第一阶段:了解知识,确定主题;第二阶段:手抄报的版面设计;第三阶段:手抄报的制作完成;1、文章的抄写2、标题的书写。3、标题的装饰。4、报头绘制要醒目,而不刺眼。5、尾花绘制要小巧精致,起点缀作用,不能抢眼, 底纹的装饰。6、最后将报面擦干净。1、手抄报可以用颜色的,也可以单色。2、可以用整齐庄重型的,也可以用活泼型的。3、标题一定要用美术字体,如黑体、宋体、体等。4、文章的抄写要整齐工整,可用"仿宋体"、"楷书"等书写。5、报面整洁。6、文章收集要长短都有,与主题相关。 办手抄报给每个学生以平等的机会,学习出手抄报的基本技能、技巧,例如写作的能力,排版的艺术,学生绘画的技能,美术字的几种写法,色彩的搭配等。让每个学生能尽情施展才华。 同学们通过上网、查阅图书报刊等方法搜集所需要的资料,培养学生收集、整理资料的能力。既培养学生的综合实践活动,又培养了学生的成就感。
剪贴报,就是剪了再帖。
内容上 只要和数学有关的,都可以拿来做手抄报。可以找一些数字歌和一些关于奥数相关的资料,再进行加工一下就有你所要的东西了! 比如,你可以写写数学家的故事、数学文化、数学小笑话、数学趣题妙解,还可以是数学的故事,学习数学中发生的故事等等,内容很丰富。 版面上 1、版面设计 版面设计是出好手抄报的重要环节。 要设计好版面,须注意以下几点: (1)明确本期手抄报的主要内容是什么,选用有一定意义的报头(即报名)。一般报头应设计在最醒目的位置; (2)通读所编辑或撰写的文章并计算其字数,根据文章内容及篇幅的长短进行编辑(即排版)。一般重要文章放在显要位置(即头版); (3)要注意长短文章穿插和横排竖排相结合,使版面既工整又生动活泼; (4)排版还须注意:字的排列以横为主以竖为辅,行距要大于字距,篇与篇之间要有空隙,篇与边之间要有空隙,且与纸的四周要有3CM左右的空边。另外,报面始终要保持干净、整洁。 2、报头 报头起着开门见山的作用,必须紧密配合主题内容,形象生动地反映手抄报的主要思想。报名要取得有积极、健康、富有意义的名字。 报头一般由主题图形,报头文字和几何形体色块或花边而定,或严肃或活泼、或方形或圆形、或素雅或重彩。 报头设计应注意: (1)构图要稳定,画面结构要紧凑,报头在设计与表现手法上力求简炼,要反映手抄报的主题,起“一目了然”之效; (2)其字要大,字体或行或楷,或彩色或黑白; (3)其位置有几种设计方案:一是排版设计为两个版面的,应放在右上部;二是排版设计为整版的,则可或正中或左上或右上。一般均设计在版面的上部,不宜放在其下端。 3、题头 题头(即题花)一般在文章前端或与文章题图结合在一起。设计题头要注意以题目文字为主,字略大。装饰图形须根据文章内容及版面的需要而定。文章标题字要书写得小于报题的文字,要大于正文的文字。总之,要注意主次分明。
在网上查一些资料,浏览一下别人的作品,自己再设计一下,把找来的资料抄写上去,就好了,很简单的么!!O(∩_∩)O哈哈~ 再画些画更好☆☆☆☆☆O(∩_∩)O
阿拉伯数字 在生活中,我们经常会用到0、1、2、3、4、5、6、7、8、9这些数字。那么你知道这些数字是谁发明的吗? 这些数字符号原来是古代印度人发明的,后来传到阿拉伯,又从阿拉伯传到欧洲,欧洲人误以为是阿拉伯人发明的,就把它们叫做"阿拉伯数字",因为流传了许多年,人们叫得顺口,所以至今人们仍然将错就错,把这些古代印度人发明的数字符号叫做阿拉伯数字。 现在,阿拉伯数字已成了全世界通用的数字符 九九歌 九九歌就是我们现在使用的乘法口诀。 