1 顾基发.存储论.运筹学导论.中国科学院数学所运筹室主编,鞍山市金属学会 许国志,顾基发等.运筹学.北京:科学出版社, 顾基发,吴方等.优选法.北京,1975年,1978年二版.4 顾基发,魏权龄.多目标决策问题.最优化方法及其应用(五)数学研究所1978年.5 Ku Chifa. Extension work practical applications and theoretical studies of Some Methods of seeking the optimum in China. Operational Research 75 North-Holland Company, Ku Research in China Operational Research78, North-Holland Company, 顾基发,魏权龄.多目标决策问题.应用数学与计算数学, 1980年.8 Ku applications of Multiple Criteria Decision Research 81, North-Holland Company 顾基发,金良超.多目标决策及其应用,系统工程论文集.北京:科学出版社, 钱颂迪,顾基发.运筹学.北京:清华大学出版社,1982年1990年二版.11 Gu Jifa. Invcntcd goal programming. Rcvue Belge de Statistique, D’informatique et. De Recherché Opertionelle, vol. 23, NO. 4, Gu . C. Jin, G. F. number methods for MCDM, Journal, of Systems Science and Math. , No. 4, 顾基发.系统工程在领导工作中的应用,钱学森编写的《现代领导科学与艺术》书中,北京:军事译文出版社, 顾基发.决策分析——多目标决策,系统科学讲义(六).中国科学院系统科学研究所编印 金良超,顾基发.对话式虚拟目标法.系统工程理论与实践, 顾基发,朱松春,王兴成著.领导与系统工程.济南:山东人民出版社 顾基发,朱敏著.库存控制理论.北京:煤炭出版社 顾基发.系统工程的“软”、“硬”方法.北京:《发展战略与系统工程》学术期刊出版社 顾基发等.首都发展战略对策专家咨询综合分析报告,《城市发展与系统工程》科学研究论文集第二集.北京:北京科技出版社, Gu Ji-fa, J. L. and strategic development for Beijing, proceedings Toward interactive and intelligent DSS Springicr-vcrlag, 顾基发,舒光复.大同能源基地水资源系统分析,《系统工程应用案例集》.北京:科学出版社, 顾基发,宋健等.中国大百科全书:自动控制与系统工程卷.北京:中国大百科全书出版社,系统工程方法论分支主编, Gu Jifa, B. D. Liu. Equations of fuzzy Criterion model for reservoir operations Journal of Syst. Sci. and systems Engineering 顾基发.企业发展与系统工程.北京:中国科技出版社, 叶笃正,顾基发等.中国的全球变化预研究.北京:气象出版社, Gu Jifa. Systems Engineering in China Journal of Syst..Eng. And Electronics Gu Jifa, B. D. Liu. Dependent-Chance goal programming and an application Journal of Syst. Engi. And Electronics Gu Jifa, Z. C. Wuli-Shili-Renli Approach (WSR) An oriental system methodology, The University of Hull Press. Gu Jifa, X. J. systems approach to a water resources manag. DDS. The University of Hull . An application of MCDM in water resources problems. J. Of Multi-Criteria Decision Analysis 顾基发.系统工程与可持续发展战略。北京:科学技术文献出版社,1998.
