培训是一种有组织的知识传递、技能传递、标准传递、信息传递、信念传递、管理训诫行为。目前国内培训以技能传递为主,时间则侧重上岗前。 为了达到统一的科学技术规范、标准化作业,通过目标规划设定、知识和信息传递、技能熟练演练、作业达成评测、结果交流公告等现代信息化的流程,让员工通过一定的教育训练技术手段,达到预期的水平提高目标,提升战斗力,个人能力,工作能力的训练都称之为培训!
介绍 育种程序的主要目标是使性状的平均值沿正向分布的性状或具有两个(或多个)离散类(例如生存)的性状在所需方向上移动,以增加所需性状级别的频率。从一代到下一代的总体平均或班级频率的变化称为选择反应。正态分布特征的选择响应如图所示。 应用不同的育种策略可以获得选择反应或遗传增益。对于一个长期的育种目标,唯一适合育种核心的策略是某种类型的纯种繁育来进行加性遗传改良。可以用于生产商品鱼苗的育种策略比在核内进行的育种限制要少。如果可以进一步提高商品鱼苗的生产率,则可以使用任何种类的杂交,倍性操纵和性别操纵。应当避免任何商业性生产鱼苗的育种策略,这些策略会限制细胞核中附加遗传性能的进展(例如,在杂交计划中使用高度自交系,请参见下文) 所有的育种计划都应该从收集、比较和选择最好的遗传材料开始(更多细节见第16章)。试验品系和选择最适合农业生产品系的价值可能相当于几代品系内选择,如Bentsen等人所示。(1998)罗非鱼。图显示了选择基础群体重要性的另一个例子,图说明了大西洋鲑鱼品种之间以及同一品种内全同胞家庭之间屠宰时体重的差异(Gjedrem,1979b)。品系之间以及品系内全同胞家系之间的巨大差异说明了用最好的遗传物质开始育种计划的重要性。品系内全同胞家系间的差异也说明了通过选择进一步改良的可能性。 无限大群体中的近交定义为彼此之间的联系比某个群体中随机交配的个体更紧密相关的个体的交配。大多数水产养殖计划中实际使用的种群是有限种群,因为它们的成员数量有限。所有有限的种群都会经历某种程度的近交,这取决于为每个后代贡献后代的个体数量。种群的近亲繁殖通过第6章中定义和描述的近亲繁殖系数(F)来衡量。近亲繁殖系数表示从种群祖先的特定点开始累积的近亲繁殖量。近亲繁殖系数只有在选择了过去的特定时间后才有意义,超过该时间将不考虑祖先,并且此时所有等位基因都被认为是独立的。 知道任何育种结构的有效种群大小(Ne),每代近交率(ΔF)可以得出: 式中,Ne是每一个新世代用作亲本的父系和母系数量的函数(影响有效种群规模的其他情况见第6章): Nm和Nf分别是雄性和雌性的数量。假设父本和母本之间没有遗传关系,当使用50个父本和50个母本时,Ne=100和ΔF=或。对于大多数性状来说,这可能是一个可接受的近交率。 近交率在很大程度上取决于数量较少的性别。如果将父本数减少到30,则必须将母本数增加到150,以使Ne =100。如果父本数是20,则无论使用多少母本,Ne都不能超过80。品系均值之间的方差增加,品系内方差减小,换人话就是说,品系分化和品系内遗传均匀。在选择的封闭种群中,不可能阻止近交世代的增加。Pante等人。 (2001b)得出结论,系谱信息对于准确估计近亲繁殖的比率和水平是必要的,因为有效人口规模(Ne)不能很好地估计近亲繁殖的比率和水平。如果近亲繁殖的程度过高,则应使用一些无亲缘关系的动物作为亲本,以减少近亲繁殖的问题。有关更多信息,请参见第6章。 生物统一 近交可以是开发用于研究目的的品系的强大技术。高近交系是遗传稳定的,这对于将“标准”近交系用于实验目的是重要的,特别是对于要用于生物测定和其他实验的实验动物而言(Komen,1990)。 自交系与杂交 在实际的育种工作中,仅当生产自交系以便利用非加性遗传变异进行杂交时,才有意进行近交。近亲繁殖几乎是有害的,育种者通常力求尽可能避免近亲繁殖。 