远在公元前的春秋战国时代,九九歌就已经被人们广泛使用。在当时的许多著作中,都有关于九九歌的记载。最初的九九歌是从"九九八十一"起到"二二如四"止,共36句。因为是从"九九八十一"开始,所以取名九九歌。大约在公元五至十世纪间,九九歌才扩充到"一一如一"。大约在公元十三、十四世纪,九九歌的顺序才变成和现在所用的一样,从"一一如一"起到"九九八十一"止。 现在我国使用的乘法口诀有两种,一种是45句的,通常称为"小九九";还有一种是81句的,通常称为"大九九"。 数学符号的起源 数学除了记数以外,还需要一套数学符号来表示数和数、数和形的相互关系。数学符号的发明和使用比数字晚,但是数量多得多。现在常用的有200多个,初中数学书里就不下20多种。它们都有一段有趣的经历。 例如加号曾经有好几种,现在通用"+"号。 "+"号是由拉丁文"et"("和"的意思)演变而来的。十六世纪,意大利科学家塔塔里亚用意大利文"più"(加的意思)的第一个字母表示加,草为"μ"最后都变成了"+"号。 "-"号是从拉丁文"minus"("减"的意思)演变来的,简写m,再省略掉字母,就成了"-"了。 到了十五世纪,德国数学家魏德美正式确定:"+"用作加号,"-"用作减号。 乘号曾经用过十几种,现在通用两种。一个是"×",最早是英国数学家奥屈特1631年提出的;一个是"· ",最早是英国数学家赫锐奥特首创的。德国数学家莱布尼茨认为:"×"号象拉丁字母"X",加以反对,而赞成用"· "号。他自己还提出用"п"表示相乘。可是这个符号现在应用到集合论中去了。 到了十八世纪,美国数学家欧德莱确定,把"×"作为乘号。他认为"×"是"+"斜起来写,是另一种表示增加的符号。 "÷"最初作为减号,在欧洲大陆长期流行。直到1631年英国数学家奥屈特用":"表示除或比,另外有人用"-"(除线)表示除。后来瑞士数学家拉哈在他所著的《代数学》里,才根据群众创造,正式将"÷"作为除号。 十六世纪法国数学家维叶特用"="表示两个量的差别。可是英国牛津大学数学、修辞学教授列考尔德觉得:用两条平行而又相等的直线来表示两数相等是最合适不过的了,于是等于符号"="就从1540年开始使用起来。 1591年,法国数学家韦达在菱中大量使用这个符号,才逐渐为人们接受。十七世纪德国莱布尼茨广泛使用了"="号,他还在几何学中用"∽"表示相似,用"≌"表示全等。 大于号"〉"和小于号"〈",是1631年英国著名代数学家赫锐奥特创用。至于≯""≮"、"≠"这三个符号的出现,是很晚很晚的事了。大括号"{ }"和中括号"[ ]"是代数创始人之一魏治德创造的。 奇妙的圆形 圆形,是一个看来简单,实际上是很奇妙的圆形。 古代人最早是从太阳,从阴历十五的月亮得到圆的概念的。一万八千年前的山顶洞人曾经在兽牙、砾石和石珠上钻孔,那些孔有的就很圆。 以后到了陶器时代,许多陶器都是圆的。圆的陶器是将泥土放在一个转盘上制成的。 当人们开始纺线,又制出了圆形的石纺缍或陶纺缍。 古代人还发现圆的木头滚着走比较省劲。后来他们在搬运重物的时候,就把几段圆木垫在大树、大石头下面滚着走,这样当然比扛着走省劲得多。 大约在6000年前,美索不达米亚人,做出了世界上第一个轮子--圆的木盘。大约在4000多年前,人们将圆的木盘固定在木架下,这就成了最初的车子。 会作圆,但不一定就懂得圆的性质。古代埃及人就认为:圆,是神赐给人的神圣图形。一直到两千多年前我国的墨子(约公元前468-前376年)才给圆下了一个定义:"一中同长也"。意思是说:圆有一个圆心,圆心到圆周的长都相等。