首页

> 期刊投稿知识库

首页 期刊投稿知识库 问题

脂肪酰胺水解酶研究进展论文

发布时间:

脂肪酰胺水解酶研究进展论文

糖苷是一类附加值很高的生理活性化合物;应用糖苷水解酶催化合成这类化合物具有很好的应用前景.综述了糖苷水解酶在催化寡糖、脂肪醇或芳香醇、多肽、萜类、酚类、生物碱以及抗生素等底物糖基化中的研究进展,着重说明了糖苷水解酶应用于合成反应的两种反应模式,即逆水解反应和转糖苷反应.另外还介绍了用于糖苷酶催化生产糖苷化合物的几类生物反应器.

化合物里。糖苷是一类附加值很高的生理活性化合物里,应用糖苷水解酶催化合成这类化合物具有很好的应用前景,综述了糖苷水解酶在催化寡糖、脂肪醇或芳香醇、多肽、萜类、酚类、生物碱以及抗生素等底物糖基化中的研究进展,着重说明了糖苷水解酶应用于合成反应的两种反应模式,即逆水解反应和转糖苷反应,另外还介绍了用于糖苷酶催化生产糖苷化合物的几类生物反应器。

在粮食陈化的过程中,过氧化氢酶的活性会降低,呼吸作用就减弱了;植酸酶,蛋白酶和磷脂酶活性等水解酶类都是会增加的。详细如下:粮食陈化中的有关变化1、生理变化粮食陈化的生理变化无论是含胚与不含胚的粮食主要表现为酶的活性和代谢水平的变化。粮食在储藏中,生理变化多是在各种酶的作用下进行的。若粮食中酶的活性减弱或丧失,其生理作用也随之而减弱或停止。随着陈化的进行粮食的生活力逐渐丧失,与呼吸有关的酶类,如过氧化氢酶的活性趋向降低,呼吸作用也随之减弱;而水解酶类,如植酸酶,蛋白酶和磷脂酶活性都增加。粮食在储藏中由于自身代谢的有毒产物积累也导致粮粒衰老和陈化,如吲哚乙酸和阿魏酸的积累和一些脂类氧化产物的积累都将加速粮食的陈化的进程。据报道,一些不饱和脂肪酸分解游离基与其它脂类起反应,能使细胞膜结构破坏。衰老的种子里,高尔基体散开并失水,溶酶体膜破裂,引起细胞的解体,同时细胞膜也丧失完整性而透性增强。对于有胚的粮食储藏中生理变化的指标是,随着陈化加深粮粒生活力与发芽率下降,随着细胞的劣变,细胞膜透性增强,浸出液所含的物质量增加,电导率增高。粮食陈化与酶活性的关系通常可以由一些与品质相关的酶活性变化加以反映。稻谷储藏初期含有活性较高的过氧化氢酶,淀粉酶,随着储藏时间的延长,这些酶的活性就大大减弱,生活力也下降。根据测定.稻谷储藏三年后过氧化氢酶活性降低五倍,淀粉酶等于零。大米在储藏中过氧化酶活性丧失,呼吸也趋于停止。现在人们测定粮食代谢水平,就采用过氧化氢酶的活性作为指标之一。 2、化学成分变化粮食化学成分的变化,无论含胚与不含胚的粮食,一般说多以脂肪变化较快,蛋白质其次,淀粉变化很微弱。2.1脂肪的变化粮食储藏过程中,由于脂肪易于水解,游离脂肪酸在粮食中首先出现。特别是在环境条件适宜时,储粮霉菌开始繁殖,分泌出脂肪酶,参加脂肪水解,使粮食中脂肪酸增多,粮食陈化加深。2.2蛋白质的变化粮食储藏过程中,受外界物理、生物等因素的影响,蛋白质的水解和变性。蛋白质水解后,游离氨基酸上升,酸度增加。蛋白质变性后,空间结构松散,肽键展延,非极性基外露,亲水基内藏,蛋白质由溶胶变为凝胶、溶解度降低,粮食陈化加深。2.3淀粉的变化粮食储藏过程中,淀粉水解成的麦芽糖与糊精继续水解,还原糖增加,糊精相对减少,粘度下降,粮食开始陈化。 3、物理性质的变化粮食陈化时物理性质变化很大,表现为:粮粒组织硬化,柔性与韧性变弱,米质变脆,米粒起筋,身骨收缩,淀粉细胞变硬,细胞膜透性增强,糊化及吸水率降低,持水率亦降低,米饭破碎,粘性较差,口感有“陈味”。

乙酰胆碱酯酶突变研究进展论文

有机磷及氨基甲酸酯类杀虫剂主要的作用是对乙酰胆碱酯酶(acetylcholinesterase,简写AChE)产生抑制作用。突触部位大量乙酰胆碱积累,突触后膜的乙酰胆碱受体不断地被激活,突触后神经纤维长时期处于兴奋状态。同时,突触部位正常的神经冲动传导受阻塞,中毒的昆虫最初出现高度兴奋、痉挛、最后瘫痪、死亡。

1.乙酰胆碱酯酶的生物学

AChE是一水解酶,底物是乙酰胆碱,水解反应式如下:

有两种胆碱酯酶:

第一种,乙酰胆碱酯酶(AChE),又称真胆碱酯酶或者称专一性胆碱酯酶。由于来源于红血球,又称为红血球胆碱酯酶。这个酶的特点:①乙酰胆碱是它的最好的底物;②它表现有过量底物时才产生抑制作用,即增加底物浓度,水解速率不断地增加,当底物浓度达到10-2.5mol/L时,水解速率才下降。

第二种,丁酰胆碱酯酶,又称假胆碱酯酶或者称非专一性胆碱酯酶。由于来源于血浆,所以又称为血浆胆碱酯酶。过去也称做胆碱酯酶,与乙酰胆碱酯酶容易混淆。丁酰胆碱酯酶的特点:①丁酰胆碱是它最好的底物;②不表现过量底物的抑制作用,即底物在极低浓度时(低于10-4mol/L)即对丁酰胆碱酯酶产生抑制作用,水解速率明显下降。因此,丁酰胆碱酯酶对抑制剂非常敏感。例如,马血浆中的丁酰胆碱酯酶比马红血球中的乙酰胆碱酯酶对四异丙基八甲磷敏感性大11300倍。

在脊椎动物中两种胆碱酯酶都很普遍。乙酰胆碱酯酶被发现在红血球、神经及肌肉组织中。动物中乙酰胆碱酯酶受到抑制时,达到一定程度即引起动物死亡。丁酰胆碱酯酶在动物的血浆、肝及神经组织中很普遍,但是,丁酰胆碱酯酶受抑制时不会引起动物死亡。在动物(包括人)的血浆中丁酰胆碱酯酶的活性,可以作为动物药物中毒程度的指标。

在昆虫及哺乳动物中发现一种大分子质量的胆碱酯酶,具有一般乙酰胆碱酯酶的性能。使用电泳方法分离,证实这种大分子的酶是乙酰胆碱酯酶的同工酶(isozyme)。它们的寿命仅有乙酰胆碱酯酶的一半,在家蝇的头部及胸部发现的同工酶对抑制剂的敏感性低于乙酰胆碱酯酶。

2.乙酰胆碱酯酶(简写AChE)水解乙酰胆碱的过程

可用下列反应式来说明。

上式中E代表酶,AX代表底物乙酰胆碱。从反应开始到酶恢复共分为三个步骤:

第一步形成酶底物复合体(E稟X),可以用解离常数Kd来表示复合体的形成,Kd=K-1/K+1,Kd值愈小表明E和AX的亲和力愈强。

第二步是乙酰化的步骤,是化学反应,用速率常数K2来表示反应速率,复合体放出胆碱(X),酶与乙酰基结合形成乙酰化酶(EA)。

第三步是水解反应,乙酰化酶被水解为乙酸(A)与酶(E),由于反应后酶与酰基分离又称为脱酰基反应,以水解速率常数K3表示这步反应。

全部反应从开始到酶恢复需要2~3ms。在哺乳动物中以脱酰基K3步骤最慢,而家蝇头部的AChE水解乙酰胆碱时以乙酰化K2步骤最慢。

目前,对AChE组成蛋白质的氨基酸尚未研究清楚,仅知道在AChE上有与底物进行反应的酯动部位、结合部位和变构部位。

(1)酯动部位。又称催化部位,是AChE与乙酰胆碱反应的主要部位,是催化分解乙酰胆碱发生乙酰化,有机磷发生磷酰化在此部位进行。在这个部位酶的丝氨酸[HOCH2CH(NH2)COOH]上的羟基与乙酰胆碱的乙酰基产生反应。

胆碱酯酶的催化作用来自酶蛋白分子本身的结构,不需要任何特异性辅基或中间媒介物参与。由于酶蛋白分子的卷曲,有些原来离得很远的氨基酸基团被拉得靠近了,形成一个活性区。AChE活性中心由三个主要区域组成:①酯动部位:含丝氨酸、组氨酸,能与ACh的羰基碳原子结合;②阴离子部位:用以固定底物,从而决定其特异性。至少含一个羧基,可能来自谷氨酸,能以静电吸引ACh的季铵阳离子基团;③疏水性区域:催化底物水解过程。与酯解或季铵基团结合部位连接或在其附近,由色氨酸或酪氨酸等芳香族氨基酸组成,在与芳香基底物结合中起重要作用。

一般情况下,单独的丝氨酸并不能与碳酰基化合物产生反应。因此,认为AChE上的丝氨酸有特殊的性质。它受相邻的氨基酸——组氨酸的影响。组氨酸上的咪唑基团可以对丝氨酸上的羟基产生活化作用,诱导羟基与乙酰基产生反应。乙酰胆碱及各种抑制剂都是与AChE的酯动部位产生反应,但是,在反应之前酶必须先与抑制剂结合形成一个复合体。