文章编号! " ##$%&’($) (##(*#" %##" (%#+ 煤巷锚杆支护新理论与设计方法 陈庆敏" , 郭颂(, 张农" 江苏徐州() " -中国矿业大学, (" ##. /(-美国岩层加固与工程技术公司* 摘 要! 根据水平主应力与垂直应力的关系, 将地层的应力状态分为四种情况, 即高水平应力状态0低水 正常水平应力状态0静水应力状态, 提出了基于高水平地应力的1刚性2梁理论与基于垂直地应力平应力状态0 的1刚性2墙理论, 并建立了相应的锚杆参数设计方法3 关键词! 锚杆支护理论/刚性2梁/刚性2墙/设计方法11中图分类号! $&$-4 文献标识码! 5 完善的锚杆支护理论是正确设计锚杆支护参数的基础, 随着煤巷锚杆支护技术在我国的应用, 近年来, 锚杆支护理论研究有了进一步的发展, 基于高预应力锚杆的应用, 本文提出了基于高水平地应力的1刚性梁2理论及基于高垂直地应力的1刚性2墙理论, 并建立了相应的锚杆参数设计方法36现有锚杆支护理论 6-6悬吊理论 悬吊理论对锚杆支护机理作出了最朴素的解释! 锚杆的作用在于将下位松软和7或破碎岩层悬吊于上位坚硬岩层3 对于在巷道顶板一定范围内存在坚硬岩层时, 采用悬吊理论进行锚杆支护设计是完全可行的, 也是最简单0最经济的方法3 6-8组合梁理论 组合梁理论是从经典的材料力学中借用而来的3在美国七十年代无拉力全长胶结锚杆盛行时, 组合梁理论被广泛用来解释锚杆的支护机理, 其主要要点是! 锚杆将各个薄的岩石分层贯穿在一起形成一个厚的组合梁, 薄的岩石分层能独立抗拒的拉应力较小, 而厚的组合梁抗拉强度大大提高3在锚杆与岩石层面横交处, 锚杆与胶结物一起共同阻止岩层沿层理面的水平错动3材料力学中的组合梁理论本身不考虑水平侧压的影响, 而只考虑垂直载荷3 收稿日期! (##" %#4%"? 6-9组合拱理论 组合拱理论认为! 在拱形巷道围岩的破裂区中安装预应力锚杆时, 在杆体两端将形成圆锥形分布的压应力, 如果沿巷道周边布置锚杆群, 只要锚杆间距足够小, 各个锚杆形成的压应力圆锥体将相互交错, 就能在岩体中形成一个均匀的压缩带, 即承压拱) 亦称组合拱或压缩拱*这个承压拱可以承受, 在承压拱内的岩其上部破碎岩石施加的径向载荷3 石径向及切向均受压, 处于三向应力状态, 其围岩强度得到提高, 支撑能力也相应加大3因此, 锚杆支护的关键在于获取较大的承压拱厚度和较高的强度, 其厚度越大, 越有利于围岩的稳定和支撑能力的提高3 组合拱理论在一定程度上揭示了锚杆支护的作用原理, 在岩石或煤层拱形巷道中可以作为锚杆支护参数的设计依据3 6-:围岩松动圈支护理论围岩松动圈理论认为! 地应力与围岩相互) " *作用会产生围岩松动圈/松动圈形成过程中产) (*生的碎胀力及其所造成的有害变形是巷道支护的主要对象, 松动圈尺寸越大, 巷道收敛变形也越大, 支护越困难3) 依据松动圈的大小采用不同的原$*理设计锚杆支护3小松动圈) 采用喷射混#;+#" 作者简介! 陈庆敏) 男, 副教授, 获工学博士学位, 现在中国矿业大学从事巷道支护理论与工程实" ’4? @*, " ’’4年毕业于中国矿业大学, 践的科研工作, 发表论文$获国家科技进步二等奖" 项, 省部级科技进步二等奖(项, #余篇, " ’’. 年获孙越崎科技教育基金青年科技奖, 煤炭系统拔尖人才3 万方数据 A " (A (##(-B" 矿山压力与顶板管理 由于围岩松动圈是随着时间! 巷道支护形式及并且在同一断面上由于岩支护强度的变化而变化" 性的差异" 围岩松动圈的大小也是不一样的#所以" 在复杂条件下围岩松动圈理论$如煤巷! 软岩巷道%并没有得到应用#松动圈支护理论对于锚杆支护的指导作用主要在于确定普通锚杆$如普通圆钢锚杆! 水泥药卷锚杆等等%的适用条件和范围#&’(最大水平地应力理论自从八十年代以来" 水平应力对巷道稳定性的影响已经引起了人们的普遍关注#澳大利亚) ’. /0 通过数值模拟分析及现场观测" 1234%*+, -博士$充分考虑水平地应力的影响# 在美国" 由于使用无拉力全长胶结锚杆的巷道冒顶现象仍然不断发生" 于是人们试图从改变锚杆其中最重要的一点就结构入手解决巷道冒顶问题" 是使用抗摩擦塑料垫圈#这一改进使得实现顶板锚杆高预拉力成为可能" 美国矿山巷道锚杆的预应力一般为1可以达到锚杆杆体本身屈服I J K 左右" 在美国" 高预拉力强度的G I LH4G L#实践证明" 锚杆的使用提高了复杂顶板条件下的顶板稳定性" 大大降低了冒顶事故#尽管高预拉力锚杆在美国使用已有相当一段历史并取得极佳的技术经济效果" 得到了水平应力对巷道稳定性的最基本的认识5巷道轴向与最大主应力方向平行时" 巷道受水平应力的影响最小6二者垂直时" 巷道受水平应力的影响最大6二者呈一定夹角时" 巷道其中一侧会出现水平应力集中而另一侧应力较低" 因而顶底板的变形会偏向巷道的某一侧#并提出在最大水平地应力的作用下" 顶底板岩层易于发生剪切破坏" 出现错动与松动而造成围岩变形" 锚杆的作用即是约束其沿轴向岩层膨胀和垂直于轴向的岩层剪切错动" 因此要求锚杆必须具有强度大! 刚度大! 