近交衰退是近交繁殖的结果。近交衰退主要导致与繁殖能力(繁殖力、卵大小、孵化率)或生理效率(鱼苗畸形、生长率、存活率)有关的性状所显示的平均表型值的降低。 近交衰退是指近交群体和基础群体之间的平均表现差异。由于与繁殖和生理效率有关的性状经常表现出近交衰退,因此在育种计划中保持近亲繁殖率在较低水平上是很重要的。 Gjerde等人(1983年)研究了三个水平的近亲繁殖(F=,和)对虹鳟鱼存活率和生长率的影响,表。平均近交衰退(所有水平的近亲繁殖)分别为发眼卵10%、孵化卵和鱼苗。近交与近交衰退之间没有线性关系。鱼种的生长没有表现出明显的近交衰退,而成鱼的生长则随着近交的增加而表现出越来越大的生长衰退。近交系数每增加10%,近交抑制系数分别为、和(近交水平分别为、和)。 由连续一代(F=)、两代(F=)和三代(F=)全同胞交配获得 su等人。(1996)在虹鳟鱼中还发现,近交系数每增加10%,雌性产卵年龄延迟,产卵量减少。近亲交配对雄性卵大小和产卵年龄无显著影响。近交每增加10%体重,近交衰退在之间,近交衰退有随体重增加而加重的趋势。 在对斑点叉尾鮰的实验中,Bondari和Dunham(1987)报告说,近亲繁殖(25%)增加了卵孵化所需的天数,但对产卵重量或孵化率没有显著影响。 近亲繁殖衰退的典型水平如表所示。在这一点上,需要强调的是,一轮全同胞交配的近交系数为,一轮半同胞交配的近交系数为。 如前所述,只有在产生近交系以利用非加性遗传变异进行杂交时,才有意的进行近亲繁殖。总的来说,生产、维持和替换自交系所需的资源和时间将通过改善纯种育种的加性遗传性能而得到更好的利用(Gjedrem,1985;Gjerde,1988)。 避免近交的育种方法可分为三大类: 利用大量随机交配群体 利用系统化的杂交方案消除近亲交配 利用品系杂交生产杂交种 使用大量的随机交配种群是最简单的方法,只需要育种者采取措施确保大量的鱼为下一代提供后代。 杂交育种是一种著名的遗传改良方法,在水产养殖中也有应用。杂交是指物种、品种、种群、品系或自交系之间的交配。杂交育种的主要目标是利用非加性遗传方差(杂种优势)。当自交系未经选择,其所有杂交的平均值应等于从中衍生出来的杂交群体的平均数。因此,近交后杂交不会产生任何改善,如果要进行任何改善,则必须在某个阶段进行选择。因此,杂交应被视为是对加性遗传改良计划的补充。 杂种优势也称为杂种活力,可以定义为后代在一个或多个性状上超过其父母的平均水平的现象,这是近亲衰退的逆转,通过相关个体交配获得的。这两种现象几乎普遍分布在动植物中,尤其与生殖适应有关。通常有两种方法用于估计杂种优势。第一个是将杂交后代与亲本品系/品系的平均值进行比较,第二个是将杂交后代与最佳亲本品系/品系的平均值进行比较。如果父母来自不同的基因库,则杂种的杂合度增加,因此杂种优势有望提高。给定性状的杂种优势增加的程度取决于亲本种群之间的遗传距离。 通过杂交和选择获得的相对收益取决于所讨论的一个或多个性状的加性和非加性变异的大小。如果非加性方差较大,则可以通过杂交获得大量收益(请参见第节)。 一般配合力是指一个亲本品种与其它许多品种的一系列杂交组合子代性状平均值。例如A品种和其它B、C、D、E等品种杂交后,子代产量都比较高,表示A品种有较高的一般配合力。特殊配合力是指一个品种A和其它B、C、D、E等品种杂交后所得只有一个组合AB的产量性状平均值较高,其它组合如AC、AD、AE的子代一般或较低,这种AB组合表现的能力即为特殊配合力高。 GCA= 加性效应 SCA=上位性和显性效应 一般配合力的差异是由于基础群体中的加性方差(A)和A×A互作造成的。特殊配合力差异可归因于非加性遗传方差和上位性。表显示了当四个群体杂交时如何估计一般配合力和特殊配合力。 