这个定义比希腊数学家欧几里得(约公元前330-前275年)给圆下定义要早100年。 圆周率,也就是圆周与直径的比值,是一个非常奇特的数。 《周髀算经》上说"径一周三",把圆周率看成3,这只是一个近似值。美索不达来亚人在作第一个轮子的时候,也只知道圆周率是3。 魏晋时期的刘徽于公元263年给《九章算术》作注。他发现"径一周三"只是圆内接正六边形周长和直径的比值。他创立了割圆术,认为圆内接正多连形边数无限增加时,周长就越逼近圆周长。他算到圆内接正3072边形的圆周率,π= 3927/1250。刘徽已经把极限的概念运用于解决实际的数学问题之中,这在世界数学史上也是一项重大的成就。 祖冲之(公元429-500年)在前人的计算基础上继续推算,求出圆周率在1415926与1415927之间,是世界上最早的七位小数精确值,他还用两个分数值来表示圆周率:22/7称为约率,355/113称为密率。 在欧洲,直到1000年后的十六世纪,德国人鄂图(公元1573年)和安托尼兹才得到这个数值。 现在有了电子计算机,圆周率已经算到了小数点后一千万以上了。 从一加到一百 七岁时高斯进了 S Catherine小学。大约在十岁时,老师在算数课上出了一道难题:"把 1到 100的整数写下来,然後把它们加起来!"每当有考试时他们有如下的习惯:第一个做完的就把石板﹝当时通行,写字用﹞面朝下地放在老师的桌子上,第二个做完的就把石板摆在第一张石板上,就这样一个一个落起来。这个难题当然难不倒学过算数级数的人,但这些孩子才刚开始学算数呢!老师心想他可以休息一下了。但他错了,因为还不到几秒钟,高斯已经把石板放在讲桌上了,同时说道:「答案在这儿!」其他的学生把数字一个个加起来,额头都出了汗水,但高斯却静静坐着,对老师投来的,轻蔑的、怀疑的眼光毫不在意。考完後,老师一张张地检查着石板。大部分都做错了,学生就吃了一顿鞭打。最後,高斯的石板被翻了过来,只见上面只有一个数字:5050(用不着说,这是正确的答案。)老师吃了一惊,高斯就解释他如何找到答案:1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,一共有50对和为 101的数目,所以答案是 50×101=5050。由此可见高斯找到了算术级数的对称性,然後就像求得一般算术级数合的过程一样,把数目一对对地凑在一起。 勾股定理 勾股定理:在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方。 这个定理在中国又称为"商高定理",在外国称为"毕达哥拉斯定理"。为什么一个定理有这么多名称呢?商高是公元前十一世纪的中国人。当时中国的朝代是西周,是奴隶社会时期。在中国古代大约是战国时期西汉的数学著作《周髀算经》中记录着商高同周公的一段对话。商高说:"…故折矩,勾广三,股修四,经隅五。"什么是"勾、股"呢?在中国古代,人们把弯曲成直角的手臂的上半部分称为"勾",下半部分称为"股"。商高那段话的意思就是说:当直角三角形的两条直角边分别为3(短边)和4(长边)时,径隅(就是弦)则为5。以后人们就简单地把这个事实说成"勾三股四弦五"。由于勾股定理的内容最早见于商高的话中,所以人们就把这个定理叫作"商高定理"。 毕达哥拉斯(Pythagoras)是古希腊数学家,他是公元前五世纪的人,比商高晚出生五百多年。希腊另一位数学家欧几里德(Euclid,是公元前三百年左右的人)在编著《几何原本》时,认为这个定理是毕达哥达斯最早发现的,所以他就把这个定理称为"毕达哥拉斯定理",以后就流传开了。 