(2)结合部位。在AChE上有结合部位。乙酰胆碱及各种抑制剂都是与AChE上的酯动部位产生反应,但是在反应之前,酶必须先与抑制剂结合形成一个复合体。早期研究认为,AChE上只有一个结合部位,称为阴离子部位。在阴离子部位,酶与乙酰胆碱的季铵基团—N+(CH3)3结合。近代的研究认为,在酯动部位丝氨酸的四周有很多不同氨基酸的侧链基团,像一般蛋白质中的氨基酸一样,任何一个基团都有可能作为一个结合部位与底物或抑制剂相结合。根据Tripatri及O’Brien(1973)的研究,在一个抗性品系家蝇中得到一个突变型的AChE,它与乙酰胆碱结合非常正常,但是与有机磷及氨基甲酸酯类杀虫剂的亲和力减至原来的1/500。说明这个突变型的AChE与有机磷及氨基甲酸酯类化合物结合的部位,不是阴离子活动部位,必然还有其他的结合部位。现在知道在AChE上与抑制剂(杀虫剂)之间可能还有三个结合部位。

胆碱酯酶分子上的两个作用位点

除了阴离子部位,AChE与抑制剂之间可能还存在疏水基部位、电荷转移复合体(chargetransfercomplex,简称CTC)和吲哚苯基结合部位。

①疏水基部位:在这个部位,抑制剂的亲脂性基团如甲烷、乙烷及丙烷基团与酶结合,可以减小Kd值,增加亲和力。疏水基部已在丁酰胆碱酯酶中证实。在AChE上也可能有这个部位,已经发现N-甲基苯基氨基甲酸酯中,苯环上增加一个甲烷取代基对AChE的抑制能力增加3倍。

②电荷转移复合体:在酶与抑制剂结合时,如果一方是易失去电子的电子供体,而另一方是强亲电性的电子受体,则很容易结合。这种结合可以在吸收光谱中出现一个新的吸收峰。证明酶与抑制剂通过电荷的转移形成了复合体。在苯基氨基甲酸酯中,苯环上的取代基如果是吸电性基团则对AChE的活性抑制能力降低,如果是拒电性基团则对AChE的活性抑制能力增加,试验证实这种取代基主要是对AChE的亲和力产生影响,而对氨基甲酰化反应无影响。拒电性基团使亲和力增加(Kd值减小),认为是与酶的某一部位结合形成了电荷转移复合体。

③吲哚苯基结合部位:当AChE被一些试剂处理后,活性的变化很大。对乙酰胆碱失去了活性,对苯基乙酸酯和萘基乙酸酯也失去了活性。唯独对吲哚苯基乙酸酯的活性增加。说明AChE上有一个特殊的与吲哚苯基结合的部位。

(3)变构部位(allostericsite)。近年来在很多种酶上发现变构部位,因此,推测AChE也有变构部位。变构部位远离酶的活性部位。这个部位与某种离子或是某个化合物上的取代基团结合时,酶的蛋白质分子结构产生立体变型,使酶的活性受到影响,酶被活化或者是受到抑制。在AChE与各种化合物结合时,有的试剂使酶活性增加,有的使酶失去活性,可能是变构部位的影响。变构的影响在乙酶胆碱受体上已经证实。

乙酰胆碱酯酶(Acetylcholinesterase, AChE)是一种主要存在于人类和动物中枢神经系统的乙酰胆碱水解酶,其基本功能为催化水解神经递质-乙酰胆碱(Acetylcholine, ACh)导致神经冲动传递的终止,从而维持胆碱能神经的正常生理功能。医学上的神经系统疾病,例如老年痴呆症和帕金森病等多与人体内乙酰胆碱酯酶功能受到影响有关。 有机磷农药(Organophosphorus pesticides, OPs)与AChE结合会形成磷酰化ChE,磷酰化ChE很稳定,使酶失去催化水解ACh的能力并逐渐老化,造成ACh在体内的积累,最终导致胆碱能神经先兴奋后抑制。高含量的OPs可导致惊厥、呼吸困难、心律不齐、缺氧等急性中毒症状,低含量的OPs亦可经长期慢性毒害导致心脏、肝脏、肾和其他器官的损害。 乙酰胆碱酯酶生物传感技术具有灵敏度高、分析速度快、成本低、能在复杂体系中进行在线连续监测等优点。近年来,乙酰胆碱酯酶生物传感器已成为有关AChE及相关物质检测研究最活跃的领域之一,建立新型的、有效的乙酰胆碱酯酶生物传感分析技术对于健康、食品、环境监测等仍然是一个热门而有意义的研究课题。本论文围绕开发易于操作、价格低廉和高灵敏信号转换的AChE生物传感方法开展了一些研究工作,主要内容如下: (1)基于尼罗红吸附纳米金的AChE荧光法检测有机磷。纳米金由于具有消光系数大、吸收光谱宽等优良的光学性质,常被用作为荧光共振能量转移(FRET)的受体,是一种理想的荧光淬灭剂。第2章中将荧光物质尼罗红非共价吸附在纳米金的表面,利用纳米金有效淬灭尼罗红的荧光,形成一个低背景的荧光信号。当存在AChE催化体系时,AChE催化底物硫代乙酰胆碱水解生成硫代胆碱,后者可与尼罗红竞争结合纳米金形成强的Au-S键,促使尼罗红从纳米金表面解吸附,并且产生一种比尼罗红荧光更强的新荧光产物,体系荧光大大增强。当存在有机磷时,AChE的活性被抑制,水解产物硫代胆碱减少,最终解吸附下的尼罗红产物——新荧光物质相应地减少。利用纳米金淬灭荧光的独特光学性质,成功构建了一种简单、易操作、高灵敏的AChE荧光检测方法。 (2)信号增强型的AChE荧光法高灵敏分析检测有机磷。信号增强型分析法是从低的背景信号开始,加入少量的待测物便能形成可检测信号,这使其具有更高的信噪比。

酶解制肽研究进展论文

笨蛋,自己写嘛!!!!!!