群体A和群体B的一般配合力(GCA)可估算如下: A×B和B×A的特殊配合力(SCA): 一般来说,很难测定特定配合力的差异,也难以在育种计划中利用这些影响。制造和维持自交系几乎是商业上利用SCA的唯一手段,尽管SCA的一些用途可以通过杂交来实现。但如果不制作和测试特定的杂交组合,就无法测定一个杂交组合的特定配合力。 (邓飞老师测定) 正反交反复选择是一种既利用一般配合力又利用特殊配合力的杂交方案。Comstock等人给出了RRS的理论基础。(1949)和迪克森(1952)。RRS 从两个群体开始,A系和B系。 杂交是相互的,一些A系母本与B父本配对,一些B系母本与A父本交配。然后对杂交后代的性状进行测量,以改善性状,并根据后代的表现来判断亲本。只选择最好的亲本,其余的亲本,以及所有杂交后代,只用于测试亲本的配合力。之后舍弃。被选中的个体必须再次与自己的亲本交配,以产生下一代接受测试的父母。它们像以前一样再次交叉,循环重复。根据Falconer和Mackay(1996)的说法,RRS计划被家禽的商业育种家使用,并在玉米上取得了很好的结果,但是与其他选择方法的直接比较并不令人鼓舞。 当杂合子优于纯合子时,这种现象称为显性现象,见图(Falconer和Mackay,1996)。通过两个不同等位基因固定的品系得到一个所有个体都是杂合子的f1基因,这是产生一组杂合子个体的唯一途径。在非近交群体中,对于特定的等位基因对,不超过50%的个体可以是杂合的。因此,如果一对特定等位基因的杂合子在优点上优于纯合子,那么近亲繁殖和杂交将是比不进行近亲繁殖选择的更好改进手段 此外,只有当对期望的性状或性状组合存在过度优势时,近亲繁殖和杂交才能达到没有近亲繁殖的选择所不能达到的效果。过度显性的存在及其重要性已经被广泛讨论,但实验证据普遍表明,对于大多数被研究的性状来说,过度显性现象并不重要(Falconer和Mackay,1996)。 双列杂交 双列杂交是一种常用的自交系或不同品系或群体间杂交的试验设计,即每一个品系/群体与另一品系杂交。对于p 个品系,此过程产生最多p2组合。双列杂交通常用于在开始育种计划之前建立基础群体。杂交经常被用来将来自陌生群体的新基因导入本地品系。这通常是一种简单且非常廉价的方法来改良本地品系。然而,在引进新品种之前,应在现有的当地条件下对种群进行测试。 GIFT项目(养殖罗非鱼遗传改良)的基础群体为双列杂交。将4个亚洲养殖品系和4个非洲野生品系进行完全双列杂交(8×8=64个组合),研究其生长性能和存活率的杂种优势大小。结果见表(Bentsen等人,1998年)。 在三向杂交中,两个品系(例如需要高生产力的品系)的F1与第三个品系杂交。在四向杂交中,两条不同品系的F1杂交。回交只涉及两个品系,F1与第一个杂交中使用的一个品系交配。 杂交在畜牧生产中应用广泛,生产肉用的大多数动物都是三元杂交或回交的后代。在水产养殖中,这些方法很少使用。 测试潜在种群的双列杂交通常是建立一个合成种群的起点,就像大西洋鲑鱼、虹鳟鱼和罗非鱼所做的那样。 合成群体是由不同数量的亲本群体、品种、或品系组成的。当培育一个综合种群时,育种者试图创造一些新的结合了亲本种群优势的群体。通过一系列选定的自交系或不同的群体,让F1和后代随机交配,或者通常是计划交配,创造出新的群体。 预期合成种群比亲本品系具有更多的杂合性,它们应显示出一些杂种优势。在合成种群数量减少之后,近交可以并经常减少这种杂种优势。另外,如果重组造成的损失很重要,那么这些损失在合成种群的后代中会很明显。 在确定杂交是否在特定物种的育种策略中占有一席之地的第一步是评估不同品系或物种之间所有可能的杂交,以确定所讨论的经济性状。如果可用品系的数量很大,就必须选择最有可能产生有价值结果的杂交组合。利用来源迥异的品系以及结合使用具有有利特性的品系可能是有利的。