑n=1→ ∞an收敛

若∑n=1→ ∞an发散,则∑n=1→ ∞bn发散。

建议:用比较判别法判断级数的收敛性时,通常构造另一级数。根据另一级数判断所求级数的敛散性。

常规收敛和绝对收敛

常规收敛和绝对收敛是级数在传统意义下的两个可和法,这里只是出于完整性的考虑才加以讨论;严格来说,它们并不算是发散级数的可和法,这是因为只有当这些可和法失效时,我们才说一个级数发散。大部分发散级数的可和法都是这两个可和法在更大一类序列上的延拓。

给定收敛到s的收敛级数a,倘若任意置换级数a的项得到级数a′后,a′收敛也总是收敛到s,则称级数a是绝对收敛的。

在这个定义之下可以证明,一个级数收敛当且仅当取它每一项绝对值后得到的新级数在经典意义下收敛。有些地方会将后者作为绝对收敛的定义,但由于不涉及绝对值的概念,所以前者的定义更有一般性。

利用部分和数列判别法、比较原则、比式判别法、根式判别法、积分判别法以及拉贝判别法等。

对于正项级数,比较判别法是一个相当有效的判别法,通过找一个新正项级数,比较通项,如果原级数的通项小,新级数收敛,则原级数收敛;

如果新级数发散,原级数通项大,则原级数发散,通常在判别过程中使用其极限形式。局限性:当级数过于复杂时,要找的那个新级数究竟是什么很难判断,通常的方法是对原级数的通项做泰勒展开,以找到与之等价的p级数。

首先,从数项级数的定义入手,了解和掌握数项级数收敛的定义,挖掘出部分和数列收敛判别法、余和判别法;

其次,掌握数项级数收敛的性质,推导出夹逼定理和奇、偶子级数收敛判别法、Cauchy收敛准则;

再次,讨论特殊的级数――正项级数的收敛方法:有界性判别法,比较判别法,Cauchy积分判别法,比率判别法,Cauchy根值判别法;

最后,研究一般项级数的收敛方法:交错级数的Leibniz判别法,Dirichlet判别法。

反常积分敛散性判别方法毕业论文

反常积分的敛散性判别是:只要研究被积函数自身的性态,即可知其敛散性。它不仅比传统的判别法更加精细,而且避免了传统判别法需要寻找参照函数的困难。

反常积分的判敛法,主要考查三类:直接计算法,比较判敛法的极限形式 ,极限审敛法。

直接计算法(或称定义法)

即通过直接计算反常积分来判断敛散性。若反常积分能计算出一个具体数值,则收敛,否则发散。此种方法适合被积函数的原函数容易求得时的反常积分敛散性的判别。

反常积分判敛需要灵活运用,如果一个方法走不通,就要尝试另外两种的方法。对常见的反常积分,以及等价无穷小代换,也需要非常熟悉。

1、定义法求积分值与判定积分的敛散性定义法计算反常积分及判定反常积分的收敛性的依据:定积分的计算与积分结果求极限即首先通过将无穷限的反常积分转换为有限区间上的定积分和将无界函数的反常积分转换为有界函数的定积分计算;然后对积分结果求极限;最后根据极限的存在性和极限值来计算得到反常积分的值或者判定反常积分的敛散性。2、反常积分收敛性的判定方法判定方法对照正项常值级数收敛性判定的比较审敛法与相类似的结论:p-积分与q-积分(1)无穷区间上的反常积分收敛性判定方法的比较审敛法,基于p-积分的结论(2)无界函数的反常积分收敛性判定方法的比较审敛法,基于q-积分的结论【注1】对于同时包含两类反常积分的积分,借助积分对积分区间的可加性,分别转换为两类反常积分计算积分值或判定积分的收敛性。【注2】对于一个反常积分转换为几个基本的反常积分进行收敛性的判定时,值得注意的是,只要一项积分发散,则整个积分发散。【注3】反常积分同样可以使用“偶倍奇零”化简积分计算,注意能够使用的前提是反常积分收敛。