生物活性肽是蛋白质中25个天然氨基酸以不同组成和排列方式构成的从二肽到复杂的线性、环形结构的不同肽类的总称,是源于蛋白质的多功能化合物。活性肽具有多种人体代谢和生理调节功能,易消化吸收,有促进免疫、激素调节、抗菌、抗病毒、降血压、降血脂等作用,食用安全性极高,是当前国际食品界最热门的研究课题和极具发展前景的功能因子。以下为几种重要生物活性肽的发展状况。乳肽早在20世纪50年代,该公司即以乳酪蛋白酶解制取了第一代的酪蛋白肽和氨基酸混合物,含5~8个氨基酸组成的肽和70%以上的游离氨基酸,用于低抗原性防过敏牛奶粉,在市场上行销40多年;60~70年代,开发出第二代的高度水解乳清蛋白肽混合物,含10~12个氨基酸组成的肽和40%~60%的游离氨基酸。以上两代产品的游离氨基酸含量过高,影响了产品的风味和生物效价;90年代,推出了低度水解乳清蛋白肽混合物,含10~15个氨基酸组成的肽和20%以下的游离氨基酸,产品风味明显改善,生物效价提高。 992年,Haque.Z.U和Mozffar.Z研究了胰蛋白酶、凝乳蛋白酶等酶的固定化反应器制取乳肽的工艺,可以通过调节流速来控制反应程度,并通过重复使用酶来降低成本。1989年,Maubois.J.D.和Ieonil.j.研究了带超滤膜的酶反应器,在反应器内加入钙和磷酸根离子,用于制备酪蛋白磷酸肽和去磷酸化酪蛋白多肽。 我国对乳肽的研究不多,主要是进行蛋白酶的筛选和酶解工艺的优化,如1991年,肖安乐等人筛选出胰蛋白酶的胰酶是水解变性乳清蛋白质的最佳酶种;1994年,王凤翼等人对胰蛋白酶控制水解α-酪蛋白的最佳条件进行了优选;张和平等人采用胰蛋白酶水解热敏性乳清蛋白,获得热稳定好、易溶解的多肽,并以此开发出稳定性良好的乳清饮料;1995年,于江虹也从牛乳酪蛋白中分离提纯获得酪蛋白磷酸肽,证实了其在小肠中可与钙、铁等矿物质形成可溶性络合物,促进人体对钙、铁的吸收;广州市轻工研究所生产的酪蛋白磷酸肽CPP含量达85%以上,易溶于水,加工性能稳定,已在我国市场上推出。最近,我国生物工作者开发了采用微生物发酵控制、蛋白转化率高的乳肽产品,其中氨态氮占20%左右、肽态氮占80%左右,产品无不良气味,已获专利;湖北工学院吴思方等人进行了固定化胰蛋白酶生产酪蛋白磷酸肽的研究,CPP得率为21.3%,产品中CPP总含量为15%,此工艺中酶可重复多次使用,既降低了成本,又有利于产品分离和生产自动化。大豆肽大豆肽是大豆蛋白质经酸法或酶法水解后分离、精制而得到的多肽混合物,以3~6个氨基酸组成的小分子肽为主,还含有少量大分子肽、游离氨基酸、糖类和无机盐等成分,分子质量在1000μ以下。大豆肽的蛋白质含量为85%左右,其氨基酸组成与大豆蛋白质相同,必需氨基酸的平衡良好,含量丰富。大豆肽与大豆蛋白相比,具有消化吸收率高、提供能量迅速、降低胆固醇、降血压和促进脂肪代谢的生理功能以及无豆腥味、无蛋白变性、酸性不沉淀、加热不凝固、易溶于水、流动性好等良好的加工性能,是优良的保健食品素材。 大豆肽的生产有酸法水解和酶法水解。酸法因水解程度不易控制、生产条件苛刻、氨基酸受到损害而很少采用;酶法水解易控制、条件温和、不损害氨基酸而大多被采用。酶的选择至关重要。通常选用胰蛋白酶、胃蛋白酶等动物蛋白酶,也可选用木瓜和菠萝等植物蛋白酶。但应用较广的主要是放线菌166、枯草芽孢杆菌1389、栖土曲霉3942、黑曲霉3350和地衣型芽杆菌2709等微生物蛋白酶。 20世纪70年代初,美国首先研制出大豆肽,D.S公司建成了年产5000吨食用大豆肽装置;日本于80年代开始研制大豆肽,不二制油公司首先采用酶法规模化生产出3种大豆肽,雪印和森永等乳业公司应用大豆肽生产食品。 我国近几年也开展了大豆肽的生产和应用研究。江西省科学院高科技中心李雄辉等人采用ASI389中性蛋白酶和木瓜蛋白酶双酶水解生产大豆肽,使大豆肽生成率为62.9%,肽态氮含量大于85%,游离氨基酸含量小于8%,平均肽键长度5~8,分子质量2000μ左右。双酶水解工艺既缩短了酶解时间、提高了蛋白质水解度,又减轻了产品苦味。华南理工大学黄惠华等人用木瓜蛋白酶对大豆分离蛋白进行水解试验,测得木瓜蛋白酶的动力学常数。另外,无锡轻工大学的葛文光对大豆肽的生理功能及作用效果进行了研究;郭敏亮采用豆粕生产出大豆肽饮料等。 根据大豆肽的理化特性,可用大豆肽为基本素材,开发肠胃功能不良者和消化道手术病人康复的肠道营养食品的流态食品、降胆固醇、降血压、预防心血管疾病的保健食品,增强肌肉和消除疲劳的运动员食品、婴幼儿及老年人保健食品、促进脂肪代谢的减肥食品、酸性蛋白饮料和用作促进微生物生长、代谢的发酵促进剂等。高F值寡肽高F值寡肽即是由动、植物蛋白酶解后制得的具有高支链、低芳香族氨基酸组成的寡肽,以低苯丙氨酸寡肽为代表,具有独特的生理功能。F值是指支链氨基酸(BCAA)与芳香族氨基酸(AAA)的摩尔比值。 1976年,Yamashita等人首次利用胃蛋白酶和链霉蛋白酶从鱼蛋白和大豆分离蛋白酶解中制得含低苯丙氨酸的寡肽混合物,产率分别为69.3%和60.9%,苯丙氨酸含量分别为0.05%和0.23%。1982年,Nakhost等人用α-胰凝乳蛋白酶和羧肽酶A酶解大豆蛋白,也制得相似的产物。1986年,Soichi等人进行了多种酶分别酶解乳清蛋白制取低苯丙氨酸寡肽的多种工艺、方法试验,结果以胃蛋白酶-链霉蛋白酶两步水解法为佳,产品得率为81.0%、苯丙氨酸含量为0.30%。1991年,Shinya等人用嗜碱蛋白酶和肌动蛋白酶水解玉米醇溶蛋白,制取了无苦味高F值寡肽,产率为56.0%,F值20.00,AAA含量为1.86%。 1996年,西班牙的Bautista等人用肌动蛋白酶和Kerase中性蛋白酶酶解葵花浓缩蛋白,制取高F值寡肽,产率为24.8%,F值为20.47,AAA含量为1.01%。王梅也在1992年首次采用碱性蛋白酶和木瓜蛋白酶降解玉米黄粉;成功地研制出高F值寡肽混合物,产率为7.9%,F值为31.00,AAA含量为0.06%,完全符合高F值制剂的要求,为解决玉米湿法淀粉厂副产品——黄粉的综合利用开创了新路子。 高F值寡肽具有消除或减轻肝性脑病症状、改善肝功能和改善多种病人蛋白质营养失常状态及抗疲劳等功能,除可制作治疗肝疾药品外,还可广泛用作保肝、护肝功能食品,烧伤、外科手术、脓毒血症等高付出病人及消化酶缺乏患者的蛋白营养食品和肠道营养剂,高强度劳动者和运动员食品营养强化剂等。谷胱甘肽(GSH)谷胱甘肽是由谷氨酸、半胱氨酸和甘氨酸经肽键缩合而成的活性三肽,广泛存在于动物肝脏、血液、酵母和小麦胚芽中,各种蔬菜等植物组织中也有少量分布。谷胱甘肽具有独特的生理功能,被称为长寿因子和抗衰老因子。日本在50年代开始研制并应用于食品,现已在食品加工领域得到广泛应用。我国对谷胱甘肽的研究尚处于起步阶段。 谷胱甘肽的生产方法主要有溶剂萃取法、化学合成法、微生物发酵法和酶合成法等4种,其中利用微生物细胞或酶生物合成谷胱甘肽极具发展潜力,目前即以酵母发酵法生产为主。 由于谷胱甘肽分子有一个特异的γ-肽键,决定了它在人机体中的许多重要生理功能,如蛋白质和核糖核酸的合成、氧及营养物质的运输、内源酶的活力、代谢和细胞保护、参与体内三羧酸循环及糖代谢,具有抗氧化、抗疲劳、抗衰老、清除体内过多自由基、解毒护肝、预防糖尿病和癌症等功效,因此而成为机体防御功能肽的代表。谷胱甘肽除可在临床上用作治疗眼角膜疾病,解除丙烯酯、氟化物、重金属、一氧化碳、有机溶剂等中毒症状的解毒药物外,还可用于运动营养食品和功能食品添加剂等。中国在生物活性肽的研究开发上,从事活性肽的研究单位也多从医药角度出发,研究力量及投入较少,限制了活性肽药食两用功能的发挥,市场上国产的活性肽药品和食品寥寥无几。但近几年研究逐步活跃起来,报道渐多,前景看好。当前生物活性肽研究开发的方向是:肽的定向酶解技术开发,包括高效、专一性强的酶种选育、复合酶系共同作用机理、机制,脱苦微生物的分离、纯化和机理研究,酶解工艺改进技术等;功能性肽的分离、分析技术开发,包括新型高效分离设备和分离工艺,灵敏度高、简单易行的目标肽活性分析检测体系和分析技术及下游精制技术;肽的功能性生物学评价研究;生物活性肽功能食品开发等。

天然活性肽的分离提取存在于细菌、真菌、动植物等生物体内的激素、酶抑制剂等天然活性肽,经分离提取而得。食品蛋白质水解制取活性肽一般采用酸水解,工艺简单、成本低,但因氨基酸受损严重、水解难控制而较少应用。化学合成活性肽采用液相或固相化学合成法可制取任意需要的活性肽,但因成本高、副反应物及残留化合物多等因素而制约其发展。基因重组法制取活性肽采用DNA重组技术制取活性肽的试验研究尚在进行中。酶法生产活性肽产品安全性极高,生产条件温和,水解易控制,可定位生产特定的肽,成本低,已成为最主要的生产方法。酶法生产活性肽工艺一般流程为:选择原料蛋白→预处理→酶解→精制→成品