抗剪切阻力大的特点才能起到约束围岩变形的作用#所以" 澳大利亚锚杆支护特别强调锚杆高强及全长胶结#7锚杆支护新理论 根据垂直地应力89与水平地应力8:的关系" 可以将地层的应力状态分为四种情况5即 $1%高水平应力状态5当8:; 89 $1? =%$@%低水平应力状态5当8:A 89$1? =%$B %正常水平应力状态5当8:C 89$1? =%$D %静水应力状态58:C 89相同的岩体" 在不同的应力状态及开挖环境下所表现出的力学响应是不相同的" 所以" 锚杆支护参数的设计必须根据不同的地应力特征而选择不同的锚杆支护理论# 7’&基于高水平地应力状态的E 刚性F 梁理论近几十年来" 美国! 澳大利亚! 英国等国家的地应力观测结果表明5水平最大应力通常是垂直应力的1’@G H@’G 倍" 水平应力的大小! 方向主要取决于地球板块之间的运动" 而与垂直应力没有直接关 系. 1? B 0#我国一些矿区的地应力测试结果表明" 大部分矿区的地应力是以水平地应力为主的" 如金 川. D 0" 大同! 邢台! 峰峰! 鹤壁! 新汶! 兖州等等. G 0 # 所以" 在这种情况下水平地应力才是控制巷道稳定性的主要因素万" 方数据 煤巷锚杆支护的理论与设计方法必须但直至几年前人们对其作用机理还缺乏认识" 特别是还没有一个科学的设计依据去确定锚杆参数# 美国M ’N O +P J Q R 和N S P T*Q S . 1" 40 $ 122/" 1224%系统地研究了水平地应力对巷道稳定性的影响" 认 为水平地应力是造成巷道顶板离层跨落! 底板鼓起的主要原因" 但可以通过提高巷道顶板锚杆预应力" 将水平地应力的消极影响变为积极的作用" 从而极大地提高巷道的稳定性" 并开始在锚杆支护设 计中考虑锚杆预应力的影响#中国学者朱浮声. 30$122B %! 郑雨天. 20 $122G % 的研究表明5当锚杆预应力达到/I H 4I J K 时" 就可以有效控制巷道顶板的下沉量" 并可以加大锚杆的间排距#基于大量采用高预拉力锚杆的成功实践经验" 作者提出了关于基于高水平地应力的锚杆E 刚性F 梁支护理论#该理论的主要观点详见本刊@I I I 年第1期作者的相关文章# 7’7基于垂直地应力的锚杆支护理论UU E 刚性F 墙理论 长期以来" 人们普遍认为水平地应力一般小于垂直地应力" 并把垂直地应力作为控制巷道围岩稳定性的主要因素#事实上" 我国一些矿区或者同一矿区的不同深度的地层应力是以垂直地应力为主 的" 如新汶矿务局的华丰煤矿. G 0 #基于对高预拉力 锚杆作用的认识" 作者提出了基于垂直地应力的锚杆支护理论UU E 刚性F 墙理论" 其基本内容如下5$1%在垂直地应力的作用下" 巷道两帮成为薄弱环节" 所以两帮锚杆预拉力$或称初撑力%的大小对整个巷道的稳定性具有至关重要的作用#当预拉力大到一定程度时" 使巷道两帮形成E 刚性F 墙" 提高了巷道两帮的刚度与承载能力" E 刚性F 墙的存在形成了垂直地应力的转移E 通道F " 使巷道顶板成为一个免压区" 保护巷道顶板不受垂直压力的破坏" 如图1# $@% 在垂直应力占主导地位的情况下" 与高水矿山压力与顶板管理 @I I @’W1 V 1B V 平地应力的情况下! 先控顶" 后护帮#的支护理念相当垂直地应力成为控制巷道稳定性的关键因素比" 时" 巷道的支护原则是! 先护帮" 后控顶#$刚性#墙的存在" 降低了巷道顶板的有效%&’! 跨度" 从而提高了巷道顶板的承载能力" 减少了巷道顶板离层冒顶的可能性 $ 万 方数据 关变量! 比如采深" 岩石力学性质" 巷道尺寸" 水平赋予用户所采用的数值$就能应力大小与方向等# 产生用户所期望的模型%通用化的实现使人们对有限元建模过程达到一劳永逸的目的% 刚性*梁或) 刚性*墙理论的锚杆支护参&’(基于) 数设计步骤与方法 由于锚杆预拉力是形成) 刚性*梁顶板的重要而改变锚杆预拉力又是提高顶板稳定性的手因素$ 段$因此$预拉力的确定是锚杆设计的中心内容% 利用三维有限元大模型$首先确定所研究巷道的应力状况%大模型的主要输入参数包括+最大水6结论与认识 提出了基于高水平地应力的锚杆支护新理! -#刚性*梁及基于垂直地应力的锚杆支护新理论7) 论8) 刚性*墙理论$该理论更加强调锚杆预拉力或称初撑力#的大小对巷道稳定性的作用$在锚杆! 高预拉力的作用下可使巷道顶板或两帮加固成类刚性*的梁或墙$转化高水平地应力或垂直应似于) 力的负面影响$最大程度地保护巷道顶板不受破坏$避免冒顶事故的发生% 研究了基于) 刚性*梁或) 刚性*墙理论的煤! /# 平应力! , -#. 最小水平应力! , /#. 夹角! 0#. 工作面" 采空区" 煤柱" 巷道等的几何尺寸. 岩石力学性质. 采深等% 水平应力对回采工作的影响包括两方面$即原始水平应力和开采引起的水平应力集中%原始水平应力对巷道围岩稳定性的影响体现在巷道掘进阶段. 