在r中看函数源代码:在R中,代码可以分为如下几个级别:首先,是你输入了函数对象名称,你可以直接看到代码的,如要获得函数对象fivenum的代码,就只需要在Console中键入函数对象名称fivenum就可以得到如下结果:function (x, = TRUE){xna <- (x)if ()x <- x[!xna]else if (any(xna))return((NA, 5))x <- sort(x)n <- length(x)if (n == 0)(NA, 5)else {n4 <- floor((n + 3)/2)/2d <- c(1, n4, (n + 1)/2, n + 1 - n4, n) * (x[floor(d)] + x[ceiling(d)])}}从上面的例子可以看出,这类函数对象的代码是最容易看到的,也是我们学习的最好的材料了,而R中最大多数的函数对象是以这种方式出现的。其次,我们在输入mean这类函数名次的时候,会出现如下结果:function (x, ...)UseMethod("mean")这表示函数作者把函数“封”起来了。这个时候我们可以先试一试methods(mean),利用methods函数看看mean这个函数都有哪些类型的,我们得到的结果如下:[1] 其实对此可以有一个简单的理解,虽然不够精确。因为在R中,mean函数可以求得属于不同类型对象的平均值,而不同类型对象平均值的求法还是有一些小小差 异的,比如说求一个向量的平均值和求一个数据框的平均值就有所差异,就要编写多个mean函数,然后“封”起来,以一个统一的mean出现,方便我们使 用。这正好也反映了R有一种类似泛型编程语言的性质。既然我们已经知道mean中还有这么多种类,我们可以输入试一试就可以得到:function (x, trim = 0, = FALSE, ...){if (!(x) && !(x) && !(x)) {warning("argument is not numeric or logical: returning NA")return((NA))}if ()x <- x[!(x)]trim <- trim[1]n <- length(x)if (trim > 0 && n > 0) {if ((x))stop("trimmed means are not defined for complex data")if (trim >= )return(stats::median(x, = FALSE))lo <- floor(n * trim) + 1hi <- n + 1 - lox <- (x, partial = unique(c(lo, hi)))[lo:hi]n <- hi - lo + 1}.Internal(mean(x))}同样就可以得到、、、、 的具体内容了。值得注意的是,在R中,出现有多个同样近似功能的函数封装为一个函数的时候(这时候在函数中多半会出现类似UseMethod函数使用的情 况),我们不妨先输入试一试。这种形式的函数在R中一般作为默认的函数表示。第三,这是一种特殊的情况,有人认为应该和第二种是一类,但是我还是要提出来单独归类。在这种情况也和第二种的原因有些类似,但并不是完全一致。也许我们大家都很熟悉plot函数了吧,输入函数名plot的时候,我们会得到如下结果:function (x, y, ...){if ((attr(x, "class")) && (x)) {nms <- names(list(...))if (missing(y))y <- {if (!"from" %in% nms)0else if (!"to" %in% nms)1else if (!"xlim" %in% nms)NULL}if ("ylab" %in% nms)(x, y, ...)else (x, y, ylab = paste(deparse(substitute(x)),"(x)"), ...)}else UseMethod("plot")}请注意plot函数中也出现了UseMethod这个函数,但是和mean不同的是,前面有相当多的语句用于处理其他一些事情。这个时候,我们也使用methods(plot)来看看,得到如下结果:* * * * * * * * * * * * * * * * * * * * * 不看不知道,一看吓一跳,还以为我们输入plot的输出就是函数本身,结果也许不是如此。可能有人已经理解了,其实最后的UseMethod函数实在默认的调用函数,赶快再看看函数吧,发现它再调用函数,再看看函数,再函数中调用了一个.Internal((xy, type, pch, lty, col, bg, cex, lwd, ...))函数,也许这就是真正起作用的函数了吧。思路基本上就是如此了,是否这个时候您可以获得一些阅读查找R函数内容的乐趣。除了直接输入形式外,还可以使用getS3method(FUN,"default")来获得代码。这样就解决了绝大多数函数代码查看的工作了。在第二种情况种,我们说了一般可以通过获得想要的结果。但是只有称为generic的函数才有这种“特权”。而lm等则没有,不过我们也可以尝试使用methods(lm)来看看结果如何,发现:[1] message:function 'lm' appears not to be generic in: methods(lm)出现了警告信息,表示说lm不是泛型函数,但是还是给出了结果等,大致上可以看成是和lm相关的系列函数吧。这样子就出现了有趣的局面,比如说既有,也有。依照第三种情况,我们发现竟然有的函数用星号标识了的,比如*等,当我们输入,甚至是*的时候都会给出 要么找不到这个对象,要么干脆是代码错误的信息。原来凡是用了*标识的函数,都是隐藏起来的函数,估计是怕被人看见(其实这是玩笑话)!我们要看这些函数 的代码,我们该怎么办呢?其实也很容易,使用功能强大的getAnywhere(FUN),看看这个函数的名称,就可以猜想到它的功能估计是很强大的, Anywhere的内容都可以找到!getAnywhere()的结果如下:A single object matching '' was foundIt was found in the following placesregistered S3 method for plot from namespace statsnamespace:statswith valuefunction (x, labels = colnames(X), = list(mar = c(0,6, 0, 6), oma = c(6, 0, 4, 0), tck = , mfrow = c(nplot,1)), main = NULL, = TRUE, ..., = "light gray"){sers <- x$ <- ncol(sers)data <- drop(sers %*% rep(1, ncomp))X <- cbind(data, sers)colnames(X) <- c("data", colnames(sers))nplot <- ncomp + 1if ()mx <- min(apply(rx <- apply(X, 2, range), 2, diff))if (length()) {oldpar <- ("par", (names()))(par(oldpar))("par", )}for (i in 1:nplot) {plot(X[, i], type = if (i < nplot)"l"else "h", xlab = "", ylab = "", axes = FALSE, ...)if () {dx <- 1/64 * diff(ux <- par("usr")[1:2])y <- mean(rx[, i])rect(ux[2] - dx, y + mx/2, ux[2] - * dx, y -mx/2, col = , xpd = TRUE)}if (i == 1 && !(main))title(main, line = 2, outer = par("oma")[3] > 0)if (i == nplot)abline(h = 0)box()right <- i%%2 == 0axis(2, labels = !right)axis(4, labels = right)axis(1, labels = i == nplot)mtext(labels[i], side = 2, 3)}mtext("time", side = 1, line = 3)invisible()}注意到前面有一段解释型的语言,描述了我们要找的这个函数放在了什么地方等等。其实对任意我们可以在R中使用的函数,都可以先试一试getAnywhere,看看都有些什么内容。算是一个比较“霸道”的函数。在上面函数中,我们还可以看到.Internal这个函数,类似的也许还可以看到.Primitive、.External、.Call等函数这就和R系统内部工作方式和与外部接口的定义有关了,如果对这些函数有兴趣的话,就要学习组成R系统的源代码了。最后,如果真的想阅读组成R系统本身的源代码,在各个CRAN中均有下载。你可以得到组成R系统所需要的材料。其中很多C语言(还有就是F)的源代码,均 是精心挑选过的算法,哪怕就是想学从头到尾编写具体的算法,也是学习的好材料。同时,你可以看到R系统内部是如何构成的,理解了这些对于高效使用R有至关 重要的作用。这个范畴的材料就要着重看一看R-Lang和R-inits了。