对聚酰胺的研究论文

尼龙作为大用量的工程塑料,广泛用于机械、汽车、电器、纺织器材、化工设备、航空、冶金等领域。成为各行业中不可缺少的结构材料,其主要特点如下:1.优良的力学性能。尼龙的机械强度高,韧性好。2.自润性、耐摩擦性好。尼龙具有很好的自润性,摩擦系数小,从而,作为传动部件其使用寿命长。3.优良的耐热性。如尼龙46等高结晶性尼龙的热变形温度很高,可在150℃下长期期使用。PA66经过玻璃纤维增强以后,其热变形温度达到250℃以上。4.优异的电绝缘性能。尼龙的体积电阻很高,耐击穿电压高,是优良的电气、电器绝缘材料。5.优良的耐气候性。6.吸水性。尼龙吸水性大,饱和水可达到3%以上。在一定程度影响制件的尺寸稳定性。 由于PA强极性的特点,吸湿性强,尺寸稳定性差,但可以通过改性来改善。1) 玻璃纤维增强PA在PA加入30%的玻璃纤维,PA的力学性能、尺寸稳定性、耐热性、耐老化性能有明显提高,耐疲劳强度是未增强前的2.5倍。玻璃纤维增强PA的成型工艺与未增强时大致相同,但因流动较增强前差,所以注射压力和注射速度要适当提高,机筒温度提高10-40℃。由于玻纤在注塑过程中会沿流动方向取向,引起力学性能和收缩率在取向方向上增强,导致制品变形翘曲,因此,模具设计时,浇口的位置、形状要合理,工艺上可以提高模具的温度,制品取出后放入热水中让其缓慢冷却。另外,加入玻纤的比例越大,其对注塑机的塑化元件的磨损越大,最好是采用双金属螺杆和机筒。2) 阻燃PA由于在PA中加入了阻燃剂,大部分阻燃剂在高温下易分解,释放出酸性物质,对金属具有腐蚀作用,因此,塑化元件(螺杆、过胶头、过胶圈、过胶垫圈、法兰等)需镀硬铬处理。在工艺方面,尽量控制机筒温度不能过高,注射速度不能太快,以避免因胶料温度过高而分解引起制品变色和力学性能下降。3) 透明PA具有良好的拉伸强度、耐冲击强度、刚性、耐磨性、耐化学性、表面硬度等性能,透光率高,与光学玻璃相近,加工温度为300--315 ℃,成型加工时,需严格控制机筒温度,熔体温度太高会因降解而导致制品变色,温度太低会因塑化不良而影响制品的透明度。模具温度尽量取低些,模具温度高会因结晶而使制品的透明度降低。4) 耐候PA在PA中加入了碳黑等吸收紫外线的助剂,这些对PA的自润滑性和对金属的磨损大大增强,成型加工时会影响下料和磨损机件。因此,需要采用进料能力强及耐磨性高的螺杆、机筒、过胶头、过胶圈、过胶垫圈组合。 在日常生活中聚酰胺制品比比皆是,但是知道它历史的人就很少了。聚酰胺是世界上首先研制出的一种合成纤维。卡罗瑟斯1896年4月27出生于美国洛瓦的伯灵顿。他开始受教育的是在得梅因公立学校,1914年从北方中学毕业。卡罗瑟斯的父亲在得梅因商学院任教,后来担任过该院的副院长。受他父亲的影响卡罗瑟斯18岁时进入该院学习会计,他对这一专业并不感兴趣,倒是很喜欢化学等自然科学,因此,一年以后转入一所规模较小的学院学习化学。1920年获理学学士学位。1921年在伊利诺伊大学取得硕士学位,后来在南边柯他大学任教,讲授分析化学和物理化学。1923年又回到伊利诺伊大学攻读有机化学专业的哲学博士学位。在导师罗杰·亚当斯(Roger Adams,1889-1971)教授的指导下,完成了关于铂黑催化氢化的论文,初步显露了他的才华,获得博士学位后随即留校工作。1926年到哈佛大学教授有机化学。由于卡罗瑟斯性格内向,他认为搞科学研究更能发挥自己的聪明才智,于是1928年受聘来到了杜邦公司。卡罗瑟斯来到杜邦公司的时候,正值国际上对德国有机化学家斯陶丁格(Hermann Staudinger,1881~1965) 提出的高分子理论展开了激烈的争论,卡罗瑟斯赞扬并支持斯陶丁格的观点,决心通过实验来证实这一理论的正确性,因此他把对高分子的探索作为有机化学部的主要研究方向。一开始卡罗瑟斯选择了二元醇与二元羧酸的反应,想通过这一被人熟知的反应来了解有机分子的结构及其性质间的关系。在进行缩聚反应的实验中,得到了分子量约为5000的聚酯分子。为了进一步提高聚合度,卡罗瑟斯改进了高真空蒸馏器并严格控制反应的配比,使反应进行得很完全,在不到两年的时间里使聚合物的分子量达到10000~20000。1930年卡罗瑟斯用乙二醇和癸二酸缩合制取聚酯,在实验中卡罗瑟斯的同事希尔在从反应器中取出熔融的聚酯时发现了一种有趣的现象:这种熔融的聚合物能像棉花糖那样抽出丝来,而且这种纤维状的细丝即使冷却后还能继续拉伸,拉伸长度可以达到原来的几倍,经过冷拉伸后纤维的强度和弹性大大增加。这种从未有过的现象使他们预感到这种特性可能具有重大的应用价值,有可能用熔融的聚合物来纺制纤维。他们随后又对一系列的聚酯化合物进行了深入的研究。由于当时所研究的聚酯都是脂肪酸和脂肪醇的聚合物,具有易水解、熔点低(<100℃)、易溶解在有机溶剂中等缺点,卡罗瑟斯因此得出了聚酯不具备制取合成纤维的错误结论,最终放弃了对聚酯的研究。顺便指出,就在卡罗瑟斯放弃了这一研究以后,英国的温费尔德T.R.Whinfield,1901-1966)在汲取这些研究成果的基础上,改用芳香族羧酸(对苯二甲酸)与二元醇进行缩聚反应,1940年合成了聚酯纤维-涤纶,这对卡罗瑟斯不能不说是一件很遗憾的事情。为了合成出高熔点、高性能的聚合物,卡罗瑟斯和他的同事们将注意力转到二元胺与二元羧酸的缩聚反应上,几年的时间里卡罗瑟斯和他的同事们从二元胺和二元酸的不同聚合反应中制备出了多种聚酰胺,然而这此物质的性能并不太理想。1935年初卡罗瑟斯决定用戊二胺和癸二酸合成聚酰胺(即聚酰胺510),实验结果表明,这种聚酰胺拉制的纤维其强度和弹性超过了蚕丝,而且不易吸水,很难溶,不足之处是熔点较低,所用原料价格很高,还不适宜于商品生产。紧接着卡罗瑟斯又选择了己二胺和己二酸进行缩聚反应,终于在1935年2月28 日合成出聚酰胺66。这种聚合物不溶于普通溶剂,具有263℃的高熔点,由于在结构和性质上更接近天然丝,拉制的纤维具有丝的外观和光泽,其耐磨性和强度超过当时任何一种纤维,而且原料价格也比较便宜,杜邦公司决定进行商品生产开发。要将实验室的成果变成商品、一是要解决原料的工业来源;二是要进行熔体丝纺过程中的输送、计量、卷绕等生产技术及设备的开发。生产聚酰胺66所需的原料-己二酸和己二胺当时仅供实验室作试剂用,必须开发生产大批量、价格适宜的己二酸和己二胺,杜邦公司选择丰富的苯酚进行开发实验,到1936年在西弗吉尼亚的一家所属化工厂采用新催化技术,用廉价的苯酚大量生产出己二酸,随后又发明了用己二酸生产己二胺的新工艺.杜邦公司首创了熔体丝纺新技术,将聚酚胺66加热融化,经过滤后再吸入泵中,通过关键部件(喷丝头)喷成细丝,喷出的细丝经空气冷却后牵伸、定型。1938年7月完成中试,首次生产出聚酰胺纤维.同月用聚酰胺66作牙刷毛的牙刷开始投放市场。10月27日杜邦公司正式宣布世界上第一种合成纤维正式诞生了,并将聚酚胺66这种合成纤维命名为聚酰胺(nylon),这个词后来在英语中变成了聚酰胺类合成纤维的通用商品名称。杜邦公司从高聚物的基础研究开始历时11年,耗投2200万美元,有230名专家参加了有关的工作,终于在1939年底实现了工业化生产。遗憾的是尼龙的发明人卡罗瑟斯没能看到聚酰胺的实际应用。由于卡罗瑟斯一向精神抑郁,有一个念头使他无法摆脱,总认为作为一个科学家自己是一个失败者,加之1936年他喜爱的孪生姐姐去世,使他的心情更加沉重,这位在聚合物化学领域作出了杰出贡献的化学家,于1937年4月29日在美国费城一家饭店的房间里饮用了掺有氰化钾的柠檬汁而自杀身亡。为了纪念卡罗瑟斯的功绩,1946年杜邦公司将乌米尔特工厂的聚酰胺研究室改名为卡罗瑟斯研究室。聚酰胺的合成奠定了合成纤维工业的基础,聚酰胺的出现使纺织品的面貌焕然一新。用这种纤维织成的聚酰胺丝袜既透明又比丝袜耐穿,1939年10目24日杜邦在总部所在地公开销售聚酰胺丝长袜时引起轰动,被视为珍奇之物争相抢购,混乱的局面迫使治安机关出动警察来维持秩序。人们曾用象蛛丝一样细,象钢丝一样强,象绢丝一样美的词句来赞誉这种纤维。到1940年5月聚酰胺纤维织品的销售遍及美国各地。从第二次世界大战爆发直到1945年,聚酰胺工业被转向制降落伞、飞机轮胎帘子布、军服等军工产品。由于聚酰胺的特性和广泛的用途,第二次世界大战后发展非常迅速,聚酰胺的各种产品从丝袜、衣着到地毯,渔网等,以难以计数的方式出现。最初十年间产量增加25倍,1964年占合成纤维的一半以上,至今聚酰胺纤维的产量虽说总产量已不如聚酯纤维多,但仍是三大合成纤维之一。聚酰胺的发明从没有明确的应用目的的基础研究开始,最终却导致产生了改变人们生活面貌的尼龙产品,成为企业办基础科学研究非常成功的典型。它使人们认识到与技术相比科学要走在前头,与生产相比技术要走在前头;没有科学研究,没有技术成果,新产品的开发是不可能的。此后,企业从事或资助的基础科研在世界范围内如雨后春笋般地出现,使基础科研的成果得以更迅速地转化为生产力。聚酰胺的合成是高分子化学发展的一个重要里程碑。杜邦公司开展这项研究以前,国际上对高分子链状结构理论的激烈争论主要是缺乏明晰的毫无疑义的实验事实的支持。当时对缩聚反应研究得还很少,得到的缩聚物并不完满。卡罗瑟斯采用了远远超过进行有机合成一般规程的方法,他在进行高分子缩聚反应时,对反应物的配比要求很严格,相差不超过1%.缩聚反应的程度相当彻底,超过99.5%,从而合成出分子量高达两万左右的聚合物。卡罗瑟斯的研究表明,聚合物是一种真正的大分子,可以通过已知的有机反应获得,其缩聚反应的每个分子都含有两个或两个以上的活性基团,这些基团通过共价键互相连接,而不是靠一种不确定的力将小分子简单聚集到一起,从而揭示了缩聚反应的规律。卡罗瑟斯通过对聚合反应的研究把高分子化合物大体上分为两类:一类是由缩聚反应得到的缩合高分子;另一类是由加聚反应得到的加成高分子。卡罗瑟斯的助手弗洛里(Paul J. Flory, 1910~1986)总结了聚酰胺等一系列缩聚反应,1939年提出了缩聚反应中所有功能团都具有相同的活性的基本原理,并提出缩聚反应动力学和分子量与缩聚反应程度之间的定量关系。后来又研究了高分子溶液的统计力学和高分子模型、构象的统计力学,1974获得了诺贝尔化学奖。聚酰胺的合成有力地证明了高分子的存在,使人们对斯陶丁格的理论深信不移,从此高分子化学才真正建立起来。 尼龙为韧性角状半透明或乳白色结晶性树脂,作为工程塑料的尼龙分子量一般为1.5-3万尼龙具有很高的机械强度,软化点高,耐热,磨擦系数低,耐磨损,自润滑性,吸震性和消音性,耐油,耐弱酸,耐碱和一般溶剂,电绝缘性好,有自熄性,无毒,无臭,耐候性好,染色性差。缺点是吸水性大,影响尺寸稳定性和电性能,纤维增强可降低树脂吸水率,使其能在高温、高湿下工作。尼龙与玻璃纤维亲合性十分良好。 尼龙中尼龙66的硬度、刚性最高,但韧性最差。PA66熔点280℃左右,各厂家有所不同,在449~499℃时会发生自燃。尼龙的熔体流动性好,故制品壁厚可小到1mm。 由于尼龙具有很多的特性,因此,在汽车、电气设备、机械部构:、交通器材、纺织、造纸机械等方面得到广泛应用。随着汽车的小型化、电子电气设备的高性能化、机械设备轻量化的进程加快,对尼龙的需求将更高更大。特别是尼龙作为结构性材料,对其强度、耐热性、耐寒性等方面提出了很高的要求。尼龙的固有缺点也是限制其应用的重要因素,特别是对于PA6、PA66两大品种来说,与PA46、PAl2等品种比具有很强的价格优势,虽某些性能不能满足相关行业发展的要求。因此,必须针对某一应用领域,通过改性,提高其某些性能,来扩大其应用领域。主要在以下几方面进行改性。①改善尼龙的吸水性,提高制品的尺寸稳定性。②提高尼龙的阻燃性,以适应电子、电气、通讯等行业的要求。③提高尼龙的机械强度,以达到金属材料的强度,取代金属④提高尼龙的抗低温性能,增强其对耐环境应变的能力。⑤提高尼龙的耐磨性,以适应耐磨要求高的场合。⑥提高尼龙的抗静电性,以适应矿山及其机械应用的要求。⑦提高尼龙的耐热性,以适应如汽车发动机等耐高温条件的领域。⑧降低尼龙的成本,提高产品竞争力。总之,通过上述改进,实现尼龙复合材料的高性能化与功能化,进而促进相关行业产品向高性能、高质量方向发展。改性PA产品的最新发展前面提到,玻璃纤维增强PA在20世纪50年代就有研究,但形成产业化是20世纪70年代,自1976年美国杜邦公司开发出超韧PA66后,各国大公司纷纷开发新的改性PA产品,美国、西欧、日本、荷兰、意大利等大力开发增强PA、阻燃PA、填充PA,大量的改性PA投放市场。20世纪80年代,相容剂技术开发成功,推动了PA合金的发展,世界各国相继开发出PA/PE、PA/PP、PA/ABS、PA/PC、PA/PBT、PA/PET、PA/PPO、PA/PPS、PA/I.CP(液晶高分子)、PA/PA等上千种合金,广泛用于汽车、机车、电子、电气械、纺织、体育用品、办公用品、家电部件等行业。20世纪90年代,改性尼龙新品种不断增加,这个时期改性尼龙走向商品化,形成了新的产业,并得到了迅速发展,20世纪90年代末,世界尼龙合金产量达110万吨/年。在产品开发方面,主要以高性能尼龙PPO/PA6,PPS/PA66、增韧尼龙、纳米尼龙、无卤阻燃尼龙为主导方向;在应用方面,汽车部件、电器部件开发取得了重大进展,如汽车进气歧管用高流动改性尼龙已经商品化,这种结构复杂的部件的塑料化,除在应用方面具有重大意义外,更重要的是延长了部件的寿命,促进了工程塑料加工技术的发展。改性尼龙发展的趋势尼龙作为工程塑料中最大最重要的品种,具有很强的生命力,主要在于它改性后实现高性能化,其次是汽车、电器、通讯、电子、机械等产业自身对产品高性能的要求越来越强烈,相关产业的飞速发展,促进了工程塑料高性能化的进程,改性尼龙未来发展趋势如下。①高强度高刚性尼龙的市场需求量越来越大,新的增强材料如无机晶须增强、碳纤维增强PA将成为重要的品种,主要是用于汽车发动机部件,机械部件以及航空设备部件。②尼龙合金化将成为改性工程塑料发展的主流。尼龙合金化是实现尼龙高性能的重要途径,也是制造尼龙专用料、提高尼龙性能的主要手段。通过掺混其他高聚物,来改善尼龙的吸水性,提高制品的尺寸稳定性,以及低温脆性、耐热性和耐磨性。从而,适用车种不同要求的用途。③纳米尼龙的制造技术与应用将得到迅速发展。纳米尼龙的优点在于其热性能、力学性能、阻燃性、阻隔性比纯尼龙高,而制造成本与普通尼龙相当。因而,具有很大的竞争力。④用于电子、电气、电器的阻燃尼龙与日俱增,绿色化阻燃尼龙越来越受到市场的重视。⑤抗静电、导电尼龙以及磁性尼龙将成为电子设备、矿山机械、纺织机械的首选材料。⑥加工助剂的研究与应用,将推动改性尼龙的功能化、高性能化的进程。⑦综合技术的应用,产品的精细化是推动其产业发展的动力。