开采引起的水平应力集中对巷道围岩稳定性的影响体现在工作面回采阶段%所以$锚杆支护参数的设计必须充分考虑掘进期间与动压影响期间水平应力对巷道稳定性的影响%在上述大模型的基础上切割出所关心的局部区域$此区域称之为子模型% 子模型的边界条件由大模型输出而自动附加在子模型的边界上%在子模型中考虑锚杆单元及岩石层理单元%只要子模型的外边界选得合适$这种做法是合乎逻辑的$因为受锚杆影响的应力范围非常有限$ 从而避免在大模型上进行非线性分析%子模型输入参数包括+岩石及层理面的力学性质" 锚杆间距$见图 /% 开始 结束3得出锚杆支护参数 图/锚杆预拉力与长度的确定原则 万 方数据巷锚杆设计方法$建立了快速" 通用" 巨型矿山巷道三维有限元模型系统$实现了煤巷锚杆支护参数设计的快速" 通用%该设计方法将锚杆预拉力作为锚杆支护的重要参数进行设计$充分考虑了水平地应力的大小" 方向对锚杆参数设计的影响% 参考文献+ 9-:; ?@ E Q E B J I M =BL J H C I M =C B J OG J L $WC =B M =M C $-Z Z [’9/:’? ’; M O O C H H $X ’A ’? C H J ’; B G C B C F ; K M J =K J N a=>M =J J G E C =OB L J V =E B M B @B M C=O I J B C H H @G >QC B‘L JWC c J E B M Kd C B J $-Z Z /’ 9e :WC B B L J R E ;W ’’d G I M =J E 9T :’--B L V =B J G =C B M $‘L J f =M g J G E M B Q $]’; ’X ’$A @H Q -Z Z /’9h :寥椿庭’金川矿区应力测量与构造应力场9W : ’北京+地质出版社$-Z i j ’ 9j :侯朝炯" 郭励生" 勾攀峰$等’煤巷锚杆支护9W : ’徐州+中国矿业大学出版社$-Z Z Z ’ 9U :X ’A ’? C H J $’k ’l H C K D R n C M H @G J T G $-Z i [$/h ! e #+-U j 8-[e ’9[:A ’; B C =D @E $; ?@ C =C H Q E M E 7C p =C =O >G =9T :’jB LF C =B M =M C $-Z Z U ’9i :朱浮声’锚喷加固设计方法9W : ’北京+冶金工业出版社$-Z Z e ’ 9Z :郑雨天$ 朱浮声’预应力锚杆体系88锚杆支护技术发展的新阶段9A :’矿山压力与顶板管理$-Z Z j $! -#+/7[’9-q :郭颂’快速" 通用" 巨型矿山巷道系统三维有限元模型系统的建立9A :’焦作工学院学报$-Z Z Z $! /#+-//7-/U ’矿山压力与顶板管理 /q q /’s-r -j r 煤巷锚杆支护新理论与设计方法 作者:作者单位:刊名:英文刊名:年,卷(期):引用次数: 陈庆敏, 郭颂, 张农 陈庆敏,张农(中国矿业大学,江苏,徐州,221008), 郭颂(美国岩层加固与工程技术公司)矿山压力与顶板管理 GROUNT PRESSURE AND STRATA CONTROL2002,19(1)8次 1. Song Guo. Control mechanism of a tensioned bolt system in the laminated roof with alarge horizontal stress 1997 2. . Strata Control ---- A New Science for an Old Problem 19923. Matthews S M Horizontal stress control in underground coal mines 19924. 寥椿庭 金川矿区应力测量与构造应力场 19855. 侯朝炯. 郭励生. 勾攀峰 煤巷锚杆支护 1999 6. W J Gale. R. L. Blackwood Stress Distribution and Rock Failure Around Coal Mine Roadways1987(3) 7. Song automated finite element analysis - a powerful tool for fast minedesign and ground control problem diagnosis and solving 19968. 朱浮声 锚喷加固设计方法 1993 9. 郑雨天. 朱浮声 预应力锚杆体系—锚杆支护技术发展的新阶段 1995(1) 10. 郭颂 快速、通用、巨型矿山巷道系统三维有限元模型系统的建立[期刊论文]-焦作工学院学报 1999(2) 1. 张炜. 张东升. 王旭锋. 吴鑫. 王冠. 崔廷锋 大采高工作面大断面回撤通道联合支护效果模拟分析[期刊论文]-煤炭工程 2009(3) 2. 陈坤福. 靖洪文. 韩立军 基于实测地应力的巷道围岩分类[期刊论文]-采矿与安全工程学报 2007(03)3. 赵志宏. 王金安 锚网支护巷道自动设计系统研究与工程应用[期刊论文]-中国矿业 2006(04) 4. 刘泮兴. 任秋儒. 朱永全 锚杆支护在整治高地应力软岩隧道大变形的效应分析[期刊论文]-石家庄铁道学院学报 2006(01) 5. 黄正全 玲珑金矿255水平主运巷两种锚注加固方案的对比分析研究[学位论文]硕士 20066. 