[1] Yu,. S.,Arepalli,S.,Ruoff,R. S. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties .Phys. Rev. Lett. 2000, 84 :5552~5555 . [2] J. Hone,B. Batlogg,Z. Benes,A. T. Johnson,J. E. Fischer. Quantized Phonon Spectrum of Single-Wall Carbon Nanotubes .Science, 2000, 289 (5485) :1730 - 1733 . [3] Li Wenzhen, Liang Changhai, Qiu Jieshan. Carbon Nanotubes as Support for Cathode Catalyst of a Direct Methanol Fuel Cell .Carbon, 2002, 40(7) :787 . [4] N. M. Rodriguez M. S. Kim F. Fortin I. Mochida and R. T. K. Baker. Carbon deposition on iron-nickel alloy particles .Applied Catalysis A: General, 1997, 148 (2) :265-282 . [5] R. Gao, C. D. Tan and R. T. K. Baker. Ethylene hydroformylation on graphite nanofiber supported rhodium catalysts .Catalysis Today, 2001, 65 (1) :19-29 . [6] Cuong Pham-Huua,Nicolas Keller a,Gabrielle Ehret c,et al. Carbon nanofiber supported palladium catalyst for liquid-phase re-actions:An active and selective catalyst for hydrogenation of cin-namaldehyde into hydrocinnamaldehyde[J] .Journal of MolecularCatalysis A:Chemical. 2001, 170 :155-163 . [7] P. A. Simonov, A. V. Romanenko, I. R. Prosvirin et al. On the nature of the interaction of H_2PdCl_4 with the surface of graphite-like carbon materials .Carbon, 1997, 35 :73-82 . [8] Rodriguez N M. Review of Catalyst of a catalytically growncarbon nanofibers[J] .Mater Res, 1993, 8 (12) :29-33 . [9] Chamber A,Nemes T,Rodriguez N M,et al. Catalytic be-havior of Graphite nanofiber supported nickel with other support media[J] .Phys ChemB, 1998, 102 (12) :2251-2258 . [10] Park C,Baker R T K. Catalytic behavior of graphite nanofibersupported nickel influence of the nanofiberstructure[J] .Phys Chem B, 1998, 102 (26) :5168-5177 . [11] Park C,Baker R T K. Catalytic behavior of graphite nanofibersupported nickel effect of chemical blocking onthe performance of the system[J] .Phys Chem B, 1999, 103 (13) :2454-2460 . [12] Mestl G,Maksimova N I,Schlogl R. Catalytic activity ofcarbon nanotubes and other carbon materials for oxidative de-hydrogenation of ethylbenzene to styrene[J] .Stud Sur SciCatal, 2001, 40 :2066-2072 . [13] Keller N,Maksimova N I,Roddatis V V,et al. The cata-lytic use of onion-like carbon materials for styrene synthesisby oxidative dehydrogenation of ethylbenzene[J] .AngewChem Int Ed, 2002, 41 (11) :1885-1888 . [1] 李权龙,袁东星,林庆梅. 多壁碳纳米管的纯化[J]. 化学学报, 2003,(06) . 中国期刊全文数据库 共找到 2 条[1] 项丽. 应用纳米碳管固相萃取环境中有机污染物研究进展[J]. 安徽农学通报, 2008,(21) . [2] 张晓明,王洪艳,李俊锋. 改性MWNTs/纳米HA/PLA骨修复材料的制备[J]. 