针对你所提出的问题,我换个角度解释,所谓反常积分就是定积分的推广,因此完全可以从定积分角度分析反常积分,定积分的几何意义就是曲边梯形的面积。我们把任意区间(无穷限,无界)分割成两部分,如果两部分面积都是有限的,那么总面积自然是有限的,即反常积分分成的两部分都收敛,则反常积分收敛。如果有一部分面积无限大,另外一部分面积有限,那么总面积必然无限大,即反常积分分成的两部分有一部分发散,另外一部分收敛,则反常积分发散。如果两部分面积都无限大,那么总面积自然无限大,则反常积分发散。反常积分又叫广义积分,是对普通定积分的推广,指含有无穷上限/下限,或者被积函数含有瑕点的积分,前者称为无穷限广义积分,后者称为瑕积分(又称无界函数的反常积分)。

反常积分:反常积分又叫做广义积分,指含有无穷上限/下限,或者被积函数含有瑕点的积分,也就是分为无穷区间上的反常积分和无界函数的反常积分。无穷区间上的反常积分:设f(x)在区间[a,∞)上连续,称为f(x)在[a,+∞)上的反常积分.如果右边极限存在,称此反常积分收敛;如果右边极限不存在,就称此反常积分发散。无界函数的反常积分:设f(x)在区间[a,b)上连续,且f(x)在趋向于点b上的极限为∞,成为f(x)在区间[a,b)上的反常积分(也称瑕积分),使f(x)极限为∞的点b称为f(x)的奇点(也称瑕点),这个点上是无法积分的。「高等数学」反常积分的计算,并判断它的收敛性给出一个反常积分,并告诉我们该反常积分收敛,则我们可以得到哪些信息。通过反常积分的概念,可以知道这道题指的是在无穷区间的反常积分(只要一看积分区间有∞存在,即可知道该反常积分为在无穷区间上的反常积分),如果右边的极限存在,就称该反常积分收敛,这个概念说明该反常积分存在极限,这道题反常积分的瑕点为1。那我们便可以将该反常积分分为两个区间来计算,一个区间是位于(0,1),另一个区间则是位于(1,+∞),我们可以先对第一个区间进行判断,因为要让该反常积分收敛,必须让两个区间的积分都收敛才可以。(一个是无界函数的反常积分,另一个则是无穷区间的反常积分。)如果说这两个反常积分有一个不存在,就说明该反常积分不存在(发散),反之,要说明该反常积分存在(收敛),说明两个反常积分都要存在才可以。

一致收敛性判别总结毕业论文

一致收敛是高等数学中的一个重要概念,又称均匀收敛。一致收敛是一个区间(或点集)相联系,而不是与某单独的点相联系。除了柯西准则和余项准则外,还可以通过Weierstrass判别法、Abel判别法和Dirichlet判别法来判别函数项级数是否一致收敛。

一致收敛性是函数列或函数项级数的一种性质。一致收敛函数的判别方法有很多种,最常见的有Cauchy判别法、Abel判别法、Dirichlete判别法等。一致收敛函数具有连续性、可积性、可微性的特点。

函数项级数作为数项级数的推广,一致收敛性的判别法类似于数项级数,都有Cauchy判别法、Abel判别法、Dirichlete判别法等。另外,结合数项级数的比式判别法和根式判别法,可以得到函数项级数一致收敛性的比式判别法和根式判别法,同时利用p 级数的收敛性和优级数判别法还可得到函数项级数一致收敛性的对数判别法。

p>1时一致收敛,因为可以使用Weierstrass M判别法,与p级数比较。p小于等于1时也是一致收敛的。因为把括号那个复杂项用e替换后,数项级数可以用Abel判别法证明收敛,从而数项级数当然一致收敛。而替换后产生的误差小于1/(nx), 从而结合前面的n^p衰减速度,变成了n^(p+1)阶衰减。从而误差可以用p级数估计。