郭军杰 全长可回收树脂锚杆锚固特性及锚固参数研究[学位论文]硕士 20057. 王兵 煤巷锚杆支护围岩应力分布及顶板离层规律的研究[学位论文]硕士 2005 8. 刘泉声. 张华. 林涛 煤矿深部岩巷围岩稳定与支护对策[期刊论文]-岩石力学与工程学报 2004(21)9. 对煤矿深部岩巷围岩稳定与支护几个关键问题的认识[期刊论文]-岩石力学与工程学报 2003(z1)10. 刘银志. 贾明魁 高应力三软煤层大断面沿空掘巷锚网支护技术[期刊论文]-煤炭科学技术 2003(04)11. 贾明魁. 马念杰. 刘银志 深井三软煤层窄煤柱护巷锚网支护技术研究[期刊论文]-矿山压力与顶板管理2003(04) 本文链接:. 下载时间:2009年11月8日
颜志丰1 琚宜文1 侯泉林1 唐书恒2
(1.中国科学院研究生院地球科学学院 北京 100049 2.中国地质大学(北京)能源学院 北京 100083)
摘要:为模拟研究煤储层水力压裂效果,对煤样进行了饱水条件下的常规单轴压缩试验和声发射测试。对结果进行分析表明:在常规单轴压缩条件下,煤在平行层面上其力学性质具有方向性差异,平行面割理方向的单轴极限抗压强度要比垂直面割理方向的单轴极限抗压强度大得多,其弹性模量也大得多。煤样在垂直面割理方向弹性模量E随着单轴极限抗压强度σc的增加而增加,相关性较高,平行面割理方向弹性模量E随着抗压强度的增高而增高,但离散性较大。在单轴压缩条件下煤样变形破坏表现出的全应力—应变曲线形态大体可以概括为3种类型。
关键词:单轴压缩试验 力学性质 各向异性 饱和含水率 割理
基金项目: 国家自然科学基金项目 ( No. 41030422; 40972131) ; 国家重点基础研究发展规划 ( 973) 课题( No. 2009CB219601) ; 国家科技重大专项课题 ( 2009ZX05039 - 003) ; 中国科学院战略性先导科技专项课题( XDA05030100) ; 河北工程大学博士基金课题。
作者简介: 颜志丰,1969 年生,男,河北邯郸人,博士后,长期从事能源地质和构造地质研究。Email: yanzf@ gucas. ac. cn。
Uniaxial Mechanical Test of Water-saturated Coal Samples in Order to Simulate Coal Seam Fracturing
YAN Zhifeng1JU Yiwen1HOU Quanlin1TANG Shuheng2
( 1. College of Earth Science,Graduate University of Chinese Academy of Sciences,Beijing 100049 2. School of Energy Resources,China University of Geosciences ( Beijing) ,Beijing 100083 China)
Abstract: In order to simulate effect of hydraulic fracturing in coal reservoir,conventional uniaxial compres- sion test and acoustic emission test on the water-saturated coal samples were hold. The results showed that the me- chanical properties in parallel to the level of coal have directional difference. Under the conditions of conventional uniaxial compression. The uniaxial limit compressive strength in direction parallel to the face cleat is much larger than it in the vertical,so is the elastic modulus. The elastic modulus of coal increased with the increasing of com- pressive strength,however it is higher correlation in the direction of vertical face cleat,but a larger dispersion in parallel. The complete stress-strain curve shape showed by deformation of coal samples under uniaxial compression can be roughly summarized as 3 types.