关于勾股定理的发现,《周髀算经》上说:"故禹之所以治天下者,此数之所由生也。""此数"指的是"勾三股四弦五",这句话的意思就是说:勾三股四弦五这种关系是在大禹治水时发现的。 勾股定理的应用非常广泛。我国战国时期另一部古籍《路史后记十二注》中就有这样的记载:"禹治洪水决流江河,望山川之形,定高下之势,除滔天之灾,使注东海,无漫溺之患,此勾股之所系生也。"这段话的意思是说:大禹为了治理洪水,使不决流江河,根据地势高低,决定水流走向,因势利导,使洪水注入海中,不再有大水漫溺的灾害,是应用勾股定理的结果。 无声胜有声 在数学上也不乏无声胜有声这种意境。1903年,在纽约的一次数学报告会上,数学家科乐上了讲台,他没有说一句话,只是用粉笔在黑板上写了两数的演算结果,一个是2的67次方-1,另一个是193707721×761838257287,两个算式的结果完全相同,这时,全场爆发出经久不息的掌声。这是为什么呢? 因为科乐解决了两百年来一直没弄清的问题,即2是67次方-1是不是质数?现在既然它等于两个数的乘积,可以分解成两个因数,因此证明了2是67次方-1不是质数,而是合数。 科尔只做了一个简短的无声的报告,可这是他花了3年中全部星期天的时间,才得出的结论。在这简单算式中所蕴含的勇气,毅力和努力,比洋洋洒洒的万言报告更具魅力。 为什么时间和角度的单位用六十进位制 时间的单位是小时,角度的单位是度,从表面上看,它们完全没有关系。可是,为什么它们都分成分、秒等名称相同的小单位呢?为什么又都用六十进位制呢? 我们仔细研究一下,就知道这两种量是紧密联系着的。原来,古代人由于生产劳动的需要,要研究天文和历法,就牵涉到时间和角度了。譬如研究昼夜的变化,就要观察地球的自转,这里自转的角度和时间是紧密地联系在一起的。因为历法需要的精确度较高,时间的单位"小时"、角度的单位"度"都嫌太大,必须进一步研究它们的小数。时间和角度都要求它们的小数单位具有这样的性质:使1/2、1/3、1/4、1/5、1/6等都能成为它的整数倍。以1/60作为单位,就正好具有这个性质。譬如:1/2等于30个1/60,1/3等于20个1/60,1/4等于15个1/60…… 数学上习惯把这个1/60的单位叫做"分",用符号"′"来表示;把1分的1/60的单位叫做"秒",用符号"″"来表示。时间和角度都用分、秒作小数单位。 这个小数的进位制在表示有些数字时很方便。例如常遇到的1/3,在十进位制里要变成无限小数,但在这种进位制中就是一个整数。 这种六十进位制(严格地说是六十退位制)的小数记数法,在天文历法方面已长久地为全世界的科学家们所习惯,所以也就一直沿用到今天。 哥德巴赫猜想 哥德巴赫(Goldbach C,18~20)是德国数学家; 在1742年6月7日给欧拉的信中,哥德巴赫提出了一个命题:任何大于5的奇数都是三个素数之和。 但这怎样证明呢?虽然做过的每一次试验都得到了上述结果,但是不可能把所有的奇数都拿来检验,需要的是一般的证明,而不是个别的检验。" 欧拉回信又提出了另一个命题:任何一个大于2的偶数都是两个素数之和。但是这个命题他也没能给予证明。现在通常把这两个命题统称为哥德巴赫猜想 二百多年来,尽管许许多多的数学家为解决这个猜想付出了艰辛的劳动,迄今为止它仍然是一个既没有得到正面证明也没有被推翻的命题。 够了吧,自己选择吧 回答人的补充 2009-08-15 10:10 一次只能一万字,而且要审核,比较慢,所以第二部分放这里