在以色列,杂交育种项目目前正在进行中,使用普通鲤鱼的品系杂交(Wohlfarth等人,1983年)。 其次,应开发自交系,并在自然条件下测试杂交,以找到最有价值的农业杂交品种。该育种系统特别旨在利用非加性遗传变异。这里的实际困难之一是由于高死亡率(近交抑制)而使自交系难以保持运转。 Bakos(1979; 1987)报告了将鲤鱼近交系用于杂交计划的结果。 第三,也是最后一个,如果可能的话,应该对一个往复递归选择(RRS)程序进行评估,以确定一般和特定组合能力的相对重要性。 RRS只能用于多次产卵的生物,因此不能用于例如太平洋鲑鱼。在大西洋鲑鱼中进行捕捞也将非常困难,因为大多数雄性在第一次产卵后死亡,而大量雌性则死亡。罗非鱼和虹鳟鱼等其他物种可能更适合应用RRS计划。 在育种计划中使用选定品系之间的杂交的一个显著优势是,这使育种者能够保护他们的遗传改良材料。只出售杂交动物,纯种的种畜不会被释放。 Chevassus(1979)回顾了鲑类物种间杂交的现状。他的结论是,在大多数情况下,杂种都是在相同的环境中养殖的,子代因为亲本物种表现出中等或充其量与亲本中较好的一个相同的生长。这与Refstie(1983a)对四种鲑鱼(大西洋鲑鱼、褐鳟鱼、海鳟鱼和北极红点鲑)杂交后的结果一致。杂交鱼的生长和存活率都没有超过大西洋鲑鱼的表现结果。 一些实验发现,在成活率方面有较好的结果,杂交种往往与生命力最顽强的杂交组合相似甚至更优越。 Benzie等人(1995)在将斑节对虾(Penaeus Monodon)和斑节对虾()这两种虎虾杂交时,在生长率上没有发现杂交活力的迹象。杂交种的生长速率与纯斑节对虾相近或低于纯斑节对虾。 Gjerde和Refstie(1984)调查了5个挪威品系大西洋鲑鱼杂交的杂种优势效应。无论是生长率还是存活率,他们都没有发现显著的杂种优势效应(表)。同样,Friars等人也是如此。(1979)发现大西洋鲑鱼鱼苗生长率无杂种优势效应。然而,在虹鳟鱼中,Gall(1975)和Ayles和Baker(1983)报道了虹鳟鱼品系杂交在体重上的显著杂种优势。 对常见鲤鱼品种进行了系统杂交。欧洲、俄罗斯、中国和日本的野生品系和驯化品系杂交的生长速度、存活率和耐冷性的杂种优势意义已被反复报道(表)(Hulata,1995)。 Wohlfarth(1993)总结了以色列20多年来对鲤鱼的研究收集的实验数据,并得出结论:“生长杂种优势在鲤鱼中是一种常见但不普遍的现象。”通常,当亲本之一是Dor-70时,没有发现杂种优势。Dor-70是一种长期的群体选择实验,目的是为了更快的生长。Gjerde等人。(1999)估计了罗湖鲤鱼的体重和存活率的杂种优势,并得出结论,印度罗湖鲤鱼种群的杂交似乎没有什么实际意义。 已经提到的罗非鱼的GIFT杂交实验(Bentsen等,1998)表明,在表现出明显杂种优势的22个杂交中,只有7个表现优于最佳纯品系,最大增益约为11%。一般而言,与体重的累加加反作用相比,对体重的非累加的遗传作用适度。 总体而言,与加性和互惠效应相比,非加性遗传效应对体重的影响是较小的。 Wohlfarth(1993)和Bentsen等人。(1998)报告的结果表明,非加性遗传效应的表达可能比加性效应对环境变化更敏感。由于基因型与环境的交互作用影响了非加性遗传性能,因此杂种优势可能在某些农场环境中表现不佳。在这种情况下,可能必须为某些农场环境生产专门的杂交种。 Knibb等人。(1997)发现海鲷品种间杂交产生的杂种优势很少,这是由于缺乏近亲繁殖和遗传分化。Knibb(2000)回顾了几项杂交试验的结果,得出结论:在所有物种中,杂交种通常都类似于其亲本的平均值。考虑到大量尝试生产新的杂交鱼,很少有(明显少于1%)能够持续商业化生产。 