Keyword: uniaxial compression test; mechanical properties; Anisotropy; saturated water content; cleat
1 前言
煤层气是储存于煤层内的一种非常规天然气,其中CH4含量多数大于90%,是一种优质洁净的气体能源(单学军,2005)。我国煤层气资源十分丰富,根据新一轮全国煤层气资源评价结果,在全国19个主要含煤盆地,适合煤层气勘探的埋深300~2000m范围内,预测煤层气远景资源量为万亿m3。煤层气主要是以吸附状态存在于煤层内,也有少量以游离状态存在于孔隙与裂缝中(SmithDM,1984)。就孔隙结构而言,煤的孔隙结构可分为裂缝性孔隙和基岩孔隙。人们又习惯地把煤岩中的内生裂缝系统称为割理。其中面割理连续性较好,是煤中的主要裂隙,端割理是基本上垂直于面割理的裂缝,只发育在两条面割理之间,把基岩分割成一些长斜方形的岩块体(李安启,2004)。
渗透率高的煤层产气量往往较高,而低渗透率的煤层产气量较低。水力压裂改造措施是国内外煤层气井增产的主要手段。而我国的煤层气储层普遍属于低渗透煤储层,研究表明:我国煤层渗透率大多小于50×10-3μm2(张群,2001)。因此,目前国内的煤层气井采用最广泛的完井方法是压裂完井,煤层和砂岩的岩性特征有很大的区别,压裂施工中裂缝在煤层中的扩展规律与在砂岩中的扩展规律也不相同,为了解煤层的压裂特征和压裂效果就需要对煤层压裂进行模拟研究,要进行模拟研究就需要研究煤岩的力学性质。
通过试验研究煤岩的力学性质,发现煤岩具有尺寸效应———即煤岩的尺寸对试验结果具有影响,Daniel和Moor在1907年就指出(DanielsJ,1907):小立方体的屈服强度高于大立方体,而且当底面积保持常数时,随着试块高度的增加,其屈服强度降低。研究过煤岩尺寸效应的还有Bunting(Bunting )。Hirt和Shakoor(Hirt A M,1992),Med-hurst和Brown(MedhurstT P,,1998),吴立新(1997),刘宝琛(1998),靳钟铭(1999)等。
由于单轴力学性质试验结果受尺寸、形状等因素制约,因此进行单轴岩石压缩试验时,对试验样品的加工有一定的要求,通常试件做成圆柱体,一般要求圆柱体直径48~54mm,高径比宜为~,试件端面光洁平整,两端面平行且垂直于轴线。
2 试验方法说明
在单轴压缩应力下,煤块产生纵向压缩和横向扩张,当应力达到某一量级时,岩块体积开始膨胀出现初裂,然后裂隙继续发展,最后导致破坏(闫立宏,2001)。为避免其他因素的影响,采用同一试样,粘贴应变片,在测试强度过程中同时用电阻应变仪测定变形值。
煤样制备和试验方法
实验煤样采自沁水盆地南部晋煤集团寺河煤矿3#煤层。煤样制备和试验方法参照中华人民共和国行业标准《水利水电工程岩石试验规程(SL264-2001)》(中华人民共和国水利部.2001),以及国际岩石力学学会实验室和现场试验标准化委员会提供的《岩石力学试验建议方法》(郑雨天,1981)进行的。沿层面方向在大煤块上钻取直径为50mm,高为100mm的圆柱样,煤样轴向均平行煤岩层面。为研究平行面割理和垂直面割理方向煤岩力学性质的差异,制备了两组煤样。一组煤样平行面割理方向,样品数10个,编号DP1DP10;另一组煤样垂直面割理方向,样品数10个,编号DC1DC10。试验前对煤样进行了饱水处理(48h以上)。单轴实验设备为WEP600微机控制屏显万能试验机。记录设备为30吨压力传感器,7V14程序控制记录仪。数据处理设备为联想杨天E4800计算机及相应的绘图机、打印机。试验工作进行前测试了煤样的物理性质,对试件进行了饱水处理。进行单轴压缩试验的煤样条件见表1。
表1 煤样条件
计算公式
单轴抗压强度计算公式:
中国煤层气技术进展: 2011 年煤层气学术研讨会论文集
式中:σc为煤岩单轴抗压强度,MPa;Pmax为煤岩试件最大破坏载荷,N;A为试件受压面积,mm2。
弹性模量E、泊松比μ计算公式:
中国煤层气技术进展: 2011 年煤层气学术研讨会论文集
式中:E为试件弹性模量,GPa;σc(50)为试件单轴抗压强度的50%,MPa;εh(50)为σc(50)处对应的轴向压缩应变;εd(50)为σc(50)处对应的径向拉伸应变;μ为泊松比。
3 试验结果与分析
加载轴线方向对煤块的抗压强度σc和弹性模量有显著的影响。
试验结果数据见表2。从表中可以看出,平行面割理方向的单轴极限抗压强度要比垂直面割理方向的单轴极限抗压强度大得多,其弹性模量也大得多,抗拉强度平均值高出2/3,而弹性模量更是高出一倍。这说明即使在平行煤的层面上其力学性质也具有方向性,不同方向上其值大小有显著差异。
表2 煤样单轴抗压强度试验结果
注:DP9沿裂隙面破裂,没有参与力学性质分析。