吉林大学学报(工学版), 2008,(04) . 中国优秀硕士学位论文全文数据库 共找到 1 条[1] 韩素芳. 普鲁士蓝类化合物/碳纳米管修饰电极的制备及其性能研究[D]. 北京化工大学, 2007 . 中国期刊全文数据库 共找到 8 条[1] 张娟玲,崔屾. 碳纳米管/聚合物复合材料[J]. 化学进展, 2006,(10) . [2] 温轶,施利毅,方建慧,曹为民. 压缩集结碳纳米管电极对活性艳红染料的电催化降解研究[J]. 化学学报, 2006,(05) . [3] 张新荣,姚成漳,王路存,曹勇,戴维林,范康年,吴东,孙予罕. 甲醇水蒸气重整制氢的高效碳纳米管改性Cu/ZnO/Al_2O_3催化剂[J]. 化学学报, 2004,(21) . [4] 唐文华,邹洪涛,张艾飞,刘吉平. 碳纳米管纯化技术评价与研究进展[J]. 炭素, 2005,(03) . [5] 陈灿辉,李红,朱伟,张全新. 二茂铁及其与DNA复合物的电化学行为[J]. 物理化学学报, 2005,(10) . [6] 方建慧,温轶,施利毅,曹为民. 碳纳米管电极电催化氧化降解染料溶液的研究[J]. 无机材料学报, 2006,(06) . [7] 赵弘韬,张丽芳,张玉宝. 碳纳米管纯化工艺的研究[J]. 科技创新导报, 2008,(26) . [8] 李权龙,袁东星. 多壁碳纳米管用于富集水样中有机磷农药残留的研究[J]. 厦门大学学报(自然科学版), 2004,(04) . 中国博士学位论文全文数据库 共找到 4 条[1] 王哲. 多壁碳纳米管的形态控制及场发射性能研究[D]. 哈尔滨工业大学, 2007 . [2] 邓春锋. 碳纳米管增强铝基复合材料的制备及组织性能研究[D]. 哈尔滨工业大学, 2007 . [3] 胡长员. 碳纳米管功能化及其负载非晶态NiB合金催化剂的加氢性能研究[D]. 南昌大学, 2006 . [4] 米万良. 多孔陶瓷负载碳纳米管膜的制备及其气体渗透性能[D]. 天津大学, 2005 . 中国优秀硕士学位论文全文数据库 共找到 8 条[1] 张仲荣. 气相色谱应用于尾气排放的分析技术研究[D]. 天津大学, 2006 . [2] 张娟玲. 多壁碳纳米管/聚乙烯醇复合材料膜的制备及其性能研究[D]. 天津大学, 2006 . [3] 王翔. 催化裂解无水乙醇制备纳米碳管研究[D]. 西北工业大学, 2007 . [4] 张麟. 碳纳米管改性双马来酰亚胺复合材料的研究[D]. 西北工业大学, 2007 . [5] 李柳斌. 聚氯乙烯的熔融共混改性研究[D]. 武汉理工大学, 2008 . [6] 高远. 碳纳米管/丁苯橡胶/天然橡胶复合材料结构与性能的研究[D]. 南京理工大学, 2007 . [7] 华丽. 大孔径CNTs功能化处理及NiB/CNTs合金催化性能研究[D]. 南昌大学, 2006 . [8] 仪海霞. 碳纳米管球的制备及其应用研究[D]. 北京化工大学, 2007 . 中国重要会议论文全文数据库 共找到 2 条[1] 李权龙,袁东星. 碳纳米管作为吸附剂在环境分析中的应用[A]. 第二届全国环境化学学术报告会论文集[C], 2004 . [2] 徐雪梅,黄碧纯. 碳纳米管负载V_2O_5脱氮催化剂的研究[A]. 第五届全国环境催化与环境材料学术会议论文集[C], 2007 .
刘学鹏1,2 张明昌1
(1.中国石化石油工程技术研究院,北京 100101;2.中国石油大学(北京)石油工程学院,北京 102249)
摘 要 化学交联聚乙烯醇(PVA)通过在滤饼和过滤介质交界面形成均匀、致密的交联PVA固体膜,改变了滤饼渗透率,起着控制失水的主要作用。本文讨论了目前广泛应用的两类化学交联聚乙烯醇降失水剂的作用机理和性能,并从分子角度提出对PVA进行进一步改性、提高其耐高温性能的途径。
关键词 聚乙烯醇 降失水剂 合成 油井水泥 水泥外加剂
Study on the Way to Improve the Temperature-InsistantSubstantially of the Polyvinyl Alcohol Fluid-Loss Additive
LIU Xuepeng1,2,ZHANG Mingchang1
( Research Institute of Petroleum Engineering,Beijing 100101,China; of Petroleum Engineering,China University of Petroleum,Beijing 102249,China)
Abstract The main factors in FL reduction by chemically crosslinked polyvinyl alcohol(PVA)is the reduction in filter cake permeability:a tough,monolithic and compact polymer film is formed on the filter membrane surface under the filter this paper,the mechanism and properties of two kinds of chemically crosslinked polyvinyl alcohol(PVA)were PVA was further modified from the molecular level, and the high temperature resistance property was enhanced could be used next to 150℃as the fluid-loss additive for oil well cement.