寻找不育的杂种可能变得非常重要,因为这种杂种不会将食物转移到性腺中,因此具有优越的生产性状。由于罗非鱼已经在几个种间杂交中获得了单性后代,这种单性(雄性)培养被认为是解决罗非鱼在几乎任何池塘条件下高繁殖力所造成的种群过剩的最佳解决方案。此外,男性的生长速度也比女性快。Pruginin等人。(1975)列出了几个100%产生雄性后代的杂交组合,而Hulata等人则列出了几个杂交组合。(1983)建议使用后代测试来确保罗非鱼获得100%的雄性后代。据报道,以色列的尼罗罗非鱼和奥利亚罗非鱼之间有希望杂交产生几乎所有的雄性后代(Hulata,1995)。 在一个群体内进行加性遗传改良的育种方法或策略被称为纯种育种,也是在很长一段时间内进行持续遗传改良的选择方法。必须避免近亲交配,选择拥有大多数阳性(理想)基因的个体作为下一代的父母。拥有大多数正基因等位基因的个体通常表现出良好的生产效果。这些“好基因”和特性会遗传给它们的后代。拥有大多数阳性基因的个体被认为具有很高的育种价值。 个体的繁殖价值不能直接测量。也不能100%准确测量。因此,真正的育种价值将是未知的,并且在很大程度上被系统和随机的环境效应以及基因间相互作用引起的影响所掩盖,基因型-环境相互作用的讨论见第14章。 育种值主要可以通过记录基因的产物,即性状的表型值(或使用第19章所述的与QTL连锁的遗传标记)来估计。表型记录可以从个体本身获得,也可以从作为全同胞和半同胞、子代或父母的亲属那里获得。相关个体的记录可以使用,因为个体及其亲属拥有共同的基因。一般来说,来自近亲的信息比来自远亲的信息更有价值。因此,全同胞的记录比半同胞的记录更有价值,因为与同父异母的同胞相比,个体与其全同胞共享的共同基因比例更大。关于后代的记录是特别有意义的,因为个体的繁育价值被严格定义为根据其后代的平均值判断的个体的价值。
水产遗传育种;一、水产养殖发展现状;过去的几十年,水产养殖日益成为全世界,特别是发展;水产生物的遗传育种研究一直是水产科学研究领域的重;制约水产养殖可持续发展的因素:;1、缺乏生长速度快、抗病力强的遗传改良新品种(品;2、病害问题;3、生态环境问题;4、水产品质量安全问题;二、水产养殖生物遗传改良的进展和成就;水产养殖生物遗传改良现状:;据挪威著名的遗传学家水产遗传育种一、水产养殖发展现状过去的几十年,水产养殖日益成为全世界,特别是发展中国家动物蛋白的重要来源。水产养殖是渔业的重要组成。据《中国渔业年鉴》统计,2014年全年水产品产量6450万吨,比上年增长。其中,养殖水产品产量4762万吨,增长,捕捞水产品产量1688万吨,增长。养殖产品与捕捞产品的产量比例为74:26。可以预见,随着水产业的发展,水产养殖占水产品总产量的比例会更高。水产生物的遗传育种研究一直是水产科学研究领域的重点工作之一。随着科技进步和产业的发展,水产遗传育种研究的范围和采用的技术手段不断扩展和提高。从群体水平、个体水平、细胞水平到分子水平,现代生物学技术已使人们可以从更宽、更广的角度来解析和认识水产生物的遗传特征,进而使从宏观到微观的遗传调控成为现实。新中国成立以来,广大水产科技工作者围绕培育高产、优质、抗逆能力强的经济水生生物优良品种这一核心目标,在相关领域开展了卓有成效的研究工作,为我国发展成为世界第一水产养殖大国做出了突出贡献。制约水产养殖可持续发展的因素:1、缺乏生长速度快、抗病力强的遗传改良新品种(品系)2、病害问题3、生态环境问题4、水产品质量安全问题二、水产养殖生物遗传改良的进展和成就水产养殖生物遗传改良现状:据挪威著名的遗传学家Dr. Gjedrem Trygve 研究,世界水产养殖产品只有1-2%来自遗传改良的养殖品种。在挪威,超过90%的养殖鱼类是遗传改良品种,生产的鲑鱼和虹鳟在国际市场有很强的竞争力。