煤是沉积岩,小范围内同一煤分层在形成环境、形成时代上都是相同的,可以认为小范围内在平行煤的层面上,煤的组分、煤质等是均匀的,变化非常小,所以沿平面上力学性质的差异与煤质、组分等关系不大。推测其原因是由于在地史上受到构造应力的影响,构造应力具有方向性,在不同的方向上其大小不同,使煤在不同的方向上受到地应力作用的大小程度也不同,导致煤在不同方向上结构有所不同,从而表现出来在不同方向上力学性质的差异,在受力较大的方向上可能会表现出较大的强度。由于在构造力作用下沿最大主应力方向裂隙最容易发育,发育程度也应该较好,沿最小主应力方向上裂隙发育程度要差些。发育好的裂隙往往形成面割理,因而在平行面割理的方向上抗压强度和弹性模量都高,而在垂直面割理的方向上其值相对就会小些。
煤岩单轴极限抗压强度与其他性质之间的关系
由表2可知煤样的抗压强度离散性较大,影响因素是什么?煤的密度与含水状态对单轴抗压强度有什么影响?现分析如下:
图1a表示了极限抗压强度σc与饱和密度ρw之间的关系。从图中可以看出,无论是C组、P组还是全部样品,随着饱和密度的增加,煤块的极限抗压强度都有增加的趋势,说明随着饱和密度的增加,抗压强度有增加的趋势。
图1 σc与其他性质之间的关系
图1b表示极限抗压强度σc与饱和吸水率ωs之间的关系。从图中可以看出,C组样品随饱和吸水率的增加抗压强度有减少的趋势,而P组样品单轴抗压强度和饱和吸水率的相关性非常低,可以认为饱和吸水率对P组样品没有影响。由此可见,饱和吸水率的增高使垂直面割理方向的抗压强度降低,而对平行面割理方向的单轴极限抗压强度影响很小。
图1c表示单轴极限抗压强度σc与弹性模量E之间的关系。从图中可以看出C组样品单轴极限抗压强度σc与弹性模量E之间具有明显的正相关性,即垂直于面割理方向的单轴极限抗压强度随着弹性模量的增加而增加,P组样品具有不明显的线性正相关,即平行于面割理方向的单轴极限抗压强度σc与弹性模量E的增加而增加,但离散性较大。
图1d表示单轴极限抗压强度σc与泊松比μ之间的关系。从图中可以看出C组样品单轴抗压强度与泊松比之间具有较明显的负相关关系,也就是说垂直于面割理的单轴抗压强度随着泊松比的增高而降低;但是P组样品的相关性很低,即平行于面割理方向的单轴极限抗压强度σc与泊松比的变化无关。
弹性模量和其他性质之间的关系
图2a表示弹性模量E与泊松比μ之间的关系。从图中可以看出C组样品、P组样品及全部样品相关性均不明显。说明弹性模量与泊松比之间的变化互不影响。
图2 弹性模量E与其他性质之间的关系
图2b表示弹性模量E与饱和密度ρw之间的关系。从图中可以看出无论C组还是P组,样品弹性模量与饱和密度相关性非常弱,可以认为不相关。由此可见弹性模量不受饱和密度变化的影响。
图2c表示弹性模量E与饱和吸水率ωs之间的关系。从图中可以看出C组样品弹性模量与饱和吸水率相关性较高,呈明显的负相关关系;但是P组样品的相关性却很低,几乎不相关。由于C组样品以垂直轴向的裂隙为主,在压力作用下煤样的变形等于煤岩本身的变形再加上水的变形,水是液体,在压力作用下很容易变形,在压力不变的情况下随着水含量的增加变形随之增大,而产生较大的轴向变形,导致C组的煤样随着含水量的增加弹性模量变小。而P组样品裂隙以平行轴向为主,尽管在饱水的情况下裂隙中完全充填了水,但由于水含量很少,承载压力的主要是煤岩本身,变形量也是由煤岩本身决定的,因此它与含水量关系不明显。
泊松比和其他性质之间的关系
由图3a中可以看出C组样品、P组样品和全部样品的泊松比与饱和密度之间散点图均比较离散,相关性很低,也可以说它们不相关。
由图3b中可以看出C组样品、P组样品和全部样品的泊松比与饱和吸水率之间相关性很低,可以认为它们不相关。
煤岩单轴压缩全应力—应变曲线类型
岩石试件从开始受压一直到完全丧失其强度的整个应力应变曲线称为岩石的全应力应变曲线(重庆建筑工程学院,1979)。大量岩石单轴压缩实验表明,岩石在破坏以前的应力应变曲线的形状大体上是类似的,一般可分为压密、弹性变形和向塑性过渡直到破坏这三个阶段。
煤是一种固体可燃有机岩石,由于成煤物质的不同及聚煤环境的多样化,煤的岩石组分、结构特征比较复杂。因此,在单轴压缩条件下煤样变形破坏机制及表现出的全应力—应变曲线形态多种多样,大体可以概括为3种类型。
图3 泊松比μ与饱和吸水率ωs之间的关系
迸裂型
应力—应变曲线压密阶段不明显,加速非弹性变形阶段很短,曲线主要呈现表观线弹性变形阶段直线,直到发生破坏,见图4a。具有迸裂型全应力—应变曲线特征的煤样,通常均质性较好、强度较大、脆性较强,其抗压强度通常很高。煤样在整个压缩变形过程中,积聚了大量弹性应变能,而由于发生塑性变形而耗散的永久变形能相对较小。因此,当外部应力接近其极限强度而将要发生破坏时,煤岩内积聚的大量弹性应变能突然、猛烈地释放出来并发出较大声响,形成一个很高的声发射峰值。
图4 煤岩样品应力—应变关系曲线图
破裂型
