西塔潘猜想是由英国数理逻辑学家西塔潘于20世纪90年代提出的一个反推数学领域关于拉姆齐二染色定理证明强度的猜想。拉姆齐二染色定理以弗兰克·普伦普顿·拉姆齐正式命名,1930年他在论文On a Problem in Formal Logic(《形式逻辑上的一个问题》)证明了R(3,3)=61930年,英国数学家弗兰克·普伦普顿·拉姆齐在一篇题为《形式逻辑上的一个问题》的论文中证明了R(3,3)=6。这条定理被命名为“拉姆齐二染色定理”。用文字来表述就是“要找这样一个最小的数n,使得n个人中必定有k个人相识或l个人互不相识,这个数n记为R(k,l)”。拉姆齐二染色定理的通俗版本被称为“友谊定理”,即在一群不少于6人的人中,或者有3人,他们互相都认识;或者有3人,他们互相都不认识。 拉姆齐二染色定理(Ramsey Theorem for Pair)用非形式的语言可以叙述为任何一个对边进行2-染色的含(可数)无穷个顶点的完全图都有一个单一染色的含有无穷个顶点的子完全图,而弱柯尼希定理(Weak König Lemma)则是说任何一个(可数)无穷二叉树都有一条无穷长的路径。这两条都是二阶算术中的陈述,说的是一个类中满足某种性质的子集存在,可以粗暴地认为它们在某种程度上都是在表现或者替代二阶算术中的选择公理(Axiom of Choice)(一般的“Axiom of Choice”可对超出可数无穷多的对象进行选择)。 在反推数学中,研究的其实是二阶算术的各个子系统以及它们的强度关系,而最重要的是被称为 Big Five的五个子系统 RCA 0 , WKL 0 , ACA 0 (后面两个与本猜想无关,故不列出)。其中 WKL 0 是基本系统 RCA 0 添加弱柯尼希定理的系统,而 RCA 0 添加拉姆齐二染色定理的系统被称为 RT2 2 (不在Big Five,类似还有 RT3 2 ,在此不表)。经过若干数学家的研究,他们发现了一些子系统间存在强弱的比较关系:和 RT2 2 形式接近的 RT3 2 比 ACA 0 要强(其实一样),而 RT2 2 则不比 ACA 0强,( ACA 0 比 WKL 0 强是基本的)等等[1],从这些结果,他们隐约认为 RT22 和 WKL 0 的强度是可以比较的,1995年英国数理逻辑学家西塔潘在一篇论文[2]中发现WKL_0并不强于 RT2 2 ,于是他猜测可能 RT2 2 要强于 WKL 0。 这一猜想引发了大量研究,困扰了许多数学家十多年之久,直到刘路的出现,他证明了 RT2 2并不包含 WKL 0 ,从而给该猜想一个否定的回答。 拉姆齐数的定义拉姆齐数,用图论的语言有两种描述:对于所有的N顶图,包含k个项的团或l个项的独立集。具有这样性质的最小自然数N就称为一个拉姆齐数,记作R(k,l);在着色理论中是这样描述的:对于完全图Kn的任意一个2边着色(e1,e2),使得Kn[e1]中含有一个k阶子完全图,Kn[e2]含有一个l阶子完全图,则称满足这个条件的最小的n为一个拉姆齐数。(注意:Ki按照图论的记法表示i阶完全图)拉姆齐证明,对与给定的正整数数k及l,R(k,l)的答案是唯一和有限的。拉姆齐数的推广对于完全图Kn的每条边都任意涂上r种颜色之一,分别记为e1,e2,e3,...,er,在Kn中,必定有个颜色为e1的l1阶子完全图,或有个颜色为e2的l2阶子完全图……或有个颜色为er的lr阶子完全图。符合条件又最少的数n则记为R(l1,l2,l3,...,lr;r)。[2]拉姆齐数的数值已知的拉姆齐数非常少,保罗·艾狄胥曾以一个故事来描述寻找拉姆齐数的难度:“想像有队外星人军队在地球降落,要求取得R(5,5)的值,否则便会毁灭地球。在这个情况,我们应该集中所有电脑和数学家尝试去找这个数值。若它们要求的是R(6,6)的值,我们要尝试毁灭这班外星人了。”反推数学反推数学是数理逻辑的一个小分支。在上世纪80、90年代,反推数学还比较活跃。 上一个十年中,有些衰落。目前,又有了一点生气。现在,全球研究人员估计超过二十人。国内南京大学对反推数学有研究。 反推数学大致是这样的:通常的数学大致是从公理到定理的研究,而反推数学则是从定理(陈述)到公理的研究,二者正好方向相反。 举一个可能有些不恰当的例子,如果知道 X = 3 这一条件,那么我们可以推出 X^2 = 9 ,这就是通常的数学。但是如果我们知道 X^2 = 9 而要问什么条件可以保证这个结论成立的话,那么选择可就多了,X = 3 可以,X = -3 可以,X + 1 = 4,X - 1 = 2等等也都可以,不过我们或许会特别注意 | X | = 3 ,因为感觉这样“不多也不少”,而其余的则感觉有所遗漏。