世界上遗传改良的水产养殖新品种主要有:鲤鱼: 20多种,鲑鳟鱼:10多种,鲟鱼: 1种,罗非鱼: 3~4种。现在中国水产养殖品种达到150余种,包括鱼、虾、贝、藻和其它生物。然而,其中绝大多数都没有经过系统的遗传改良,据李思发等研究,就水产养殖品种而言,我国大约只有10%的养殖品种是经过遗传改良的。我国只有的水产养殖产量是从养殖改良的新品种获得的。我国水产养殖遗传改良率17%,良种覆盖率50%。(渔业局领导报告中摘录)。经农业部批准,适合在我国推广养殖的新品种(品系)大约有60多个,其中鲤鱼就有多个新品种,但是,新品种占产量的比重不尽相同,一些新品种只是在有限的地区推广。目前,61个品种通过审定,17个真正通过遗传改良和选育。我国主要的遗传改良水产养殖新品种: 鲤鱼:17种,金鱼:6种,海藻:3种,团头鲂:1种,对虾:1种,鲍鱼:1种。过去的十多年里,在国家高技术研究和发展计划(863), 国家基础研究计划(973), 国家自然科学基金和其他项目的支持下,水产养殖品种的遗传改良取得了显著的成效。 传统育种技术结合分子生物学技术的新手段已经在水产养殖新品种(品系)的培育中得到应用。水产养殖生物遗传育种成果:1、选择育种。性状定向筛选是遗传育种中不可或缺的环节。如何快速高效地筛选出具有优良经济性状的水产品种,一直是水产科学的工作重点。随着遗传学、分子生物学等生物学技术的发展,选择育种已从单一的传统选择育种模式发展为多元化的选择育种模式。选择育种主要有四个方面,传统选择育种、分子标记辅助育种、全基因组选择育种和单性控制育种。传统选择育种。传统选择育种是鱼类遗传育种的经典方法,也是最基础的方法之一。其主要目的是从某个或多个群体中筛选出具有优良遗传性状的个体或群体。鱼类选择育种的常用方法有群体选育法、家系选育、亲本选育和综合选育等。运用家系选择、混合选择或家系选择结合混合选择等手段,经多代人工选育,培育出了兴国红鲤、荷包红鲤、彭泽鲫、荷包红鲤抗寒品系、德国镜鲤选育系、散鳞镜鲤、乌克兰鳞鲤、团头鲂浦江1号、万安玻璃红鲤、中国对虾“黄海1号”、墨龙鲤、道纳尔逊氏虹鳟、吉富品系尼罗罗非鱼等品种或品系。中国对虾的选育:1997-2004年,改良中国对虾生长特性的混合选育进行了7代。经选育群体的平均体长增加, 平均体重增加,成活率大大提高。从1998年起, 中国对虾抗WSSV系选育做了大量工作。 从WSSV病毒严重感染,引起大部分虾死亡的虾池收集存活个体作为抗WSSV 病毒选育的对象。经选育,成活率提高30%以上。分子标记辅助选择育种。分子标记是DNA分子水平的标记,它是 DNA 水平上遗传多样性的直接反映。随着分子生物学技术的发展,目前已形成可变数目串联重复序列、随机扩增多态性DNA,DNA扩增指纹分析、单核苷酸多态性技术、扩增片段长度多态性、简单序列重复区间扩增多态性、简单序列重复标记、单链构象多态性分析、限制性片段长度多态性、序列特异性扩增区域标记等多种分子标记技术,并被广泛应用于遗传多样性分析、品种或品系的鉴定、基因的鉴定与克隆、遗传图谱的构建、亲缘关系分析、杂交优势的预测和分子标记辅助育种等多个领域。运用AFLP, RFLP, SSR, mtDNA, microsatellite等分子生物学技术用于育种材料的分子信息收集和分析,根据标记的遗传规律,确定经济性状遗传标记的遗传图谱,使选种育种工作的有效性和准确性得到很大提高。在中国,科研工作者们构建了鲤鱼不同密度的遗传连锁图谱,DNA耐寒和肌纤维相关的数量性状位点被相继定位,并且以细菌人工染色体文库为基础成功的构建了鲤鱼基因组物理图谱。另外,草鱼、团头鲂、红鲫、银鲫、半滑舌鳎等鱼类的BAC文库已经构建,为物理连锁图谱的构建提供了保障。全基因组选择育种技术。随着部分模式动植物全基因组的破译,基因组信息潜在的基础研究和应用价值已得到更为广泛的关注。