刘敏1,2 刘艳芳1,2 张雅杰1,2 刘洋1,2 夏玉平3
(1.武汉大学资源与环境科学学院,武汉,430079;2.武汉大学教育部地理信息系统重点实验室,武汉,430079;3.南方数码科技有限公司,广州,510665)
摘要:考虑到传统地价指数编制的难度和信息的滞后性以及常用预测方法忽视地价指数是随时间变化呈现上涨趋势的非平稳随机过程造成预测精度低的问题,通过为城镇地价指数提供一种新的预测方法,满足政府、开发商等市场主体对土地市场信息的需求,构建了城镇地价指数灰色——马尔柯夫预测模型,对深圳2004年第三、四季度地价指数进行预测,并将预测结果与实际值比较,吻合度较高。
关键词:地价指数;灰色理论;马尔柯夫;预测
地价指数是反映某一区域或某一城市的土地价格在时间上的平均变动和综合变动方向及变动程度的相对指标,是城镇土地市场变化的晴雨表,它体现的是基于规划条件下的各规划地块之间的相对地价比例关系,在很大程度上消除了房地产估价的实效性约束。随着社会主义市场经济的发展,土地市场的日益活跃和完善,地价指数的重要性得到越来越多的体现,无论是政府对土地市场的宏观管理,还是地产开发商的投资开发决策,或是土地估价中可比实例的交易日期修正,都离不开地价指数的指导。但采用传统的方法测算地价指数难度大,本文试通过建立灰色——马尔柯夫预测模型,采用某地区历史的地价指数数据预测同一地区未来的地价指数,是地价指数预测在方法上的一种有创意的尝试。
1 我国地价指数编制现状
目前我国对地价指数的具体测算方法主要有两种,即拉氏公式和帕氏公式。拉氏公式是以基期为权数综合方法,表明在基期地价水平的条件下地价的综合变化,公式为:
土地信息技术的创新与土地科学技术发展:2006年中国土地学会学术年会论文集
式中,P为报告期的平均地价;P0 为基期的平均地价;q0 为基期土地交易量。
帕氏公式也是加权综合指数公式,它与拉氏公式的区别在于是以报告期为权数的综合方法,表明在报告期地价水平的条件下地价综合变动的程度,公式为:
土地信息技术的创新与土地科学技术发展:2006年中国土地学会学术年会论文集
式中,P、P0 分别为报告期和基期的平均地价;qk为报告期土地的交易量。
由于拉氏公式在定基指数的数列中各期权数相同,因此采用基于拉氏指数公式的加权平均指数公式测算的地价指数不仅能较好反映地价水平的变化、反映地价结构的影响,而且还可以很方便地计算环比地价指数,使地价指数的可比性增加,并有利于地价的动态研究,所以较常采用拉氏公式测算地价指数。
但无论采用拉氏公式还是采用帕氏公式都需要取得区域基期和报告期的平均地价数据,数据的获取存在以下困难:①单纯的土地交易较少,大部分的土地交易伴随着房产交易,因此难以直接获得土地的交易价格,一般要借助估价手段,通过复杂的计算求取;②土地市场是不完全竞争市场,土地交易价格受主观因素影响大,很多交易属于非正常交易;③土地价格具有地区性和个别性特征,因此不同地块不仅价格不同,价格内涵也有可能不一致,因此要从地价的构成因素上对土地价格进行修正,直接测算地价指数难度也较大。
鉴于直接测算地价指数存在以上的困难,同时缺乏前瞻性,因此采用一定的数学方法,利用历史的地价指数数据预测未来的地价指数具有实践意义。目前地价指数预测较常采用趋势外推法,利用计算机建立线性趋势预测模型和二次曲线趋势预测模型进行预测,但是这两种预测模型没有考虑到地价指数是随时间变化呈现上涨趋势的非平稳随机过程,由于受各种随机因素(如政府部门的土地供应政策、金融政策等)的影响,时序数据总是围绕这一变化趋势出现波动、跳跃,产生偏差,因此只能用于短期预测,对于长期预测就无法保证精度。
2 地价指数的灰色——马尔柯夫预测思想
灰色预测和马尔柯夫链预测是两种用于时间序列类型问题的预测方法,灰色模型的优点是适于预测时间短,数据资料少,波动不大的系统对象,不足之处是对随机波动大的数据序列预测准确度低;马尔柯夫链理论优点是适于预测随机波动大的动态过程,局限性在于马尔柯夫链预测对象要求具有马氏性和平稳过程等均值的特点,两种方法具有互补性。
地价指数是受各种随机因素影响而随时间变化呈现上涨趋势的非平稳随机过程,因此如果将两种预测方法有效的结合起来,先采用灰色模型对地价指数的时序数据进行拟合,找出其变化趋势,则可以弥补马尔柯夫链预测的局限,而在灰色预测的基础上再进行马尔柯夫预测,又可以弥补灰色预测对随机波动大的数据序列预测准确度低的缺陷。
