相信正定矩阵的定义楼主很清楚。定义矩阵的正定性是根据二次型来的,这也就是说明正定矩阵的性质反映了一个二次表达式的性质,从另一个角度讲这也给我们提供了一个二次表达式的矩阵表示方法。在最初学函数的时候,我们学过配方法,其实化一个二次型为标准二次型的时候也是利用这个原理,只不过我们通过矩阵的手段来进行计算同时还用到了满值线性变换的一些知识。其实在数学理论中更愿意研究Hermite二次型的正定问题,因为Hermite矩阵(A=AH(表示共轭转置矩阵))更能和一些工程学科相结合。另外在数值计算科学中也经常会用到正定矩阵的知识。比如线性方程组的高斯-塞德尔迭代法就是在方程组的系数矩阵是正定的情况下对任意初始向量是收敛的。从工程学科来说,举一个控制系统为例,如果可以找到一个利亚普诺夫函数使得它的倒数是负定(也就是说倒数的相反数是正定的)那么这个系统就是渐进稳定的。