容易发现 X = 3 和 X^2= 9 这两个陈述的蕴意是有所差别的,当然这也是有语境的,我们自然认定是在全体整数或者实数的范围中考虑的,如果我们是在正数的范围中考虑,那么那两个陈述的蕴意则恰好相当,没有差别。 这个例子很简单,因为其中的陈述看起来很简单,它们的蕴意比较起来很容易。如果我们的陈述是实数的确界定理和闭区间套定理,那么要判断这两个陈述的蕴意就要麻烦一些,对于可能更复杂的两个陈述,判断起来则更不容易。可以说,反推数学就是要探讨(在一个基本体系中)一个陈述的精确蕴意(专业的词汇是证明论强度),既不能多一点也不能少一点。为求精确,最好还是用一些符号:存在一个基本体系 S 以及一个陈述 T (它不能被 S 所证),目标是要在 S 上添加适当的公理(也有可能是一些规则),使得新的体系S’恰好能证出T,“恰好”体现为一则 S’ 要能证出 T ,二则同时 S 和 T 本身就蕴含 S’。编辑本段拉姆齐二染色定理来源这个定理以弗兰克·普伦普顿·拉姆齐命名,1930年他在论文On a Problem in Formal Logic(《形式逻辑上的一个问题》)证明了R(3,3)=6。拉姆齐数的定义拉姆齐数,用图论的语言有两种描述:对于所有的N顶图,包含k个顶的团或l个顶的独立集。具有这样性质的最小自然数N就称为一个拉姆齐数,记作R(k,l);在着色理论中是这样描述的:对于完全图Kn的任意一个2边着色(e1,e2),使得Kn[e1]中含有一个k阶子完全图,Kn[e2]含有一个l阶子完全图,则称满足这个条件的最小的n为一个拉姆齐数。(注意:Ki按照图论的记法表示i阶完全图)拉姆齐证明,对与给定的正整数数k及l,R(k,l)的答案是唯一和有限的。拉姆齐数亦可推广到多于两个数:对于完全图Kn的每条边都任意涂上r种颜色之一,分别记为e1,e2,e3,...,er,在Kn中,必定有个颜色为e1的l1阶子完全图,或有个颜色为e2的l2阶子完全图……或有个颜色为er的lr阶子完全图。符合条件又最少的数n则记为R(l1,l2,l3,...,lr;r)。 拉姆齐数的数值或上下界已知的拉姆齐数非常少,保罗·艾狄胥曾以一个故事来描述寻找拉姆齐数的难度:“想像有队外星人军队在地球降落,要求取得R(5,5)的值,否则便会毁灭地球。在这个情况,我们应该集中所有电脑和数学家尝试去找这个数值。若它们要求的是R(6,6)的值,我们要尝试毁灭这班外星人了。”显然易见的公式: R(1,s)=1, R(2,s)=s, R(l1,l2,l3,...,lr;r)=R(l2,l1,l3,...,lr;r)=R(l3,l1,l2,...,lr;r)(将li的顺序改变并不改变拉姆齐的数值)。[3] r,s 3 4 5 6 7 8 9 103 6 9 14 18 23 28 36 40 – 434 9 18 25 35 – 41 49 – 61 56 – 84 73 – 115 92 – 1495 14 25 43 – 49 58 – 87 80 – 143 101 – 216 125 – 316 143 – 4426 18 35 – 41 58 – 87 102 – 165 113 – 298 127 – 495 169 – 780 179 – 11717 23 49 – 61 80 – 143 113 – 298 205 – 540 216 – 1031 233 – 1713 289 – 28268 28 56 – 84 101 – 216 127 – 495 216 – 1031 282 – 1870 317 – 3583 317 – 60909 36 73 – 115 125 – 316 169 – 780 233 – 1713 317 – 3583 565 – 6588 580 – 1267710 40 – 43 92 – 149 143 – 442 179 – 1171 289 – 2826 317 – 6090 580 – 12677 798 – 23556R(3,3,3)=17 R(3,3)等于6的证明证明:在一个K6的完全图内,每边涂上红或蓝色,必然有一个红色的三角形或蓝色的三角形。任意选取一个端点P,它有5条边和其他端点相连。根据鸽巢原理,3条边的颜色至少有两条相同,不失一般性设这种颜色是红色。在这3条边除了P以外的3个端点,它们互相连结的边有3条。若这3条边中任何一条是红色,这条边的两个端点和P相连的2边便组成一个红色三角形。若这3条边中任何一条都不是红色,它们必然是蓝色,因此,它们组成了一个蓝色三角形。而在K5内,不一定有一个红色的三角形或蓝色的三角形。每个端点和毗邻的两个端点的线是红色,和其余两个端点的连线是蓝色即可。这个定理的通俗版本就是友谊定理