Key words polyvinyl alcohol;fluid-loss additive;synthetic;oil cement;cement additive
油井水泥降失水剂是一种能控制水泥浆中液相向渗透性地层滤失,从而保持水泥浆适当水灰比的材料。它是油井水泥外加剂中最重要的一类外加剂,其使用直接关系到固井施工的成败和油井寿命、产能等一系列问题。聚乙烯醇(PVA)降失水剂较其他剂型具有价格适中、对缓凝时间和抗压强度影响小,且有一定的成膜防气窜作用等优点,有很好的应用前景[1]。
通常未改性的PVA降失水效率低,加量大,只能用于50℃以下的地层[1]。目前,在固井施工中广泛使用的PVA降失水剂绝大多数是化学交联改性产品,其最高使用温度也提升到70~120℃之间[2~5]。这种化学改性PVA在应用过程中能形成具有一定强度的空间网状结构,束缚自由水的流动,同时还能与界面形成一层致密的具有防气窜作用的低渗透膜进一步降低失水[5]。
随着石油勘探开发事业向深井、超深井方面发展,更高的井底温度给固井工程带来更大的挑战。如何以化学手段,从分子角度对PVA进行改性,进一步提高其使用温度,对于固井作业具有重要意义。本文在调研PVA降失水机理的基础上,探讨了有效提高PVA降失水性能的途径。
1 PVA及其降失水机理
PVA结构
聚乙烯醇(PVA)是由聚醋酸乙烯水解而得的白色、粉末状树脂。图1是PVA分子的结构片段,其分子包含大量羟基(—OH)结构和少量未水解的羧甲基(—COCH3)。常见的PVA可按分子量与水解度的不同分为许多种型号,按分子量分为300、500、1200、1700、2200、2400等;据水解度分为99%水解度(完全水解型)、88%水解度、78%水解度,水解度更低的也有,但不常见。国内产品的标示是前两位分子量,后两位水解度,如1788、1799等。
图1 PVA分子结构片段
PVA的化学结构稳定,10%热分解温度大于200℃,在高温碱性溶液中化学结构十分稳定。抗钙、镁离子的能力强,属于非离子聚合物,对水泥浆凝结时间影响小,且价格适中,适合作为开发耐高温固井水泥降失水剂原料或组分[1]。
PVA降失水机理
降失水剂发挥作用主要通过3个方面:一是增加滤液黏度,增加自由水的运动阻力;二是调整泥饼中的颗粒粒度配比,控制细粒子流失,使滤饼更加致密,降低渗透率;三是改变水泥颗粒表面的电性质,增加滤饼毛细孔的润湿性能[1]。
研究表明,滤液黏度的增加并不是PVA降低失水性能的主要原因。PVA在滤饼与过滤介质的交界处是否能形成致密的耐温聚合物膜才是降低滤饼渗透率、减少失水的主要原因[1,5]。使用未交联的PVA时,尽管PVA在室温下就能通过羟基(—OH)在分子内和分子间形成氢键,但是这种氢键易破裂,机械力学性能比较差[1],因此在滤饼与过滤介质的交界处不形成薄膜,降失水能力差。这也是未改性的PVA降失水效率低的原因。如何形成交界处的低渗透薄膜,并使得其能够耐高温,成为提高PVA降失水剂性能的关键。目前的各种化学交联方法就是针对这一主要因素进行的。
2 化学交联改性PVA降失水剂
以化学手段,从分子角度对PVA进行改性,提高其使用温度的研究,国外始于20世纪80~90年代[6,7]。国内这方面的研究工作也在近些年有了很大的进展[1~3],相关产品也被广泛应用。其主要途径分为两个方面:一是硼酸、钛酸、铬酸或相应的无机盐交联改性[5,6,8~12];二是戊二醛交联改性[1~4,7,13,14]。这两种改性方法的主要目的均是使其能够在交界处形成低渗透耐温薄膜。
硼酸、钛酸、铬酸或相应的无机盐交联改性
最早用于生成和强化PVA降失水剂滤饼与过滤介质交界处的低渗透薄膜的方法是用线型PVA与一定比例的硼酸、钛酸、铬酸或相应的无机盐等凝胶剂共混。PVA和硼酸等在水泥浆中接触发生络合结构,在碱性条件下进一步增强这种络合结构,如图2所示。美国早在1990年就有这方面的专利报道[6],而对于其络合机理也有研究[12]。近些年,国内在这方面的研究应用也已经十分成熟[11]。
图2 PVA与硼酸的络合反应
共混交联PVA通过分子与凝胶剂分子在过滤介质表面相互接触、粘结形成低渗透性凝胶膜来降低失水,将失水性能大幅度提高。但是这种产品有一定应用局限性,在小于40℃时,难形成均匀络合物膜,大于95℃时络合物膜又易分解,不能作为耐高温降失水剂[1]。
戊二醛交联改性
针对共混交联形成聚合物膜不稳定的问题,又出现了采用戊二醛化学交联方法增加聚合物膜强度的方法(图3)。国外在1994年就有这方面的专利报道[7],而对于其交联机理也有研究[13]。国内近年也做了相关研究[1,3],并有相关应用专利申请[2]。
戊二醛化学交联PVA,也是通过在滤饼与过滤介质的交界面处形成聚合物膜来控制失水的。但是这种化学交联较硼酸等的共混交联更为稳定,使得富含羟基的化学交联PVA胶粒更易于在过滤交界处聚集,形成彼此相互粘结的连续整体[1],进而促进形成均匀的固体薄膜,研究指出,在滤饼中聚集的化学交联PVA胶粒同样可以生成不连续的固体膜。这使得戊二醛化学交联的PVA的使用温度能达到120℃。当温度进一步升高超过120℃时,PVA胶粒和形成的固体薄膜将逐渐溶解,低渗透性凝胶膜逐渐消失,失水量会突然增加。
图3 PVA与戊二醛的络合反应
提高PVA降失水剂抗温性能的途径
化学交联法表明,针对PVA分子结构进行化学改性,能够提高其作为降失水剂的耐温性能,并使其最高使用温度达到120℃。目前,这也是PVA类降失水剂单独使用时所能适用的最高使用温度。如前所述,PVA的化学结构稳定,10%热分解温度大于200℃,能否进一步提高其使用温度?