1、写标题:在纸张的左上角写标题,数学小报(写大一点,最好按某种字体写上去,会更好) 2、想内容:根据你最近学的数学上的知识,还有一些出名的数学家,如:祖冲之、华罗庚等一些你认为与数学有关系的有意义的内容; 3、排版:把除了标题以外的地方分成3-5个板块(最好用铅笔先轻轻画一下,可以以后再擦掉),在把具体内容写上去(如果是用铅笔写的,那一定要按照一定的顺序写,因为铅笔被擦得多了笔迹很容易模糊,所以写过的地方要尽量少碰,而且要常削,不然字很难看)每个板块用彩色笔勾出漂亮一点的线条 注意:在这一步时,一定要量好板块大小,要够写下你所选的内容才行,并且写内容时,要语言精练,长话短说,不要经常涂改,否则会很难看并且每部分都不要太大,最好差不多大,最好再在板块与板块之间画点插图就算是一个很大的∏(派,圆周率的代表字母)也可以的 4、增加小标题:在每个模块里,最好要有一个小标题,这是用来说明该模块的主要内容的旁边最好有张图符合你的小标题 5、修饰细节:在你觉得太空了,没有内容的小地方加一点小修饰,例如:画一点小星星、花、彩色的小点等都可以的 这就是本人做小报的步骤,顺便说一下,本人以前当过宣传委员,出过的板报75%都是一等奖,小报也的过奖 如果你能说明自己是几年级,画画水平怎么样,最擅长画什么,还有最近学过什么关于数学的知识的话,我或许还能把做出小报的步骤更具体化地告诉你
在网上查一些资料,浏览一下别人的作品,自己再设计一下,把找来的资料抄写上去,就好了,很简单的么!!O(∩_∩)O哈哈~ 再画些画更好☆☆☆☆☆O(∩_∩)O
用一张16开的纸设计一张数学报,说说各栏目所占的篇幅约这张报的几分之几?
回答 你好,你的问题我已经收到,正在为你设计,需要一点时间哟,请你等我一下好吗? 我正在为你设计,稍等 就比如我为你设计的这张数学报,数学故事,数学例题,数学公式,数学练习,各占这张数学报的1/4 下面空白的部分,我们就可以写上内容,我们把一张16k的纸平均分成四份,每份就是1/4,平均分成五份,每份就是1/5,以此类推 提问 是小学五年级的题 数学题 回答 对的,这就是小学五年级,因为小学五年级刚学分数,把一个整体平均分成若干等份,其中的一份就是总份数分之一 可以直接用我的这一个设计,也可以画一个圆,把一个圆平均分成四份在里面写上,我写的这一些标题,但是一定要平均分,每份是总份数分之一 你可以照着我的这一个画,一个长方形,把这个长方形平均分成四份,写上我给你的这些标题也可以,每份就是1/4 提问 具体您给我一一写一下吧,我是家长,没学问有点难 回答 稍等一下哈 提问 好的谢谢 回答 实践活动其实就是要你的孩子用一张16k的纸把它平均分成四份,向我照图片给你的那样,然后去你的数学课本上摘抄一点速写故事在下面,摘抄一点数学例题在下面,摘抄一点数学公式在下面,摘抄一些数学练习在下面,然后,把这一张16k的纸可以用彩色的笔,把它设计成一个手抄报那种形式,内容你到书上摘抄一点,把它抄满,然后带走这张16k的纸拿给老师看 这就叫做实践活动,实践就是要自己动手去做 也不是说在你的书上画一下就可以了,就是用一张16k的纸,把它设计成手抄报的那种形式 你好,你明白了吗? 就像这种设计,然后你把它像我那种弄了,很整齐,很均匀的那样就可以啦 提问 对,16k纸有,就是不会给孩子讲 回答 对,就是给他一张16k的纸,然告诉他,你把他平均分成四份,你跟他一起做,找一些内容把这张手抄报填满就可以啦,然后让他带到学校给老师 由于是平均分,所以他很好指出,每一块内容就是整张纸的1/4 更多21条