高性能纤维性能分析【摘要】分析了碳纤维、超高强聚乙烯纤维、芳香族聚酰胺纤维、聚对苯撑苯并双恶唑 (POB)纤维和 M5 纤维等高性能纤维的重要特性以及它们的应用状况。 【关键词】高性能纤维;先进复合材料;分子结构;重要特性;应用 [中图分类号]TS102,528 [文献标识码]A [文章编号]1002-3348(2005)01-0054-04 高性能纤维 (High-Performance Fibers)是从 20 世纪 60 年代开始研发并推广的纤维材 料, 它的出现使传统纺织工业产生了巨大变革。 所谓高性能纤维是指有高的拉伸强度和压缩 3 强度、耐磨擦、高的耐破坏力、低比重(g/m )等优良物性的纤维材料,它是近年来纤维高分 子材料领域中发展迅速的一类特种纤维。 高性能纤维可用于防弹服、 蹦床布等特种织物的加 工及纤维复合材料中的加固材料,其发展涉及许多不同的领域。本文分析和比较了碳纤维、 超高强聚乙烯纤维、芳香族聚酰胺纤维、聚对苯撑苯并双恶唑(PBO)纤维、M5 纤维等高性能 纤维的特性以及它们的应用状况。 1 高性能纤维 1·1 高性能纤维分类 无机纤维:碳纤维、硼纤维、陶瓷纤维等。 有机纤维:超高强聚乙烯纤维(HPPE)、芳香族聚酰胺纤维、聚对苯撑苯并双恶唑(PBO) 纤维、M5 纤维等。 1·2 碳纤维 碳纤维的生产始于 20 世纪 60 年代末 70 年代初, 由有机纤维如腈纶(PAN)纤维、 粘胶纤 维或沥青纤维经预氧化、 炭化和石墨化加工而成。 碳纤维的石墨六方晶体结构决定了其强度 大、模量高等优良性能,如日本东丽公司生产的 T-400 碳纤维,拉伸强度可达 4.2GPa,断 裂伸长率为 1.5%。碳纤维不燃烧,化学性能稳定,不受酸、盐等溶媒侵蚀。 1·3 超高强聚乙烯纤维 高强高模聚乙烯在 20 世纪 70 年代出现, 具有超高分子量, 高取向度, 且分子间距很近, 3 使纤维具备高强高模的特征, 其密度具有 0.97g/cm , 是唯--能浮在水面上的高强高模纤维。 除此之外,其他机械性能亦比较突出,如良好的韧性和耐疲劳性能,耐高速冲击性等。 1·4 芳香族聚酰胺纤维 20 世纪 70 年代,人们开始从事液晶态纺丝技术的研究,用于纺制高性能纤维,与普通 纺丝的分子结构截然不同,液晶态纺丝时形成的分子链只有刚棒状高取向的有序结构。 图 1 液态高聚物分子的构型示意图 (a)为典型普通大分子,为无规则线团;(b)为刚性大分子, 在没有良好侧向作用和导向情况下的状态;(c)为无规的棒状 液晶;(d)为向列型液晶 芳香族聚酰胺是最为人所熟知的,通过液晶纺丝纺制的高性能纤维,如 Kevlar(聚对苯 二甲酰对苯二胺纤维)、 Twaron(聚对苯二甲酰间苯二胺纤维)、 Technora(聚对苯二甲酰对苯 二胺纤维)等,如图 3 所示,为芳香族聚酰胺高结晶和高取向分子结构。这类纤维性能比较 均衡,具有高强伸性能, 高韧性、耐腐蚀、耐冲击、较好的热稳定性,不导电,除了强酸和强碱外,具有较强的抗化 学性能。 图 3 芳香族聚酰胺晶体结构图 聚对苯撑苯并双恶唑(PBO)纤维 1998 年国际产业纤维展览会上,日本东洋纺展出了商品名为 Zylon 的 PBO 纤维,其化 学名为聚对苯撑苯并双恶唑,化学结构为: 1·5 PBO 纤维采用液晶纺丝法纺丝,由苯环和苯杂环组成的刚棒状分子结构以及分子链的高 取向度, 决定了它的优良性能。 PBO 初纺普通丝(AS 丝-标准型)就具有 3.5N/tex 以上的强度 和 10.84N/tex 以上弹性模量, 经热处理后可得到强度不变、 模量达 176.4N/tex 的高模量丝 (HM 丝-高模量型)。PBO 作为一种新型高性能纤维,具有高强度、高模量、耐热性、阻燃性 4 大特点,其强度与模量相当于 Kevlar (凯夫拉)的 2 倍,限氧指数(L01)为 68,热分解温 度高达 650℃,在有机纤维中为最高,被认为是目前具有最高耐热性能的有机材料之一。 表 1 PBO 纤维的性能 性能 PBO 一 AS PBO—HM 密度(g/cm3) 1.54 1.56 抗拉强度(GPa) 5.8 5.8 拉伸模量(GPa) 180 280 断裂延伸率(%) 3.5 2.5 热分解温度(℃) 650 650 L01(%) 68 68 表 2 PBO 纤维与其他纤维的主要性能比较 性能 PBO-HM Kevlar-49 宇航级碳纤维 密度(g/cm ) 纤维直径(?m) 抗拉强度(Gpa) 拉伸模量(CPa) 断裂延伸率(%) 3 1.56 24 5.8 280 2.5 1.45 12 3.2 115 2.0 1.80 6 3.58 230 0.5 热分解温度(℃) 650 550 一 1·6 M5 纤维 PBO 纤维推出的几年后,阿克卓·诺贝尔(Akzo Nobel)公司开发了一种新型液晶芳族杂 环聚合物:聚[2,5-二烃基-1,4-苯撑吡啶并二咪唑],简称 "M5"或 PlPD,化学结构为: M5 纤维的结构与 PBO 分子相似——刚棒结构。 M5 分子链的方向上存在大量的-OH 和-NH 在 基团,容易形成强的氢键。如图 4 所示,与芳香族聚酰胺晶体结构不同,M5 在分子内与分 子间都有氢键存在,形成了氢键结合网络。 图 4 为 M5 纤维沿分子链轴方向的晶体结构,虚线为氢键。 图 4 M5 晶体结构 比较图 3 与图 4 可以清楚地看出,M5 大分子所形成的双向氢键结合的网络,类似一个 蜂窝。这种结构加固了分子链间的横向作用,使 M5 纤维具有良好的压缩与剪切特性,压缩 和扭曲性能为目前所有聚合物纤维之最。 2 高性能纤维特性分析比较 碳纤维石墨层面上碳-碳共价交键的存在,使作用于碳纤维上的应力,从一个石墨层转 移到相邻层面, 这些共价交键保证了碳纤维具有高的拉伸模量和压缩强度。 但这些共价键为 纯弹性键,一旦被打破,不可复原,即不显示任何屈服行为。所以碳纤维受力时,应力-应 变曲线是线性关系,纤维断裂是突然发生的。 有机纤维的性能取决于分子结构、分子链内键及分子链间结合键。如前所述,超高强聚 乙烯纤维、PBO 纤维都具有优良的性能,但由于超高强聚乙烯纤维大分子链间的结合键为弱 的范德华键,使其纤维易产生蠕变,压缩强力较低,另外超高强聚乙烯纤维耐热性和表面粘 合性有限,因而不适合用作加固纤维。而 PBO 纤维也因大分子链间没有形成氢键结合、作用 力较弱,使得其压缩和扭曲性能较低,加之纤维表面惰性强,与树脂的结合能力较差,在复 合材料成型过程中,有明显的界面层,从而影响也限制了 PBO 的应用。 芳香族聚酰胺纤维高结晶度、高取向度的分子结构,使其具有高强伸性能,也是由于大 分子链间弱的作用力 (范德华键),造成大分子链间剪切模量及压缩强度低。芳香族聚酰胺 纤维由氢键结合成的薄片状结构在受压缩载荷作用时易塑性变形, 薄片相对容易断开, 在严 重过载时会出现原纤化,最终导致压缩失效。 分子链间结合键以 M5 比较理想, M5 大分子间和大分子内的 N-H-O 和 O-H-N 的双向氢 在 键结构,是其具有高抗压性能的原因所在,热处理后的 M5 纤维,拉伸模量可达 360GPa,拉 伸强度超过 4GPa,剪切模量和抗压强度可达 7GPa 和 1.7GPa。此外 M5 而大分子链上含有羟 基,使它与树脂基体的粘结性能优良,采用 M5 纤维加工复合材料产品时,无需添加任何特 殊的粘合促进剂,且具有优良的耐冲击和耐破坏性。有资料显示,以 M5 为加固纤维的复合 材料,在压缩过载的情况下,测试样品仍能继续承受显著的(压缩)载荷,与之相比,碳纤复 合材料会粉碎,而芳香族聚酰胺复合材料则会被挤成纤丝状薄片(原纤化)。如图 5、图 6 分 别为一个碳纤维和一个 MS 纤维复合材料的失效测试条,显示了脆性与韧性失效之间的明显 差异。此外,M5 纤维的刚棒结构又决定了它有高的耐热性和高的热稳定性,空气中热分解 温度达到了 530℃,超过了芳香族聚酰胺纤维,与 PBO 接近,极限氧指数(LOI)为 59,在 阻燃性方面也优于芳纶。 图 5 碳纤维复合材料测试条的失败 图 6 M5 纤维料测试条的失败 表 1 为几种高性能纤维力学及物理特性。 