函数项级数收敛性研究论文

1)用 M-判别法可判;2)先求导,再求和,……。

4.1.3复变函数项级数定义4.3设{fn(z)}(n=1, 2, …)为一复变函数列,其中各项均在复数域D上有定义,称表达式∑∞〖〗n=1fn(z)=f1(z)+f2(z)+…+fn(z)+…(4.2)为复变函数项级数.该级数的前n项和Sn(z)=f1(z)+f2(z)+…+fn(z)为级数的部分和.若z0为D上的固定点,limn→∞Sn(z)=S(z0),则称复变函数项级数(4.2)在z0点收敛,z0称为级数∑∞〖〗n=1fn(z)的一个收敛点,收敛点的集合称为级数∑∞〖〗n=1fn(z)的收敛域.若级数∑∞〖〗n=1fn(z)在z0点发散,则称z0为级数∑∞〖〗n=1fn(z)的发散点,发散点的集合称为级数∑∞〖〗n=1fn(z)的发散域.若对D内的任意点z,都有limn→∞Sn(z)=S(z),则称级数∑∞〖〗n=1fn(z)在D内处处收敛.并称S(z)为级数的和函数.下面我们重点讨论一类特别的解析函数项级数——幂级数,它是复变函数项级数中最简单的情形.4.2幂级数〖〗在复变函数项级数的定义中,若取fn(z)=an(z-z0)n或fn(z)=anzn(n=1, 2, …),就得到函数项级数的特殊情形∑∞〖〗n=0an(z-z0)n=a0+a1(z-z0)+a2(z-z0)2+…+an(z-z0)n+… (4.3)或∑∞〖〗n=0anzn=a0+a1z+a2z2+…+anzn+…(4.4)形如(4.3)或(4.4)的级数称为幂级数,其中,a0, a1, …, an, …和z0均为复常数.在级数(4.3)中,令z-z0=ξ,则化为式(4.4)的形式,称级数(4.4)为幂级数的标准形式,式(4.3)称为幂级数的一般形式.为方便,今后我们以幂级数的标准形式(4.4)为主来讨论,相关结论可平行推广到幂级数的一般形式(4.3).4.2.1幂级数的收敛性关于幂级数收敛问题,我们先介绍下面的定理.定理4.5(Abel定理)若幂级数∑∞〖〗n=0anzn在z=z0(≠0)处收敛,则此级数在|z|<|z0|内绝对收敛(即∑∞〖〗n=0|anzn|收敛);若在z=z0处发散,则在|z|>|z0|内级数发散.证若∑∞〖〗n=0anzn在z=z0(≠0)处收敛,即级数∑∞〖〗n = 0anzn0收敛,所以limn→∞anzn0=0因而,存在常数M>0使得对所有的n,有|anzn0|<M当|z|<|z0|时,|anzn|=|anz0|z〖〗z0n<Mz〖〗z0n,而级数∑∞〖〗n=0z〖〗z0n收敛,所以,∑∞〖〗n=0anzn绝对收敛.若∑∞〖〗n=0anzn在z=z0(≠0)发散,假设存在一点z1,使得当|z1|>|z0|时,∑∞〖〗n = 0anzn1收敛.则由上面讨论可知,∑∞〖〗n = 0anzn0收敛,与已知∑∞〖〗n = 0anzn0发散矛盾!因此,∑∞〖〗n=0anzn在|z|>|z0|发散.由Abel定理,我们可以确定幂级数的收敛范围,对于一个幂级数来说,它的收敛情况有以下三种情形:(1) 对所有正实数z=x, ∑∞〖〗n=0anxn都收敛,由Abel定理,∑∞〖〗n=0anzn在复平面上处处绝对收敛;(2) 对所有的正实数x,∑∞〖〗n=0anxn(x≠0)发散,由Abel定理,∑∞〖〗n=0anzn在复平面内除原点z=0外处处发散;(3) 既存在使级数收敛的正实数x1>0,也存在使级数发散的正实数x2>0,即z=x1时级数∑∞〖〗n = 0anxn1收敛,z=x2时级数∑∞〖〗n = 0anxn2发散.由Abel定理,∑∞〖〗n=0anzn在|z|≤x1内,级数绝对收敛,在|z|≥x2内级数发散.在情形(3)中,可以证明,一定存在一个有限的正数R,使得幂级数∑∞〖〗n=0anzn在圆|z|<R内绝对收敛,在|z|>R时发散,则称R为幂级数的收敛半径,称|z|<R为幂级数的收敛圆.约定在第一种情形,R=∞;第二种情形,R=0.而对于幂级数∑∞〖〗n=0an(z-z0)n,收敛圆是以z0为圆心,R为半径的圆:|z-z0|<R.至于在收敛圆的圆周|z|=R(或|z-z0|=R)上,∑∞〖〗n=0anzn或∑∞〖〗n=0an(z-z0)n的收敛性较难判断,可视具体情况而定.