R语言-统计学 描述性统计描述定量数据的数值方法:中心趋势度量 变异的度量 相对位置的度量。1.中心趋势度量 : 算数平均 中位数 众数 在R中计算平均数的函数 mean( )常规的mean() 函数用法 mean(x, trim = 0, = FALSE, ...) 参数说明: x 对象名称trim 过滤掉异常值 ,按照距离平均值的远近距离排除,如对象中含有10个数据,排除最高和最低值,trim= 默认为F 表示是否计入空值实例1: 做一个稍微复杂点的操作,用r做数据透视表并把结果转换为matrix ,对行列求和。(仅娱乐,无实用价值) demo <- mtcars[1:6,] # 调用R自带函数集,并去前6行 toushi <- aggregate(mtcars[,5:6] ,by = list(cyl = mtcars$cyl),sum) # 数据透视表求和 toushi <- (toushi) # 将结果的数据框转化成矩阵 #(toushi <- apply(toushi,c(1,2),sum)) (rowSums(toushi)) # 行求和 (colSums(toushi)) # 列求和 toushi <- rbind(toushi,rowSums(toushi)) #将行求和结果并入最后一行 toushi <- cbind(toushi,colSums(toushi)) #将列求和结果并入最后一列 中位数和众数 对于偏度极大的数据集,中位数能更好的描述数据分布的中心。 很少用众数作为数据数据趋势的度量,只有当对y出现的相对频率感兴趣时,才会考虑到众数。 R实现中位数 : median(x, = FALSE) R中没有直接插找众数的命令 (table(x))2.变异的度量 : 极差 方差 标准差 .极差 = max()- min() 方差和标准差 对一个有n个测量值的有限总体来说,方差计算公式的分母为n。关于样本方差和总体方差分母的差异原因,可自行百度搜索。 R语言计算方差的函数: var(x,) w<-c() var(w) # 附加指数点:标准差的两个有用法则:经验法则 和 切比雪夫法则,共同说明一个问题,对于任意大于1的正数k,至少有(1-1/k^2)的测试值落在平均值的k个标准值范围内。3.变异的度量 : 百分位数 Z得分 .最常见的四分位数(一般从大到小) quantile(x, probs = seq(0, 1, ), = FALSE,names = TRUE, type = 7, ...)