表 1 高性能纤维的力学和物理特性 特性 高 强 度 超高强聚 高 模 量 芳 香 族 高 模 量 高模量 M5 纤 碳纤维 乙烯纤维 聚酰胺纤维 PBO 纤维 维(实验值) 抗拉强度(GPa) 伸长率(%) 拉伸模量(GPa) 压缩强度(GPa) 压缩应变(%) 密度(克/cm ) 标准回潮率(%) 限氧指数(LOI) 3 3.58 1.5 230 2.10 0.90 1.80 0.0 一 3.43 4.0 98.0 一 一 0.97 一 一 3.2 2.0 115 0.58 0.50 1.45 3.5 29 5.8 2.5 280 0.40 0.15 1.56 0.6 68 5.0 1.5 330 1.70 0.50 1.70 2.0 59 空气中热老化起 800 150 450 550 530 始温度(℃) 从表 1 看,M5 纤维的各种性能指标都接近或超过其它高性能纤维,为综合性能优良的 高性能纤维。 3 应用与前景 目前超高强聚乙烯纤维的应用主要是加工防弹用特种织物、防弹板、渔业用绳网、极低 温绝缘材料、混凝土补强加固用试验片材、光缆补强材料、降落伞绳带、汽车保险杠等。芳 香族聚酰胺纤维常见的品种 Kevlar、Twaron、Technora 纤维等,主要应用有作为复合材料 的增强体、渔业工业等用绳网、防弹服、防弹板、头盔、混凝土补强材料等。碳纤维的优良 特性使其广泛用于航空、航天、军工、体育休闲等结构材料,应用于宇宙机械、电波望远镜 和各种成型品,还有直升飞机的叶片、飞机刹车片和绝热材料、密封填料和滤材、电磁波屏 蔽材料、防静电材料、医学材料等。PBO 纤维从问世以来就受到人们的关注,其应用主要有 防冲击方面的加固补强材料、复合材料中的加固材料,用于防护的防弹服、防弹头盔、消防 服、高性能及耐高温传动带、轮胎帘子线、光纤电缆承载部分、架桥用缆绳、耐热垫材等。 与各种高性能纤维相比,M5 纤维的综合性能更优越,这使得它的应用领域更广泛。尤 其是 M5 纤维的抗冲击力和耐破坏性,使它在制造经济、高效的结构材料方面有广阔的应用 前景,如应用于航空航天等高科技领域,在高性能纤维增强复合材料中 M5 也具有很强的竞 争力。当前 M5 纤维的研究比较活跃,随着研究的深人,其性能和应用将得到不断的提高和 拓展。 高性能纤维的不断创新是高性能产业用纺织品及复合材料用纤维领域的重要进步, 随着 世界高新技术、纤维合成与纺丝工艺的发展,以及军事、航空航天、海洋开发、产业应用的 迫切需要,高性能纤维的开发与应用前景将更为广阔。新型高性能纤维M5的研究与应用摘要:本文介绍了一种新型液晶芳族杂环聚合物,聚(2,5-二羟基-1,4-苯撑吡啶并二咪唑){poly[2,6-diimidazo(4,5-b:4',5'-e)pyridinylene-1,4(2,5-dihydroxy)phenylen],PIPD}纤维(简称M5).简述了M5纤维的制作方法,M5纤维特殊的分子结构特征,并通过与其它高性能纤维的比较,阐述了M5纤维优良的性能,特别是其良好的压缩与剪切特性.除此之外,M5纤维的高极性还使其更容易与各种树脂基体粘接,这使M5纤维的综合机械性能比目前其它高性能纤维都好.文中还展望了M5纤维的应用前景.前言近年来,随着对有机高性能纤维的不断深入研究,在刚性高性能纤维领域已经取得了很大的进展.但大多数高性能纤维,因分子间结合力的薄弱而导致某些力学性能上的不足,如PBO纤维大分子链间较弱的结合力,使其压缩和扭曲性能较差.纤维材料的压缩性能,主要取决于纤维大分子之间的相互作用程度[1,2].通常纤维扭转模量可作维表征大分子之间相互作用程度的一个量度.因此,如何增强大分子链之间的相互作用,已成为进一步强化刚性聚合物纤维力学性能的一个重要问题.作为Akzo-Nobel实验室的研究成果,一种新型的高性能纤维,即著称的M5已经被研究出来.聚合物是聚(2,5-二羟基-1,4-苯撑吡啶并二咪唑){poly[2,6-diimidazo(4,5-b:4',5'-e)pyridinylene-1,4(2,5-dihydroxy)phenylen],PIPD}纤维(简称M5)[3].由于M5纤维沿纤维径向即大分子之间存在特殊的氢键网络结构,所以M5纤维不仅具有类似PBO纤维的优异抗张性能,而且还显示出优于PBO纤维的抗压缩性能.1高性能纤维M51.1 单体的选择及M5的合成[4]在M5聚合物的制备过程中,其关键步骤是单体2,3,5,6-四氨基吡啶(2,3,5,6-tertraaminopyridine,TAP))的合成.TAP可由2,6-二氨基吡啶(2,6diaminopyridine,DAP)经硝化还原后制成,反应方程式如下所示:在M5的合成过程中,TAP需经盐酸化处理并以盐酸盐形式参与聚合反应.若TAP直接以磷酸盐的形式参与反应,不但可以避免盐酸腐蚀作用,还可以加快聚合反应速度,但却易发生氧化作用.另一单体2,5-二羟基对苯二甲酸(2,5-Dihydroxyterephthalicacid,DHTA)的合成也是制备M5聚合物的重要环节,可由2,5-二羟基对苯二甲酸二甲酯(2,5-dihydroxy-1,4-dimethylterephthalate,DDTA)水解后制得,反应方程式如下所示:M5纤维的聚合过程与聚对苯撑苯并二恶唑(poly(p-phenylenebenzobisoxazole),PBO)相似,可将TAP和DHTA两种单体按一定的等当比同时加入到聚合介质多聚磷酸(polyphosphoric acid,PPA)中,脱除HCI后逐渐升温至180℃,反应24h,得到M5聚合物,反应方程式如下所示:2 M5的分子结构特征及聚合物的聚集态结构2.1 M5的分子结构特征M5纤维在分子链的方向上存在着大量的-OH和-NH基团,容易在分子间和分子内形成强烈的氢键.因此,其压缩和扭曲性能为目前所有聚合物纤维之最.M5纤维的刚棒状分子结构特点决定了M5纤维具有较高的耐热性.由于M5大分子链上含有羟基,M5纤维的高极性使其能更容易与各种树脂基体粘接.图1热处理后PIPD-HT单斜晶胞的双向氢键网络晶体结构示意图[5].图2热处理后PIPD单斜晶胞沿C轴的分子结构示意图[5].图1和图2都显示了热处理后PIPD纤维的微观二维结构,即在大分子间和大分子内分别形成了N-H-O和O-H-N的氢键结构,这种双向氢键的网络结构正是M5纤维具有高抗压缩性能的原因在.图1 热处理后PIPD-HT单斜晶胞的双向氢键网络晶体结构示意图图2 热处理后PIPD单斜晶胞沿C轴的分子结构示意图2.2 M5的聚集态结构图3 PIPD-AS沿C轴方向的分子结构示意图如图3所示,为含有21%左右水分子的PIPD-AS纤维的结晶结构.由于PIPD-AS纤维中存在着大量的水,因而使得PIPD-AS纤维有很大的质量热容,而且具有良好的耐燃性能.表2和表3所列出的实验结果也证实了这一结论[16,19].如图4所示,为不同热处理温度的PIPD-AS纤维WAXD图[16].从图4可以看出,PIPD-AS纤维在热处理过程中晶体中的水分被脱出,变成无水聚合物晶体,从而在垂直于纤维方向的平面内形成二维氢键网状结构.有实验表明,经过热处理后PIPD纤维的结晶度和取向度都有很大的提高.图4 不同热处理温度的PIPD-AS纤维WAXD图Klop EA等[22]通过PIPD晶体结构的X射线衍射实验研究发现,因PIPD试样的处理温度不同,在PIPD的分子内部可出现不同形式的结晶结构—单斜结晶晶胞和三斜结晶晶胞(如图5和图6所示).单斜和三斜的晶胞参数分别为:单斜结晶: a=12.49 ,b=3.48 ,c=12.01 ,=90°,=107°,=90°三斜结晶:a=6.68 ,b=3.48 ,c=12.02 ,=84,=110°,=107°Takahashi等[20,21]采用中子方法测得的PIPD-HT晶胞参数为:a=13.33 ,b=3.462 ,c=12.16 ,=84°,=105.4°,空间结构为P21/,单斜晶胞区别于三斜晶胞的不同之处在于,三斜晶胞的氢键网络结构仅仅是靠沿对角线平面的大分子连接的,而单斜晶胞可在垂直于纤维方向的平面内形成了二维氢键网络结构,显然这种二维氢键网络结构,使得M5具有其它高性能纤维所无法比拟的高剪切强度,剪切模量和压缩强度.