世界范围内,已有多国政府或民间组织相继启动了其地区的农业特色生物的基因组计划,其中就包含了许多水产动物。在基因组破译的基础上, 利用遗传连锁图谱和分子遗传标记技术,探索与生长、性别、抗病等性状相关的基因在遗传连锁图谱上的具体位置,探索和设计数量性状的DNA分子标记辅助育种的技术路线已成为大家关注的内容。在鱼类全基因组测序方面,模式鱼类斑马鱼、青鳉、河鲀、绿河鲀和三棘刺鱼以及经济鱼类尼罗罗非鱼、剑鱼、斑点叉尾鮰、虹鳟、大西洋鲑、欧鲈、和大西洋鳕等的全基因组序列相继被破译。自2010年以来, 我国相继宣布破译了半滑舌鳎、太平洋牡蛎、大黄鱼、橙点石斑鱼、鲤和牙鲆的全基因组序列。单性控制育种。雌雄异体动物的雌雄个体之间在外部形态或生理功能上存在差异是较为普遍的现象。作为物种资源丰富的鱼类,许多种类的雌雄个体间存在着明显的生物学性状的差异,诸如个体大小、体型、体色、生长率、成熟年龄、繁殖方式等。因此,人们可以通过性别控制来进行优势单性群体的养殖,获得较高的效益。2、整合育种整合育种方法包括利用杂交(近缘杂交和远缘杂交)、静水压、秋水仙素处理等生物、物理及化学方法,获得杂交、多倍体等变异个体的方法,其本质是在后代中形成遗传物质改变的个体,远缘杂交、雌核发育和雄核发育都涉及到对受精卵或者配子的遗传物质—染色体倍性进行遗传改变和整合。核移植、生殖干细胞移植和生殖细胞移植等涉及到遗传物质的重组,也可以归纳到整合育种。通过远缘杂交不但可以形成具有杂交优势的品种,还可以形成两性可育的二倍体杂交品系或者四倍体鱼品系,甚至培育出新的物种。杂交育种。鲤鱼不同品种间的杂交。产生的杂交种:丰鲤(兴国红鲤♀×散鳞镜鲤♂),荷元鲤(荷包红鲤♀×元江鲤♂),岳鲤(荷包红鲤♀×湘江野鲤♂),芙蓉鲤(散鳞镜鲤♀×兴国红鲤♂),颖鲤(散鳞镜鲤♀×鲤鲫移核鱼F2♂),三杂交鲤(荷元鲤♀×散鳞镜鲤♂)等。育成了建鲤和松浦鲤两个品种。以荷包红鲤与元江鲤杂交后代作基础群,结合家系选育,系间杂交及雌核发育技术育成的遗传性状稳定的优良新品种。具有生长快、体型体色优、肉质肉味好、饲料转化率高、性温顺易驯养易捕、适应性抗病力强、适宜全国各地多种方式饲养等优点,明显优于国内现有鲤鱼和国外引进品种,能普遍增产30%以上。已推广苗种50亿尾,推广面积超过60万公顷,年产量达100万吨,约占全国鲤鱼养殖总产量的50%,成为我国最主要的鲤鱼养殖品种。罗非鱼不同品种间的杂交产生全雄和杂种“双重”优势:奥尼鱼:奥利亚罗非鱼♂×尼罗罗非鱼♀福寿鱼:尼罗罗非鱼♂×莫桑比克罗非鱼♀。多倍体育种。人工诱导三倍体/四倍体 鲤鱼,鲫鱼,牡蛎,扇贝,对虾,珠母贝。 湘云鲤和湘云鲫。应用细胞工程与有性杂交相结合的综合技术,成功培育出全球首例遗传性状稳定且能自然繁殖的四倍体鱼类种群,并以此四倍体鱼同二倍体鱼杂交,成功地培育出不育的三倍体鲫鱼(湘云鲫)和三倍体鲤鱼(湘云鲤)。人工诱导雌核发育—异育银鲫。异育银鲫是用方正银鲫为母本,兴国红鲤为父本人工杂交而成的异精雌核发育子代。方正银鲫是营天然雌核发育鱼类,其卵被兴国红鲤的精子激活,产生雌核发育后代。这种用异源精子受精并对子代具有生物学效应的雌核发育,称为异精雌核发育,子代简称 “异育银鲫”。异育银鲫具有杂交优势,食性杂、生长快,生长速度比鲫快l-2倍以上,比方正银鲫快%。当年繁殖的苗种,养到年底,一般可长到公斤以上,经济效益显著。转基因技术。转基因荧光斑马鱼。新加坡国立大学成功地将从水母中分离的绿色荧光蛋白基因和从海葵分离的红色荧光蛋白基因转移到斑马鱼的受精卵中,获得了能稳定遗传的发荧光的斑马鱼,具有很高的观赏价值。目前这种转基因观赏鱼已获准在美国销售,也是唯一成功商品化的转基因鱼。