关于幂级数收敛半径的求法,同实函数的幂级数类似,可以用比值法和根植法.定理4.6( 幂级数收敛半径的求法)设幂级数∑∞〖〗n=0anzn,若下列条件之一成立:(1) (比值法)limn→∞an+1〖〗an=L;(2) (根值法)limn→∞n〖〗|an|=L.则幂级数∑∞〖〗n=0anzn的收敛半径R=1〖〗L.证明从略.当L=0时,R=∞;当L=∞时,R=0.例4.4求下列幂级数的收敛半径:(1) ∑∞〖〗n=1zn〖〗n3(讨论圆周上情形);(2) ∑∞〖〗n=1(z-1)n〖〗n(讨论z=0, 2的情形);(3) ∑∞〖〗n=0(cosin)zn.解(1)因为limn→∞an+1〖〗an=limn→∞1〖〗(n+1)3〖〗1〖〗n3=limn→∞n〖〗n+13=1或者limn→∞n 〖〗|an|=limn→∞n〖〗1〖〗n3=limn→∞1〖〗n〖〗n3=1所以,收敛半径R=1,从而级数的收敛圆为|z|<1.由于在圆周|z|=1,级数∑∞〖〗n=1zn〖〗n3=∑∞〖〗n=11〖〗n3收敛(p级数,p=3>1),所以,级数在圆周|z|=1上也收敛.因此,所给级数的收敛范围为|z|≤1.(2) 由于limn→∞an+1〖〗an=limn→∞1〖〗(n+1)〖〗1〖〗n=limn→∞n〖〗n+1=1,故收敛半径R=1,从而它的收敛圆为|z-1|<1.在圆周|z-1|=1上,当z=0时,原级数成为∑∞〖〗n=1(-1)n1〖〗n(交错级数),所以收敛;当z=2时,原级数为∑∞〖〗n=11〖〗n,发散.表明在收敛圆周上,既有收敛点又有发散点.(3) 由于an=cosin=1〖〗2(en-e-n),所以limn→∞an+1〖〗an=limn→∞en+1-e-(n+1)〖〗en-e-n=limn→∞en(e-e-2n-1)〖〗en(1-e-2n)=e故收敛半径为R=1〖〗e.例4.5求幂级数∑∞〖〗n=1(-1)n1+sin1〖〗n-n2zn的收敛半径.解因为limn→∞n〖〗(-1)n1+sin1〖〗n-n2=limn→∞1+sin1〖〗n-n=limn→∞1+sin1〖〗n1〖〗sin1〖〗n-sin1〖〗n〖〗1〖〗n=e-1故所求收敛半径为R=e.例4.6求幂级数∑∞〖〗n=1(-i)n-1(2n-1)〖〗2nz2n-1的收敛半径.解记fn(z)=(-i)n-1(2n-1)〖〗2nz2n-1,则limn→∞fn+1(z)〖〗 fn(z)=limn→∞(2n+1)2n|z|2n+1〖〗(2n-1)2n+1|z|2n-1=1〖〗2|z|2当1〖〗2|z|2<1时,即|z|<2时,幂级数绝对收敛;当1〖〗2|z|2>1时,即|z|>2时,幂级数发散.所以,该幂级数的收敛半径为R=2.4.2.2幂级数的运算和性质和实函数的幂级数类似,复变函数的幂级数也可以进行加、减、乘等运算.设幂级数∑∞〖〗n=0anzn=S1(z), ∑∞〖〗n=0bnzn=S2(z),收敛半径分别为R1、 R2,则∑∞〖〗n=1anzn±∑∞〖〗n=1bnzn=∑∞〖〗n=0(an±bn)zn=S1(z)±S2(z),|z|<R(4.5)∑∞〖〗n=1anzn∑∞〖〗n=1bnzn=∑∞〖〗 n=0(anb0+an-1b1+…+a0bn)zn=S1(z)S2(z), |z|<R(4.6)其中,R=min(R1,R2).复变函数的幂级数还可以进行复合运算.设h(z)在D内解析,且|h(z)|<R, z∈D,则f(h(z))在D内解析,且f(h(z))=∑∞〖〗n=0anhn(z), z∈D.在f(z)的幂级数展开中,可以用z的一个函数h(z)去代换展开式中的z,这在后面解析函数的级数展开中经常用到.幂级数∑∞〖〗n=oanzn在其收敛圆|z|<R内,还具有如下性质:(1) 它的和函数S(z)=∑∞〖〗n=0anzn在|z|<R内解析;(2) 在收敛圆内幂级数可逐项求导,即S′(z)=∑∞〖〗n=1nanzn-1, |z|<R;(4.7)(3)在收敛圆内幂级数可逐项积分,即∫CS(z)dz=∑∞〖〗n=0∫Canzndz=∑∞〖〗n=0an〖〗n+1zn+1,(4.8)|z|<R,C 为|z|<R内的简单曲线.