图5 PIPD单斜晶胞在ab面和ac面上的投影 图6 PIPD三斜晶胞在ab面上的投影3 M5纤维的纺丝工艺[9,16]3.1 M5纤维的成形M5纤维的纺丝是将质量分数为18~20%左右的PIPD/PPA纺丝浆液(聚合物的MW为6.0×104~1.5×105)进行干喷湿纺,空气层的高度为5-15cm,纺丝温度为180℃,以水或多聚磷酸水溶液为凝固剂,可制成PIPD的初生纤维.其中,实验用喷丝孔直径范围为65-200 m,喷头拉伸比取决于喷丝空的直径,可达70倍,所得纤维直径为8-14 m.所得M5的初生纤维需在热水中进行水洗,以除去附着在纤维表面的溶剂PPA,并进行干燥.图7 M5纤维的热处理示意图3.2 M5纤维的热处理为了进一步提高初生纤维取向度和模量,对初生纤维在一定的预张力下进行热处理,如图7所示.在这一过程中,M5纤维取向度将伴随着由其分子结构的改变引起的剪切模量的增加而增大.对M5初生纤维进行热处理能够改善纤维的微观结构,从而提高纤维的综合性能.M5初生纤维再进一步用热水洗涤除去残留的多聚磷酸水溶液(PPA)和干燥后,在氮气环境下于400℃以上进行大约20s的定张力热处理,最终可得到高强度,高模量的M5纤维.在此需要特别指出的是,如果热处理温度过低或处理时间过短,则PIPD-AS和PIPD-HT的转变是可逆的.因此,热处理温度与热处理时间对M5纤维的模量影响很大.4 M5纤维的性能4.1 力学性能图8 PIPD-AS和PIPD-HT纤维的应力-应变曲线图如图8所示,热处理后的PIPD纤维同PIPD的初生纤维相比较,二者的力学性能截然不同,PIPD-AS纤维存在屈服,而PIPD-HT纤维不存在这种现象.Lammwers M[18]等研究发现,经过200℃热处理的初生纤维压缩强度由原来的0.7Gpa提高到1.7Gpa,而经过400℃热处理的初生纤维压缩强度由原来的0.7Gpa提高到1.1Gpa.显然对于PIPD的初生纤维来讲,并非热处理温度越高越好.通过用偏光显微镜观察发现:在400℃热处理的纤维中存在裂纹,这可能是导致压缩强度下降的原因,因此,热处理温度不宜太高.表1[9-14]给出了几种高性能纤维的力学性能和其它性能的对比数据,其中的力学性能包括拉伸强度,断裂伸长,模量以及抗压缩强度等.与其它3种纤维相比,M5的抗断裂强度稍低于PBO,远远高于芳纶(PPTA)和碳纤维,其断后延伸率为1.4%;与其它高性能纤维相比,M5纤维的模量是最高的,达到了350GPa;M5的压缩强度低于碳纤维,但却远远高于Twaron-HM纤维和PBO纤维,这归因于M5的二维分子结构[17].表1 M5纤维与其它高性能纤维的比较纤维拉伸强独/Gpa断裂伸长/%初始模量/ Gpa压缩强度/ Gpa压缩应变/ %密度/(g.cm-3)回潮率/%Twaron-HM3.22.91150.480.421.453.5C-HS3.51.42302.100.901.800.0PBO5.52.52800.420.151.560.6M55.31.43501.600.501.702.0纤维空气中的热稳定性/℃LOI/%电导性抗冲击性抗破坏性编制性能耐紫外性Twaron-HM45029-++++-C-HS800N/A++------++PBO55068-++N/A+/---M5530>50-+++++++M5纤维特殊的分子结构,使其除具有高强和高模外,还具有良好的压缩与剪切特性,剪切模量和压缩强度分别可达7GPa和1.6GPa,优于PBO纤维和芳香族聚酰胺纤维,在目前所有聚合物纤维中最高.图9 M5纤维的轴向压缩SEM图一般来讲,当高性能纤维受到来自外界的轴向压缩力时,其纤维内部的分子链取向会因轴向压缩力的存在而发生改变,即沿着纤维轴向出现变形带结构.而对M5纤维来讲只有当这种轴向压缩力很大时才会出现这种结构[11].如图9所示,当M5纤维受到外界的轴向压缩力时,压缩变形后的M5纤维中也会出现一条变形带结构,但与其它高性能纤维(如PBO)相比较,M5纤维的变形程度要小很多.4.2 阻燃性能表2 PIPD-AS和PIPD-HT纤维耐燃性能的重要参数[5]试样PHRR①(kWm-2)TTI②(s)SEA③FPI④(sm2kW-1)残留量(%)PIPD-AS43.7772241.76061PIPD-HT53.7488440.89062PBO-HM47.75621441.17072Twaron204.420708160.09811Nomex160.414386700.08724PVC253.0141139370.05515注:①热量释放最大速率(PHRR);②引燃时间(TTI);③比消光面积(SEA);④耐燃性能指数(FPI)表2所列数据是热量计热流为75kW/m2时测得的,也就是在试样表面温度为890℃左右时测得的值.纤维试样放在一块1cm2的线网上.试样原始重量在10.3g-11.5g之间.从表2可以看出,PIPD-AS纤维热量释放最大速率(PHRR)为43.7kWm-2,也就是说单位时间内PIPD-AS释放出最小的热量,与其它高聚物相比是一种较好的阻燃剂用材料.PIPD-AS纤维的点燃时间最长为77s,远高于Nomex纤维.SEA是用来衡量单位物质燃烧时产生的烟雾量,PIPD-AS纤维达到了224m3/kg,而Nomex纤维为38670m3/kg,二者相比PIPD-AS纤维的SEA值远低于Nomex纤维,说明PIPD-AS纤维燃烧时产生的烟雾量要远少于Nomex纤维.同表2中的其它高聚物相比,PIPD-AS纤维的耐燃性能指数(FPI)最高为1.76sm2kW-1.从表2中各项耐燃性能参数可以看出PIPD纤维在耐燃性方面,要好于其它高性能纤维,即PIPD纤维在耐燃性方面将具有较好多应用前景.M5纤维的刚棒状分子结构决定了它具有较高的耐热性和热稳定性.从表2中可以看出,PIPD-HT纤维具有与聚对苯亚基苯并双嗯哇(PBO)纤维相似的FPI值,但它在燃烧过程中更不容易产生烟.M5在空气中的热分解温度为530℃,超过了芳香族聚酰胺纤维,与PBO纤维接近.M5纤维的极限氧指数(LOI)值超过50,不熔融,不燃烧,具有良好的耐热性和稳定性[7].4.3 界面粘合性能与PBO,聚乙烯或芳香族聚酰胺纤维相比,由于M5大分子链上含有羟基,M5纤维的高极性使其能更容易与各种树脂基体粘接.采用M5纤维加工复合材料产品时,无需添加任何特殊的粘合促进剂.M5纤维在与各种环氧树脂,不饱和聚酯和乙烯基树脂复合成形过程中,不会出现界面层,且具有优良的耐冲击和耐破坏性[6,8].4.4 热力学性能图10 四种不同含水量M5纤维的DSC扫描图图10为M.G.NoRTHoLIT[19]等用SetaramC80D热量计测得的四种不同含水量M5纤维的DSC谱图.研究发现将1g试样材料放在一个开放的测试槽内,以0.2℃/min的速度,在30℃-200℃范围内得到一张扫描图,如图5所示.从DSC谱图可以看出,四种不同含水量M5纤维的吸热峰面积及位置与开放测试槽内水分的蒸发有关.从表3可以看出,含有结晶水的M5初生纤维的热吸收值与不含结晶水的M5纤维的热吸收值之间存在着较大的差别,而PIPD初生纤维和PIPD HT试样的热吸收值之间几乎没有什么差别.通过以上研究发现完全干燥的PIPD初生纤维的晶体结构与PIPD-HT试样结构类似.表3 不同含水量的PIPD纤维的热吸收值试样热吸收值(J/g)PIPD初生纤维(含水量20%)637PIPD初生纤维(干燥)163PIPD HT(含水量7%)378PIPD HT(干燥)1855 应用及展望作为一种先进复合材料的增强材料,M5纤维具有许多其它有机高性能纤维不具备的特性,这使得M5纤维在许多尖端科研领域具有更加广阔的应用前景;M5纤维可用于航空航天等高科技领域;用于国防领域如制造防弹材料;用于制造运动器材如网球拍,赛艇等.M5纤维特殊的分子结构决定了其具有许多高性能纤维所无法比拟的优良的力学性能和粘合性能,使它在高性能纤维增强复合材料领域中具有很强的竞争力.与碳纤维相比,M5纤维不仅具有与其相似的力学性能,而且M5纤维还具有碳纤维所不具有的高电阻特性,这使得M5纤维可在碳纤维不太适用的领域发挥作用,如电子行业.由于M5大分子链上含有羟基,M5纤维的高极性使其能更容易与各种树脂基体粘接.正是由于M5纤维具有许多其他高性能纤维所无法比拟的性能和更加广阔的应用前景,这使得众多的科研工作者都积极地致力于M5纤维的研究.相信在不久的将来,随着对M5纤维研究的进一步深入,作为新一代的有机高性能纤维—M5纤维必将得更加广泛的应用.