三、水产遗传育种的特点及对应建议水生生物遗传育种的特点:优点:1怀卵量大;2变异范围广, 尤其是形态上的变异;3分布范围广(地理种群);4生命周期短 (虾, 藻等)等。缺点:1实验室里不易保存;2人力、物力和财力花费大;3繁殖周期长 (鱼类和一些贝类);4野生产卵群体的影响;5遗传力低(如:抗病力)等。水产遗传育种的建议1、观念更新。许多水产养殖工作者坚持用野生或驯化的产卵群体繁殖苗种,忽略了实际的负面影响。政府机构,特别是不同层次的渔业管理机构需要提高对水产养殖生物遗传育种重要性的了解。2、管理体制创新。按照最新形势和技术的发展,现存的水产养殖生物品种改良管理体制需要改进、提高和改善,以更有效地适应产业发展的需要。3、技术创新选择育种技术。选育是公认的有效育种手段。获得范围更广的遗传变异;准确估算育种值;多性状改良。杂交。一项传统而有效的利用杂交优势的技术,例如水稻和玉米。要点是选择合适的用于杂交的品系或系。简单地选择一些不同的水产养殖品种的种群进行杂交,或不同的品种之间简单的杂交,不能获得遗传性状稳定的品种。杂交形成的杂种优势是暂时的,很容易在后代中失去。近交。近来来,近交已经引起水产养殖品种经济性状的显著衰退,象北方养殖的大菱鲆, 南方养殖的南美白对虾等。隐性基因的纯合和有害基因的效力是导致近交引起遗传衰退的主要原因。在一个育种方案中, 应将近交控制在一定的范围内,否则,获得较高的遗传改良效果的目标就会大大缩小。传统方法结合生物技术。对于传统的育种方法,生物技术不是一个别无选择的途径,比如选择育种。但是,生物技术能够用来使育种方案更有效。例如:基因图谱,对于用分子辅助选育改良遗传力低的遗传特性有潜在的作用。四、水产养殖生物遗传育种的发展前景随着DNA标记技术和水产生物技术的不断发展,这些技术逐渐的应用在分子分类学,群体遗传学,进化生物学,分子生态学,海产品安全监测等方面,这将给水产养殖业带来前所未有的发展空间。将传统的选择育种,杂交育种和新的生物技术结合起来可状得适合水产养殖需要的最佳基因型。初步的实验表明综合方法具有巨大滞力,例如用个体选择和杂交育种,遗传工程和选择,遗传工程和杂交育种,所有的这些组合比单一的要更有效。为了水产业的可持续发展,现在进行遗传改良是一个大好机会。随着水产品需求量的日益增加和野生群体的过度捕捞,要想增加水产品的产最就需要更多的管理工具和措施。遗传改良在所有管理工具中的重要性逐渐增加,如果合理的使用遗传改良,对提高水产品的产量、效率和可持续发展具有巨大的潜力。针对产业发展的迫切需求和国家对科技创新的高度重视,水产遗传育种学科领域将紧密围绕水产养殖食物安全、生态安全和产业发展的主线,在新品种繁育技术以及良种产业化体系建设等方面进行集成和创新,突破杂种优势利用、倍性育种等技术瓶颈,实现我国主要水产动植物育种技术的新突破,不断提高育种效率和定向育种水平,强化优质、高产与抗逆等性状的协调改良,创造出有重大应用前景的水产育种新材料,选育出高产优质新品种。通过水产新品种繁育技术研究和示范推广,推动和引导我国主要水产品种加速向优质化、专用化、高效化发展。水产养殖的可持续发展需要依靠遗传改良的水生生物,培育和养殖遗传改良的新品种(品系)是水产养殖向成熟产业前进的标志。这些工作的落实,将全面构筑我国主要水产育种创新体系,整体提升我国水产育种水平,为水产养殖业的可持续发展、实现我国从水产养殖大国向水产养殖强国的转变提供有力的物质基础和技术支撑。
227 浏览 2 回答
346 浏览 3 回答
199 浏览 2 回答
168 浏览 4 回答
80 浏览 3 回答
232 浏览 4 回答
274 浏览 4 回答
263 浏览 2 回答
95 浏览 3 回答
112 浏览 3 回答
109 浏览 4 回答
240 浏览 2 回答
300 浏览 3 回答
151 浏览 3 回答
189 浏览 3 回答