近期,德国慕尼黑工业大学的Plank等[15]对PVA的降失水机理进行了细致而深入的研究,并给出了提高PVA降失水剂性能的建议。归纳为三点:一,提高PVA分子高温时在颗粒表面的附着力;二,增加抗温封堵粒子;三,采用高分子量、水解度的PVA原料。这与国内陈涓等[1]的早期研究结论一致,其目的就是促进形成均匀的固体薄膜,并增加它的抗温能力。针对上述研究结果,对PVA进行进一步改性开发,可以得到具有良好降失水性能的PVA抗温产品。
乙二醛、戊二醛交联
采用乙二醛、戊二醛混合交联,优化合成路线,得到抗温成膜PVA降失水剂。运用前文所述的二醛交联法,优化物料加量及反应路线,能进一步提升抗温降失水能力到125℃。超过该温度,所形成的低渗膜也将逐渐溶解,水泥浆失水会大幅增加。图4是125℃时形成的滤饼和低渗滤膜。
图4 滤饼和低渗滤膜(125℃)
无机纳米封堵颗粒改性
根据Plank等的研究,本文采用纳米二氧化硅(30nm)以环氧氯丙烷将其接枝到PVA分子上[16],然后再采用戊二醛交联,得到另一种抗温成膜PVA降失水剂,反应路线见图5。改性后的PVA在130℃以下具有较好的降失水能力,但是稠度较大不利于现场实际应用。图6是纳米二氧化硅改性PVA样品图。
图5 纳米二氧化硅(约30nm)接枝改性
图6 二氧化硅接枝PVA样品
有机耐温封堵颗粒改性
通过以上研究可以看出,尽管二醛交联和引入具有封堵抗温能力的纳米二氧化硅改性PVA都提高了其耐温性能,但是提升有限。原因是当温度进一步升高时,PVA分子都会迅速溶解随游离水一同漏失。如何降低其高温溶解度、增加其在水泥颗粒表面的附着力,将有利于进一步提升其耐温性能。采用Plank等的研究结论:以二醛交联增加聚合物膜的强度,换用有机耐温聚合物作为高温封堵粒子,同时引入少量改变PVA分子性能的化学官能团降低其高温溶解度、增加其在水泥颗粒表面的附着力,综合提高其耐温性能。
本方法采用通过引入少量2-丙烯酰胺-2-甲基丙磺酸钠(AMPS)增加分子附着力、少量具有耐温性能的刚性支撑结构N-乙烯吡咯烷酮(NVP)并加入一种合成的耐温高分子封堵粒子的方法,得到了150℃下有良好降失水能力的PVA成膜降失水剂,反应路线见图7。
图7 PVA化学接枝改性和引入的有机耐温封堵颗粒产品
小结
本文在探讨PVA降失水机理的基础上,探讨了有效提高PVA降失水性能的途径,合成出125℃和150℃温度下具有良好的降失水性能和优异的水泥浆综合性能的两个PVA改性降失水剂。为进一步对PVA进行改性,提高其耐高温性能提供了可参考的有效途径。
3 结 论
1)化学交联PVA在滤饼和过滤介质交界面形成均匀、致密的交联PVA固体膜,改变了滤饼渗透率,起控制失水的主要作用。
2)由两种醛混合共同化学交联PVA组成的固体膜强度高、稳定,能够提高PVA降失水剂的耐高温性能。
3)采用大分子量的PVA,引入增加分子附着力的分子,并加入封堵粒子,能够进一步提高PVA降失水剂的耐高温性能。
参考文献
[1]陈涓.固井水泥降失水剂结构与性能关系的研究.中国石化石油化工科学院博士论文,2002.
[2]陈涓,彭朴.一种油井水泥降失水剂组合物.中国专利CN1407051A,2003.
[3]陈涓,彭朴,汪燮卿.化学交联聚乙烯醇的降滤失机理.油田化学,2002,19(2):101~
[4]陈道元,李韶利,杨昌勇,等.M83S油井水泥降失水剂的性能评价.钻井液与完井液.2004,21(6):12~14.
[5]彭雷,房恩楼,张敬涛,等.交联聚乙烯醇的防窜机理及应用.钻井液与完井液.2007,24(3):39~44.
[6]Moran L K,Murray T cement fluid loss additive and A,1990.
[7]Roland A,Pierre M,Joseph J,Hugo crosslinked polyvinyl alcohol(pva),process for synthesizing same and its applications as a fluid loss control agent in oil ,1994.
[8]陆屹.PVA作为油井水泥降失水剂的实验研究与机理探讨.西南石油学院硕士论文,2003.
[9]陆屹,胡星琪,刘勇.一种新型油井水泥降失水剂的室内评价.钻井液与完井液,2005,22,(6):19~21.
[10]李本旭,苏如军,任曙云,等.低温早强降失水剂G32A的研究与应用.钻井液与完井液,2005,22:84~86.
[11]Wise E T,Weber S simple partitioning model for reversibly cross-linked polymers and application to the poly(viny1 alcohol)/borate System(“Slime”).Macromolecules,1995,(28):8321~8327.
[12]裴建武.聚乙烯醇胶乳油井水泥体系的研制与应用.西部探矿工程,2004,101,(10):63~64.