内脏脂肪研究论文

身体脂肪的存在会对健康造成不同程度的风险。内脏脂肪通常与代谢性疾病和胰岛素抵抗的发生相关,以及可能造成死亡率的上升,这对于BMI(身高体重指数)正常的人来说亦是如此。

肥胖不仅能够影响人的外表,而且还会影响人的健康,会给人的身体健康带来很多隐患。尤其是腹部比较肥胖的人,他们大多数内脏脂肪都严重超标。内脏脂肪超标不仅容易得脂肪肝,还会增加得糖尿病、高血压、动脉硬化等疾病的风险。

引起身体肥胖的脂肪主要分为皮下脂肪和内脏脂肪,内脏脂肪存在在腹腔中,缠绕在我们的脏器之中,心脏、肝脏、胰腺、肠道都是内脏脂肪容易形成堆积的区域。研究数据表明内脏脂肪超标可能是包括癌症。

我们可以把内脏脂肪看成这种明胶,把果肉看成人体内脏器官,少量的内脏脂肪可以保护内脏,起到缓冲作用。但是,如果内脏周围都积聚了过多的脂肪,变成了下面这个样子,就会产生很多引发炎症的分子,会污染血液,干扰体内的激素,引起炎症。

许多上班族为了早上多睡一会儿,或者为了出门前化个美美的妆,导致早晨的时间非常匆忙,于是就牺牲了早餐时间。这样一来,你整个早上腹腔都自在无水、无营养状态下,为囤积内脏脂肪提供足够空间。

碳水化合物虽然是人体日常所需,但是内脏脂肪过多的人在碳水化合物上要适当的控制一下,不要吃太多。碳水化合物会增加胰岛素的分泌,对内脏脂肪影响是比较大的,想要消除过高的内脏脂肪就要降低碳水。

内脏脂肪的形成其实有很多种因素,但是被证明的一点就是压力,长期处于高压生活下,节奏快、情绪不稳定,心理压力大的人往往内脏脂肪占比都非常高,这也是为什么我们经常看见大夫们一个个都油光水滑的原因,其实他们不是吃得多,是因为休息不好、压力过大导致的新陈代谢紊乱。

内脏脂肪囤积过多无法自然离开身体,严重影响消化功能,便秘现象也就随之而来了。因为内脏脂肪刚好位于腹腔之中,而人们所采取的各种瘦腰法都只是减腰腹皮下脂肪的方法,无法清除藏于内脏的脂肪,所以各种瘦腰法都无济于事。

减肥并不是一朝一夕就能够完成的,是内脏脂肪过多带来的危害,希望大家都能够记在心中,能够认识到减肥的重要性。肥胖和健康之间的关系非常密切,肥胖的人在很多疾病上都有更高的发病率,一定要消除多余的内脏脂肪。

运动有利于减肥,而每周坚持有氧运动10小时以上的人内脏脂肪指标下降照正常运动的人的速度要快,所以说如果想减掉内脏脂肪,我们可能要在短时间内进行比较多的有氧运动,这样效果才会更加出色。

内脏脂肪指的就是腹腔内部的脂肪。想要减少内脏脂肪,平时应该多做一些力量训练,还可以多做一些有氧运动,尝试着间歇性的断食,改善身体的激素水平,调整好自己的心态,不要暴饮暴食,不用给自己太大的压力,然后也应该提高自己的睡眠质量,保持充足的睡眠。

因为肚子越大说的是那种爱吃懒做的人,所以脑子就小不喜欢动脑。

长期以来,人们都认为腹部肥胖尤其对心脏不好,但现在一项新的研究结果表明,它可能还对你的脑部有害。

这项来自英国的研究发现,肥胖的以及高腰臀比(腹部肥胖的程度)的人比起那些体重健康的人来说,平均的脑部体积要稍微小一些。特别是腹部肥胖和更小的脑灰质体积有关。(脑灰质是含有神经细胞的脑组织。)

该研究论文的第一作者,来自英国莱斯特郡的拉夫堡大学运动、锻炼及健康科学学院的教授Mark Hamer在一项声明中表示:“我们的研究调查了很大的一个群体,然后发现肥胖,尤其是腰腹部肥胖的人,可能和脑部萎缩有关。”

更小的脑体积,或者说是脑部萎缩,则和记忆衰退以及痴呆的风险增加有关联。

研究人员表示,发表在1月9日刊《神经学》上的这个新发现暗示着肥胖和高腰臀比的这个组合可能是脑部萎缩的一个风险因素。

不过,这项研究只是发现了腹部肥胖和更少的脑体积之间的关联,并不能证明肚子上肉越多会导致脑部萎缩。也可能是脑部特定区域脑灰质体积较少的人更容易肥胖。需要进行更多研究才能梳理出这个关联的前因后果。

危险的肥肉

腹部肥胖也被称为“内脏脂肪”,是深深的聚积在腹腔空间的脂肪。它们比皮下脂肪的健康风险还要高。据梅约诊所所说,先前的研究已经发现了内脏脂肪和更高的心脏疾病(包括心脏病和中风)、二型糖尿病、高血压和早逝风险之间的关联。

一些之前的研究也发现了内脏脂肪或者高腰臀比和更小的脑部体积之间的关联,但是那些研究规模都比较小,而且也没有考虑BMI指数和腰臀比的混合效应。

在这项新研究中,研究人员分析了超过9600名平均年龄为55岁的生活在英国的参与者的信息。参与者被测量了BMI指数以及腰臀比,然后通过核磁共振来测量脑部体积。

研究发现,BMI和腰臀比都高的人有着最小的脑体积,作为对比的是只有BMI高(腰臀比不高)的人以及体重正常的人。

详细来说,BMI和腰臀比都高的人平均脑灰质体积为786立方厘米,而只有BMI高的人的体积为793立方厘米;体重健康的人的体积为798立方厘米。

即使在研究人员将年龄、吸烟和高血压这些会影响脑体积的其他因素考虑进来之后,这一发现依旧成立。

研究人员说,虽然本研究没有探索内脏脂肪和脑部萎缩关联的潜在作用机制,但是有一项假设是这种脂肪被认为会产生炎症物质,可能会在脑部萎缩上起作用。

纽约勒诺克斯山医院的神经学家Gayatri Devi医生表示认同这一发现。“脑灰质的缩小似乎和肥胖以及内脏脂肪增多有关联,”她说。

“这些都表明了总体健康的身体对良好的脑部健康十分重要,”Devi告诉Live Science说。

研究人员还指出,本研究的一个局限性在于愿意参加该研究的参与者比那些不愿意参加的还要健康一些,因此总的来说,这个研究的结论可能不适用于总体人口。

相关百科

热门百科

首页
发表服务