应力较低时,出现曲折的压密阶段,当应力增加到一定值时,应力—应变曲线逐渐过渡为表观线弹性变形阶段;最后变为加速非弹性变形阶段,直到发生破坏,见图4b。试件随荷载的增加,煤样受力结构逐渐发生变化,同时出现局部张性破坏,但整体仍保持完整,并在变形过程中也积聚了一定的弹性应变能。当外部应力接近其抗压强度,即煤岩发生加速变形时,煤岩中积聚的弹性应变能就突然释放,产生较高的声发射值,破坏时声发射强度又变得非常低。
稳定型
应力—应变曲线压密阶段不明显,表观线弹性变形阶段呈略微上凸的直线,加速非弹性变形阶段较长,见图4c。试件随荷载的增加,煤样受力结构逐渐发生变化,同时出现局部张性破坏,并在变形过程积聚的弹性应变能释放,形成振铃计数率峰值,随后振铃计数率迅速降低,并在加速非弹性变形阶段开始时出现新的振铃计数率峰值,接近破坏时又出现一次振铃计数率峰值。破坏时声发射强度又变得非常低。
4 结论
通过上面对沁水盆地寺河煤矿3号煤力学试验,可以得出如下结论:
(1)煤岩单轴抗压强度和弹性模量等力学性质在平行煤层的平面上具有方向性差异,平行面割理方向的单轴极限抗压强度要比垂直面割理方向的单轴极限抗压强度大得多,其弹性模量也大得多。
(2)煤的极限抗压强度σc随着饱和密度ρw的增加而增加;极限抗压强度σc在垂直于面割理方向上随饱和吸水率ωs的增加而减少,而在平行面割理方向上与饱和吸水率无关;单轴极限抗压强度σc随着弹性模量E的增加而增加,在垂直面割理方向上相关程度较高,在平行面割理方向上离散性较大。单轴极限抗压强度σc在垂直面割理方向上随着泊松比μ增加而减小,而在平行面割方向上与泊松比无关。
(3)弹性模量E的变化不受泊松比变化的影响,同时也不受饱和密度的影响;垂直面割理方向弹性模量随着饱和吸水率ωs的增加而减小,而平行面割理方向弹性模量与饱和吸水率无关。
(4)泊松比μ的变化既不受饱和密度变化的影响,也不受饱和吸水率ωs变化的影响。
(5)在单轴压缩条件下煤样变形破坏表现出的全应力—应变曲线形态大体可以概括为3种类型:①迸裂型;②破裂型;③稳定型。
参考文献
单学军,张士诚,李安启等.2005.煤层气井压裂裂缝扩展规律分析.天然气工业,25(1),130~132
靳钟铭,宋选民,薛亚东等.1999.顶煤压裂的实验研究.煤炭学报,24(l),29~33
李安启,姜海,陈彩虹.2004.我国煤层气井水力压裂的实践及煤层裂缝模型选择分析.天然气工业,24(5),91~94
刘宝琛,张家生,杜奇中等.1998.岩石抗压强度的尺寸效应.岩石力学与工程学报,17(6),611~614
吴立新.1997.煤岩强度机制及矿压红外探测基础实验研究.北京:中国矿业大学.
闫立宏,吴基文.2001.煤岩单轴压缩试验研究.矿业安全与环保,28(2),14~16
张群,冯三利,杨锡禄.2001.试论我国煤层气的基本储层特点及开发策略.煤炭学报,26(3),230~235
郑雨天等译.1981.国际岩石力学学会实验室和现场标准化委员会:岩石力学试验建议方法.北京:煤炭工业出版社
中华人民共和国水利部.2001.水利水电工程岩石试验规程(SL264~2001).北京:地质出版社
重庆建筑工程学院,同济大学编.1979.岩体力学.北京:中国建筑工业出版社
Bunting D. 1911. Pillars in Deep Anthracite Mine. Trams. AIME,( 42) ,236 ~ 245
Daniels J,Moore L D. 1907. The Ultimate Strength of Coal. The Eng. and Mining,( 10) ,263 ~ 268
Hirt A M,Shakoor A. 1992. Determination of Unconfined Compressive strength of Coal for pillar Design. Mining Engineer- ing,( 8) ,1037 ~ 1041
Medhurst T P,Brown E T. 1998. A study of the Mechanical Behavior of Coal for Pillar Design. Int. J. Rock. Min. Sci. 35 ( 8) ,1087 ~ 1104
Smith D M,Williams F L. Diffusional effects in the recovery of methane from coalbeds. SPE,1984: 529 ~ 535
314 浏览 2 回答
350 浏览 5 回答
117 浏览 3 回答
195 浏览 3 回答
193 浏览 4 回答
254 浏览 3 回答
184 浏览 5 回答
283 浏览 4 回答
239 浏览 3 回答
118 浏览 4 回答
129 浏览 3 回答
83 浏览 5 回答
153 浏览 5 回答
357 浏览 3 回答
274 浏览 5 回答