一致收敛性的研究论文

前言: 当今,在社会环境对从业人员要求具有更高学历的激励下,在各类专业人员不断进行知识更新的进程中,广泛地存在着要求提高自己的数学水平的愿望.特别对于原来只学过普通微积分课程的人来说,他们在补习各自所需要的数学知识时,因缺乏牢固的数学基础,不可避免地会遇到很多困难.本论文就是在为他们讲授数学分析理论基础课的讲义的基础上写成的.考虑到在职人员投入业余学习的时间十分有限,要他们系统地学完一门数学分析这样的大课程几乎是不可能的.一种可行而有效的做法或许是这样的--选择几个起主导作用的专题,讲授其中那些具有原则意义的概念和思想,通过举例讨论一些典型问题的解法. 序言: 自20世纪90年代后期开始,我国的高等教育改革步伐日益加快.实行5天工作制,使教学总时数减少,而新的专业课程却不断出现.在这样的情况下,对传统的专业课程应该如何处置,这样一个不能回避的问题就摆在了我们的面前.而这时,教育部师范司启动了面向21世纪教学改革计划.在我们进行"数学专业培养方案"项目的研究中,这个问题有两种方案可以选择:一是简单化的做法,或者削减必修课的数量,将一些传统的数学课程从必修课的名单中去掉,变为选修课,或者少讲内容减少课时;二是对每门课程的教学内容进行优化、整合,建立一些理论平台,减少一些繁琐的论证和计算,以达到削减课时,同时又能保证基本教学内容. 目录: 第一章 实数理论 1.1 建立实数的原则与完备有序域 *1.2 戴德金分划说简介 1.3 无限小数与实数 1.4 实数完备性的等价命题 *1.5 上极限与下极限 第二章 连续性 2.1 n维欧氏空间 2.2 函数概念的演进 2.3 函数极限和连续的一般定义 2.4 连续函数的整体性质 2.5 不动点与压缩映射原理简介 第三章 微分学 3.1 可微性的统一定义 3.2 可微函数的性质 3.3 微分中值定理与导函数的性质 3.4 凸函数 3.5 例题续编 第四章 积分学 4.1 定积分概念与牛顿-莱布尼兹公式 4.2 可积条件 4.3 定积分的性质 4.4 变限积分 4.5 反常积分 第五章 级数 5.1 数项级数综述 5.2 一致收敛概念的提出 5.3 一致收敛判别 5.4 一致收敛函数列(或级数)的性质 1、小学数学论文的组成 小学数学论文具有类型多样、形式活泼等特点,有的侧重于经验的总结,实验结果的阐述,包括实验过程、手段、方法和结果的记录;有的侧重于理论性的研究,包括对研究课题的提出,对研究成果的分析、推导、论证和应用等。但不论哪类论文,主要由标题、摘要、前言、正文、结论、参考文献等部分组成。 标题就是论文的总题目,是文章基本内容的缩影,古人云:“立片言以居要,乃全篇之警策。”所以拟定标题应该力求简短、明确、质朴、醒目,既要防止太冗长,又要避免太概括,使人不明了;既要防止文不对题或过于陈旧,又要避免追求新颖、空泛而没有实际的内容。 摘要一般包括本课题研究的意义,研究的内容与方法,研究的成果或价值等,便于读者迅速了解全文的概貌。所以摘要应简明扼要,引人入胜,内容全面,重点突出,且能独立使用。 前言也称引言或绪言,一般包括本课题研究的背景或起点,需要研究的问题,研究的方法、手段,研究的意义或价值。