[13]Tang C,Saquing C D,Harding J R,Khan S situ coss-linking of electrospun poly(vinyl alcohol),2010,43:630~637.
[14]栗方星,孙瑞敏,刘东平,等.可溶解的交联聚乙醇缩二醛的合成方法.中国专利CN1803868A,2006.
[15]Plank J,Dugonjic -Bilic F,Lummer N R,Taye mechanism of poly(vinyl alcohol)cement fluid loss .,2010,117(4):2290~2298.
[16]Karelson G,Pentchuk bonded B - cyclodextrin stationary phase for liquid chromatographic separation of substituted aromatic .,2005,54(4):179~188.
“超分子”一词早在20世纪30年代已经出现,但在科学界受到重视却是50年之后了.代写毕业论文超分子化学可定义为“超出分子的化学”,是关于若干化学物种通过分子间相互作用结合在一起所构成的,具有较高复杂性和一定组织性的整体的化学.在这个整体中各组分还保持某些固有的物理和化学性质,同时又因彼此间的相互影响或扰动而表现出某些整体功能1.超分子体系的微观单元是由若干乃至许许多多个不同化合物的分子或离子或其他可单独存在的具有一定化学性质的微粒聚集而成.聚集数可以确定或不确定,这与一分子中原子个数严格确定具有本质区别,把多个组分的基本微观单元聚集成“超分子”的凝聚力是一些(相对于共价键)较弱的作用力.如范氏力(含氢键)、亲水或憎水作用等超分子化合物的分类杂多酸类超分子化合物杂多酸是一类金属一氧簇合物,一般呈笼型结构,是一类优良的受体分子,它可以与无机分子、离子等底物结合形成超分子化合物.作为一类新型电、磁、非线性光学材料极具开发价值3,有关新型Keg-gin和Dawson型结构的多酸超分子化合物的合成及功能开发日益受到研究者的关注.杜丹等4,5合成了Dawson型磷钼杂多酸对苯二酚超分子膜及吡啶Dawson型磷钼多酸超分子膜修饰电极,发现该膜电极对抗坏血酸的催化峰电流与其浓度在~范围内呈良好的线性关系.靳素荣等6合成了9钨磷酸/结晶紫超分子化合物,并对其光致变色性质进行了探究,即合成化合物具有光敏性,漫反射日光即可使其变蓝.王升富等7合成了磷钼杂多酸-L-半胱氨酸自组装超分子膜电极,发现该膜电极对酸性溶液中的NO2-有明显的电催化还原作用.毕丽华等8合成了多酸超分子化合物,首次发现了杂多酸超分子化合物溶于适当有机溶剂中可表现出近晶相液晶行为.刘术侠等9以Dawson型砷钼酸、金刚烷胺为原料合成了超分子化合物(C10H18N)6As2Mo18O62·6CH3CN·8H2O,该化合物具有可逆的光致变色特性,并提出了一个可能变色机理.多胺类超分子化合物由于二氧四胺体系可有效地稳定如Cu(Ⅱ)和Ni(Ⅱ)等过渡金属离子的高价氧化态,若二氧四胺与荧光基团相连,则光敏物质荧光的猝灭或增强就与相连的二氧四胺配合物与光敏物质间是否发生电子转移密切相关,即通过金属离子可以调节荧光的猝灭或开启,起到光开关的作用.苏循成等10合成了8羟基喹啉取代的二氧四胺大环配体,其中含有2个独立的螯合基团,在适当情况下能分别与金属离子配位.大环冠醚由于其自组装性能及分子识别能力而引起人们广泛的重视.近来,冠醚又成为在超分子体系中用于建构主体分子的一种重要的建造单元.代写硕士论文李晖等11利用了冠醚分子的分子识别能力及蒽醌分子的光敏性,设计合成了一种新的氮杂冠醚取代蒽醌分子,并以该分子作为主体分子,以稀土离子作为客体构成超分子体系,并研究了超分子体系内的能量转移过程.卟啉类超分子化合物卟啉及其金属配合物、类似物的超分子功能已应用于生物相关物质分析,展示了更加诱人的前景,并将推动超分子络合物在分析化学中应用的深入开展.树状超分子化合物树状大分子(dendrimer)是20世纪80年代中期出现的一类较新的合成高分子.薄志山等12首次合成以阴离子卟啉作为树状分子的核,树状阳离子为外层,基于卟啉阴离子与树状阳离子之间静电作用力来组装树状超分子复合物.镧系金属离子(Ln3+)如Tb3+和Eu3+的发光具有长寿命(微秒级)、窄波长、对环境超灵敏性等特点,是一种优良的发光材料,但镧系金属离子在水溶液中只有很弱的发光.朱麟勇等13合成了聚醚型树枝体与聚丙烯酸线性聚合体的两亲杂化嵌段共聚物,研究表明聚醚树枝体通过对Tb3+能量传递,使Tb3+发光强度大幅度提高的“天线效应”.液晶类超分子化合物侧链液晶聚合物具有小分子液晶和高分子材料的双重特性,晏华在《超分子液晶》14中具体讨论了超分子和液晶的内在联系,探讨了超分子液晶分子工程和超分子液晶热力学.李敏等15从分子设计的角度出发,合成了以对硝基偶氮苯为介晶基团的丙烯酸类液晶聚合物,液晶基元上作为电子受体的硝基和作为电子给体的烷氧基可与苯环、NN之间形成一个离域的π电子体系.初步的研究表明:电晕极化制备的该类聚合物的取向膜具有二阶非线性光学性质.堪东中等16用4,4′-二羧酸1,6二酚氧基正己烷与等摩尔的4,4′-联吡啶合成了“T”型超分子液晶,并观察到随构筑“T”型介晶基元分子结构的变化,组装超分子体系由单向性液晶向稳定的双向性液晶转变的规律性.酞菁类超分子化合物田宏健等17合成了带负电荷取代基的中位四(4′-磺酸基苯基)卟啉及锌络合物和带正电荷取代基的2,9,16,23四(4′-N,N,N三甲基)苯氧基酞菁季铵碘盐及锌络合物,并用Job氏光度滴定的方法确定了它们的组成,为面对面的杂二聚体或三明治式的杂三聚体超分子排列.发现在超分子体系中卟啉与酞菁能互相猝灭各自的荧光,用纳秒级的激光闪光光解技术观察到卟啉的正离子在600~650nm和酞菁负离子自由基在550~600nm的瞬态吸收光谱.结果表明在超分子体系中存在分子间的光诱导电子转移过程.2超分子化合物的合成分子自组装近年来分子自组装作为一种新的化学合成方法倍受关注,代写医学论文尤其是分子尺寸在1~100nm的化合物,它们用常见的化学合成法一般很难得到.最近,Yan等18运用超分子自组装方法合成了长度达厘米级、直径达毫米级、管壁达400nm的管,成为超分子化学合成上的一个亮点.刘雅娟等19利用一对互补的分子组分5(4十二烷氧基苯乙烯基2,4,6(1H,3H)嘧啶三酮和4胺基2,6二十二烷基胺基1,3,5三嗪的自组装过程构筑了一种直径约为5μm的超分子纳米管.变温傅里叶红外光谱研究表明,在纳米管的形成过程中,氢键、π-π相互作用和范德华力等非共价键相互作用导致了超分子纳米管的形成.Reinhoudt等报道了最多具有47个钯配合物的有机金属树状分子,准弹性光散射实验(QELS)、原子力显微镜(AFM)和透射电镜(TEM)表明聚集体为直径200nm的圆球,Puddephatt合成了直到第4代的树状铂配合物(28个配位中心).模板合成1992年Mobil公司的科研人员首次利用阳离子型表面活性剂的超分子液晶模板,合成了有介孔结构的氧化硅和铝硅酸盐,其中最具有代表性的是有六方排列介孔孔道的MCM-4120.以环糊精(α-CD,β-CD,γ-CD)作为环的轮烷的合成及性能研究尤其引人注目.环糊精边缘是亲水的,内腔是疏水的,环糊精作为主体与疏水客体分子自我识别可形成轮烷.刘育21在以环糊精为受体的分子识别和组装方面做了深入的研究.Isnin等成功地合成了不对称的轮烷.分子一端为二甲基(二茂铁甲基)铵盐,另一端为萘2磺酸盐.Stoddart等用聚乙烯醇与α-CD作用,端基为2,4二硝基苯时,得到了含有20~23个α-CD的珍珠项链型轮烷.Stoddart等在室温下合成一系列的索烃.在室温下以二苯34冠10(BPP34CI0)作为模板得到了索烃,收率高达70%其他方法最近,赵朴素等运用密度泛涵B3LYP方法,在6-31G水平上设计优化了丁二酮肟与苯甲酸通过四重氢键构筑的异三体超分子,代写职称论文显示形成三聚体的反应可自发进行,实验合成出相关异三聚体23.赵士龙等24在水热条件下,合成了新型超分子化合物(bipyH2)2(H2P2Mo5O23).H2O,研究表明,杂多阴离子与质子化的4,4′-bipy和水分子通过氢键连成无限二维网状结构,形成超分子化合物.栾国有等25利用中温水热方法合成了化合物(H3NCH2CH2NH3)2(HPO4)2Mo5O15,并确定其构型为5个MoO6八面体通过共边和共角连接形成1个五元环,其环平面的上下两侧各有一组HPO4四面体通过共用3个O原子与Mo—O簇键合,并且H2P2Mo5O234-与H3NCH2CH2NH3通过强的氢键作用,形成一种新型的有机无机超分子杂化材料.3超分子化合物的应用在光化学上的应用Lehn等设计了专门用于光释放碱金属离子的穴醚,他们利用2硝基苄基醚充当一个大环的桥键,紫外光照可使此键断裂,形成单环化合物,后者对碱金属离子的络合能力大大下降.张海容等26发现在微量环已烷存在下,BCD可诱导BNS发射强的RTP.