需要注意的是,对研究的意义或价值应力求实事求是,既不可拔高,也不可贬低或过分谦虚。 正文是论文的主体,作为表达作者个人研究成果的部分,所占篇幅较大,有时还必须辅以必要的小标题,应力求概念清晰,论点明确,论证严密,论据充分,具有科学性、准确性和创新性,同时条理要清楚,文字应通俗简明。 结论是对正文中所分析论证的问题加以综合,概括出基本点,这是课题解决的答案。结论作为理论分析和实验的逻辑发展,是论述的概括集中和升华,由局部到一般,由具体事实、经验,上升到理论概括,是整篇论文的归宿,所以应力求完整、准确、鲜明,还应如实指出本理论的使用范围和成果的意义,以及本文尚未解决的问题和继续研究的方向。 参考文献是反映作者严肃的科学态度和研究工作的依据,其中包括撰写该论文所参考的书籍(作者姓名、书名、版次、页数、出版者、出版年份)或期刊(作者姓名、标题、刊物名称、卷或期、页数、年份)。 2、小学数学论文的撰写过程 第一步,选题、选材。 要想写什么内容的文章,无论是理论探讨方面,还是教材教法方面和解题方法技巧方面,以及教学经验总结方面,对阐述问题的深度、广度等,要心中有数,具有明确的目的性和主题性。 无论选择哪方面的内容与具体题材,都必须力求具有先进性、针对性和实践性,要想做到这一点,首先,根据文献检索方法,尽可能多地查阅资料,掌握国内外最新研究动态。其次,深入钻研这些文献资料,看看能否得到进一步启发,有无新的见解。尽管选题可能重复,类似的题材较多,但也可以从不同侧面结合不同实例,根据不同对象写出一定的新意来,使观点更明确,方法更有效,使其先进性、针对性、实用性更强。第三,选题要从实际出发,题目大小、题材的深度和广度要恰当。 第二步,拟纲、执笔。 论文选题确定后,就要注意写好提纲,这是写好文章的基础。首先,要将内容、结构布局好,要拟定一个写作提纲,准备分几个部分,各个部分集中讲几个问题,这些部分与问题之间的关系如何,都需要进一步精心设计,使其结构严谨、层次分明,具有科学性、逻辑性。其次,要注意各种文章的特点。写理论性的文章,最好能再确定大小标题,叙述上力求论点明确,可信度强,便于别人借鉴;写教材分析方面的文章,应进行比较,提出改进意见或提示值得深入研究的问题等。 第三步,修改、定稿。 修改是文章初稿完成后的一个加工过程,它包括对论文文字的修饰,以及科学性的推敲等。论文初稿形成后,应从头至尾反复地阅读,逐句逐段推敲,审核一下文中的论点是否明确,论据是否充分,论证是否合理,结构是否严谨,计算是否正确等。一篇好的小学数学论文,应该是数文并茂。就是说,既要有好的数学内容,又要有好的文字表达。所以,文字的工夫对数学论文来说很为重要。数学论文,贵在朴实,少用浮词,免得冲淡文章的中心,文字应通俗易懂,简明扼要,用词应准确简炼,表达完整,特别是中心内容一定要阐述透彻清楚。此外,书写要规范,题号、图号、标点也要正确。修改是一项细致的工作,只有对文稿反复推敲、修改,才能消除不应有的错误。只有经过反复修改加工,文章的质量才会不断提高。

目的:探讨更强的收敛条件意义:使极限与求导,积分运算可以相互交换运算次序,简化运算过程现状:不清楚

相关百科

热门百科

首页
发表服务