尹伟等27用Eu2+与邻菲咯啉(Phen)、2噻吩甲酰三氟丙酮(TTA)和联吡啶(Dpy)形成的四元、三元和二元系列配合物与上述2种分子筛组装成新的系列超分子纳米发光材料,并对它们的发光性能进行了比较.陈彰评28合成了卟啉冠醚4,4二甲基联吡啶超分子模型化合物.研究发现4,4二甲基联吡啶能很好地配合到卟啉与冠醚形成的空穴中去,在光照条件下,生成的卟啉激发态分子能很好地进行电子转移,形成了一个很好的光开关模型.在压电化学传感器的应用超分子化学的主客体适应原理,在压电化学传感器中得到广泛的应用.超分子用作压电化学传感器的敏感涂层,利用超分子的非凡空间结构,通过分子间的协同作用,对目标分子进行分子识别.代写留学生论文符合空间结构的分析物被选择性地吸附,可以明显提高压电化学传感器的选择性.利用多种冠醚衍生物作为QCM涂层测定有机蒸气,如传感器阵列、模式识别等,在二元、三元、四元有机蒸气混合物中识别,猜测结果较好,并用于定量分析.利用单苯15冠5(B15C5)、单苯18冠6(B18C6)、二苯30冠10(DB30C10)涂于TSM化学传感器电极表面,可对39种有机蒸气进行分析,其中B15C5(涂载量12mg)对甲酸的检出限为μg/L,并具有很宽的线性范围.Dickert等用涂BCD的QCM和SAW测定四氯乙烯,测定下限可达几个10-6(Y).以后,他们又用交联BCD作为QCM的涂层测定氯苯,大量的二乙醚存在时(二乙醚-氯苯的体积比为50000∶1),不干扰测定,线性范围10×10-6~500×10-6(Y),并用于监测Grignard反应终点.Nelli等用间苯二酚杯芳烃衍生物作QCM敏感涂层,对硝基苯有较高的选择性,在相对湿度高达90%和有H2,H2S,NO,SO2,CH4,n-C4H1O共存时不干扰测定.Dermody等用多种杯芳烃衍生物,在SAW石英表面分子自组装成双分子层,测定苯、氯苯、甲苯等.Pinalli等用间苯二酚杯芳烃衍生物,测定气相中酒精的含量,线性范围1×10-3~4×10-3(Y),重现性好.Malitesta等用分子印迹电合成聚合制备仿生QCM传感器.姚守拙等用咖啡因(CAF)作模板分子制成BAW传感器,对CAF的响应范围为×10-9~×10-4mol/L,在时检出限×10-9mol/L,回收率~超分子化合物的识别作用所谓分子识别就是主体(或受体)对客体(或底物)选择性结合并产生某种特定功能的过程,是组装及组装功能的基础,是酶和受体选择性的根基.互补性(complementarity)及预组织(preorganization)是决定分子识别过程的2个关键原则,前者决定识别过程的选择性,后者决定识别过程的键和能力.对羧酸根、磷酸根的识别研究目的主要在于探讨主体分子对氨基酸、肽、核苷酸等的识别,进而研究对肽、核酸的催化水解反应.大环多胺及其金属配合物能很好地识别羧酸根、磷酸根的主体分子.带吖啶基团的配合物,通过Zn2+配合物的超分子自组装可对对二甲酸进行选择性识别.假如在大环多胺环外还有可以配位的氨基,则它与Cu(Ⅱ)能形成更加稳定的配合物.化合物(结构见图1)与Co(Ⅲ)形成的配合物与PO43-能形成相当坚固的配合物.因为分子识别的目的,这是系统可以作为一个能使磷酸键合位置移动的新摸型超分子化合物作为分子器件方面的研究分子器件是一种由分子元件组装的体系(即超分子结构),它被设计成为在电子、离子或光子作用下能完成特定功能的体系.刘祁涛31用对苯二甲酸terph为配体,合成了Cu2(bpy)2(terph)Cl2·4H2O晶体,其中bpy为2,2′联吡啶.代写英语论文应用苯三甲酸(TMA)为配体可以合成Cu3(TMA)(H2O)3n配位超分子晶体,为由配体超分子的途径制造纳米级的孔材料、实现纳米反应器的设想提供了可能.8羟基喹啉、邻菲咯啉的许多金属配合物都具有荧光,且配合物稳定.把8羟基喹啉或邻菲咯啉引入大环,由于两者都具有独立的配位功能,可以形成稳定的超分子化合物,并进一步发展为光化学器件.超分子化合物在色谱和光谱上的应用顾玉宗等32利用LB技术,以二十碳酸作辅助成膜材料,在疏水处理的P-Si上分别制备了2,4,6,10和20层聚乙烯咔唑(PVK)超分子膜.对这种体系的表面光电压谱(SPS)研究结果表明,表面光电压随PVK膜层数的增加而增强,在紫外区增强较为明显,随着膜层数的增加,表面光电压有趋于饱和的趋势.膜对基底的敏化主要是由于PVK的光导电性引起的.杨扬等33成功地用高效液相色谱法分离了某些超分子化合物合成过程中间产物富电子对苯二酚聚醚链(HQ)系列产品.超分子催化及模拟酶的分析应用超分子的反应性和催化性,与酶对底物的识别和催化底物参加反应极相似.代写工作总结以模拟天然酶对底物的分子识别和高效催化活性为目的的模拟酶(或称人工酶)研究近十多年来是生物化学和有机化学的重要课题.其中对过氧化物模拟酶的分析应用研究非凡突出.慈云祥等将氨基酸、蛋白质、核酸,对某些金属卟啉的模拟酶活性的影响加以应用,并结合免疫分析技术,建立模拟酶作示踪物的酶免疫分析方法,或以模拟酶作非放射性探针标记物建立核酸序列分析方法在分析化学上的应用Shinkai等在研究硼酸衍生化卟啉的分子组装行为,并用于测定糖分子构型方面取得了许多成果.例如:四(4硼酸基苯基)卟啉(TBPP)在水溶液中和糖分子存在下由π-π堆积成的聚集体,圆二色谱(CD)的激子偶合带(ECB)符号,对糖分子的绝对构型有专一性,可检测糖分子的绝对构型等等结语目前,超分子化学的理论和方法正发挥着越来越重要的作用,该学科的研究将更加紧密地与各化学分支相结合.可以预见,作为超分子化学起源的主客体化学将与有机合成化学、配位化学和生物化学互相促进,为生命科学、能源科学等共同做出巨大贡献;超分子化学方法在无机化学中的应用,代写留学生论文将使人们获得多种具特定功能的配合物、晶体、陶瓷等材料;物理化学则要改变当前超分子化学的定性科学现状,从微观和宏观上把选择性分子间力、分子识别、分子自组装等过程用适当的变量进行定量描述,从而提高人们对超分子化学的熟悉和猜测、控制能力,最终要寻求解释超分子体系内在运动规律和预言此类体系整体功能的理论工具2.参考文献:1吴世康.超分子光化学前景J.感光化学与光化学,1994,12(4):孙得志,朱兰英,宋兴民.超分子化学、选择性分子间力和若干化学研究领域J.聊城师院学报(自然科学版),1998,11(2):王恩波,胡长文,许林.多酸化学导论M.北京:化学工业出版社,杜丹,关晓凤,崔仁发,等.Dawson型磷钼杂多酸对苯二酚超分子膜电极电化学性能的研究J.湖北大学学报(自然科学版),2001,23(1):杜丹,王升富,黄春保.吡啶2Dawson型磷钼杂多酸超分子薄膜修饰电极分析J.测试学报,2001,20(4):靳素荣,姚礼峰.9钨磷酸/结晶紫超分子化合物的合成及表征J.合成化学,2001,9(3):王升富,杜丹,邹其超.磷钼杂多酸L半胱氨酸自组装超分子膜电极对亚硝酸根电催化还原的研究J.分析化学,2002,30(2):毕丽华,黄如丹,王恩波,等.多酸超分子化合物的合成及液晶性质J.高等学校化学学报,1999,20(9):刘术侠,王春梅,李德惠,等.一个新的超分子化合物(C10H18N)As2Mo18O62·6CH3CN·8H2O的合成、结构及性质J.化学学报,2004,62(14):苏循成,周志芬,林华宽,等.功能取代二氧四胺大环超分子配合物的溶液热力学性质研究J.南开大学学报(自然科学版),2000,33(4):李晖,许慧君,周庆复.冠醚取代蒽醌超分子体系的设计与合成及分子的能量转移的研究J.感光科学与光化学,2002,18(1):薄志山,张希,杨梅林.基于静电吸引的自组装树状超分子复合物J.高等学校化学学报,1997,18(2):朱麟勇,童晓峰,李妙贞,等.嵌段共聚物PAANa2DendrPE聚集体超分子结构中树枝体对铽离子发光增强的天线效应研究J.感光科学与光化学,2000,18(2):晏华.超分子液晶M.北京:科学出版社,李敏,周恩乐,徐纪平.含对硝基偶氮苯侧基的丙烯酸酯类液晶聚合物的超分子结构J.高等学校化学学报,1995,16(4):堪东中,万雷,方江邻,等.二元羧酸与4,4′联吡啶氢键缔合组装主链型超分子液晶J.高分子学报,2002,(6):田宏健,周庆复,沈淑引.酞菁卟啉超分子的形成及光致电子转移过程J.物理化学学报,1996,12(1):,ZHOUYong2feng,,2004,303(2):刘雅娟,吕男,杨文胜.一种超分子纳米管的变温红外光谱研究J.分子科学学报,2001,17(3):王彤文,戴乐蓉.混合超分子液晶模板法合成六方介孔相含钛氧化钴J.物理化学学报,2001,17(1):10-14.
113 浏览 3 回答
86 浏览 3 回答
289 浏览 5 回答
164 浏览 3 回答
129 浏览 4 回答
213 浏览 4 回答
311 浏览 4 回答
272 浏览 4 回答
118 浏览 4 回答
118 浏览 5 回答
346 浏览 3 回答
192 浏览 4 回答
88 浏览 5 回答
194 浏览 2 回答
185 浏览 4 回答