3 建立灰色——马尔柯夫预测模型
建立GM (1,1) 模型
设原始序列为: ,将X(0)做一次累加,得累加生成序列 。
土地信息技术的创新与土地科学技术发展:2006年中国土地学会学术年会论文集
其中,
X(1)可以通过求解一阶线性微分方程:
土地信息技术的创新与土地科学技术发展:2006年中国土地学会学术年会论文集
的解得到,其中a、u 为未知参数。
土地信息技术的创新与土地科学技术发展:2006年中国土地学会学术年会论文集
土地信息技术的创新与土地科学技术发展:2006年中国土地学会学术年会论文集
计算出a、u 后,可求出方程(2)的解为:
土地信息技术的创新与土地科学技术发展:2006年中国土地学会学术年会论文集
由(5)式可对 X(1)做出预测,由累减生成得到原始数据序列 X(0)的预测,即:
土地信息技术的创新与土地科学技术发展:2006年中国土地学会学术年会论文集
其中,
土地信息技术的创新与土地科学技术发展:2006年中国土地学会学术年会论文集
记 即为k时刻GM(1,1)模型求得的原始数据序列的灰色预测值,它反映了原始数据呈指数规律变化的总趋势。
状态划分
在灰色预测的基础上进行马尔柯夫预测,必须将序列划分为若干状态。一般是以y^k曲线为基准,划分成若干条形区域,每一条形区域构成一个状态。其中任一状态区间Qi 表达为:
Qi=[Q1i,Q2i] (i=1,2,3,…,n)
其中:
土地信息技术的创新与土地科学技术发展:2006年中国土地学会学术年会论文集
Oi,Pi为常数,数值根据具体情况确定。由于 是随时间k变化而变化,因此,Q1i,Q2i也随时序变化,即状态区间 Qi 具有动态性。
转移矩阵的计算和确定预测值
转移概率矩阵公式为:
土地信息技术的创新与土地科学技术发展:2006年中国土地学会学术年会论文集
式中, 为由状态Qi经过m步转移到Qj的概率;n为划分的状态数目;Mi为原始数据按一定的概率落入状态Qi的样本数; 为由状态Qi经m步转移到Qj的原始数据样本数。
土地信息技术的创新与土地科学技术发展:2006年中国土地学会学术年会论文集
一般只需考察一步转移概率矩阵P(1),但当状态的未来转向难以确定时,则需要考察多步转移概率矩阵 P(m),多步转移概率矩阵可以根据切普曼 -柯尔莫哥洛夫方程确定。
确定了预测对象未来的状态转移以后,即确定了预测值变动的灰区间Qi=[Q1i,Q2i],可以用区间的中位数作为预测对象未来时刻的预测值: 。
4 实证研究
选取样本数据
深圳作为我国最早实行改革开放的地区,土地市场相对于其他城市而言要完善和发达许多,而综合地价指数能较为准确的反映深圳土地价格的总体水平,具有较强的综合性和趋势性,鉴于数据获取的可得性,笔者选取深圳 2001年第一季度到 2004年第二季度的综合地价指数作为样本数据,2004年第三第四季度的综合地价指数作为检验数据。具体数据见表1。
表1 深圳2001年1季度~2004年4季度综合地价指数
数据来源:深圳地价指数报告。
建立 GM (1,1) 模型
原始序列X(0)={,,,,,,,,,,,,,}
根据公式(1),一次累加序列 X(1)={,,,,,,,,,,,,,}
根据公式(3)、(4)可求得
则
土地信息技术的创新与土地科学技术发展:2006年中国土地学会学术年会论文集
划分状态
根据深圳地价指数变化的实际情况,划分为Q0 (持平)、Q1 (微升)、Q2 (上升)、Q3 (微降)和Q4 (下降)五种状态。具体划分标准如下:
土地信息技术的创新与土地科学技术发展:2006年中国土地学会学术年会论文集
土地信息技术的创新与土地科学技术发展:2006年中国土地学会学术年会论文集
其中: ,为深圳2001年第一季度至2004年第二季度综合地价指数的平均数。
状态Qi(i=0,1,2,3,4)表示原始数据序列X(0)偏离预测曲线 的程度,落入各状态的样本点数分别为M0=3,M1=6,M2=1,M3=2,M4=2。由于原始数据序列中最后一个数的状态转向不确定,所以,应删掉最后一个数据,然后根据由i经一步转移到j的样本点数Mij,计算一步状态矩阵M,再根据M计算 经一步转移到 的转移概率Pij从而得到一步状态转移矩阵P(1),结果如下:
土地信息技术的创新与土地科学技术发展:2006年中国土地学会学术年会论文集
深圳2004年第二季度综合地价指数处于Q0 状态,考察一步转移概率矩阵第一行可知,下一季度转为状态Q1、Q2 的概率均为1/2,因此根据此一步转移概率矩阵无法预测深圳2004年第三季度综合地价指数所处的状态,需要进一步考察二步转移概率矩阵。根据切普曼-柯尔莫哥洛夫方程确定二步转移概率矩阵P(2),结果如下:
土地信息技术的创新与土地科学技术发展:2006年中国土地学会学术年会论文集
考察此二步转移概率矩阵第一行可知,处于Q0 状态的第二季度综合地价指数在第三季度转为状态Q1 的概率最大,概率值为,因此可预测2004年第三季度综合地价指数处于Q1,即微升状态。指数预测值为:
土地信息技术的创新与土地科学技术发展:2006年中国土地学会学术年会论文集
同理,根据第三季度地价指数预测值,判定其所处的状态为 Q0,可预测出深圳2004年第四季度地价指数状态转向Q1,综合地价指数值为: ,预测结果与现实数据的比较见表2。
表2 地价指数预测效果比较
由表2 预测结果可以看出,用灰色——马尔柯夫模型对深圳2004年第三、四季度的综合地价指数进行预测所得结果与现实数据吻合度较高。
5 结语
由于我国过去长期实行的是计划经济体制,土地市场的形成和发育时间都较短,因此土地市场信息相对较少,但是随着市场经济的不断发展和完善,政府、开发商等市场主体对土地市场信息的需求越来越迫切,这在信息的供给与需求之间就形成了一种矛盾。本文建立的灰色——马尔柯夫模型,综合考虑了市场规律本身的趋势性和国家的宏观调控和大政方针对土地市场的影响造成地价指数的波动性,用城镇较少的历史地价指数数据预测城镇未来的地价指数,并通过实例验证预测结果与现实情况吻合度较高,能够较好预测土地市场的价格走势,较好地解决了土地市场贫信息和多需求的矛盾。
本文实例验证采用的是市场化程度较高的深圳地价指数数据,但是由于我国目前大部分城市的土地市场发育程度还不理想,而且模型预测结果从根本上来说仍然需要市场交易资料的斧正,所以适用范围和程度有一定限制,但不失为一种有益的尝试。
参考文献
[1]李何超,汪四文.论城镇地价指数编制方法[J].城市发展研究,2000,4:56~58
[2]岳朝龙,王琳.股票价格的灰色——马尔柯夫预测[J].系统工程,1999,11:54~59
[3]贾 华,祝国瑞.土地利用规划中农作物单产预测的灰色——马尔柯夫链方法 [J].武汉测绘科技大学学报,1998,23 (2):149~152
[4]刘耀林,刘艳芳,张玉梅.基于灰色——马尔柯夫模型的耕地总量预测模型[J].武汉大学学报.信息科学版2004,29 (7):575~580
随着科学技术特别是信息技术的高速发展,数学建模的应用价值越来越得到众人的重视,
数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,以下是一篇关于数学建模教育开展策略探究的论文 范文 ,欢迎阅读参考。
大学数学具有高度抽象性和概括性等特点,知识本身难度大再加上学时少、内容多等教学现状常常造成学生的学习积极性不高、知识掌握不够透彻、遇到实际问题时束手无策,而数学建模思想能激发学生的学习兴趣,培养学生应用数学的意识,提高其解决实际问题的能力。数学建模活动为学生构建了一个由数学知识通向实际问题的桥梁,是学生的数学知识和应用能力共同提高的最佳结合方式。因此在大学数学教育中应加强数学建模教育和活动,让学生积极主动学习建模思想,认真体验和感知建模过程,以此启迪创新意识和 创新思维 ,提高其素质和创新能力,实现向素质教育的转化和深入。
一、数学建模的含义及特点
数学建模即抓住问题的本质,抽取影响研究对象的主因素,将其转化为数学问题,利用数学思维、数学逻辑进行分析,借助于数学 方法 及相关工具进行计算,最后将所得的答案回归实际问题,即模型的检验,这就是数学建模的全过程。一般来说",数学建模"包含五个阶段。
1.准备阶段
主要分析问题背景,已知条件,建模目的等问题。
2.假设阶段
做出科学合理的假设,既能简化问题,又能抓住问题的本质。
3.建立阶段
从众多影响研究对象的因素中适当地取舍,抽取主因素予以考虑,建立能刻画实际问题本质的数学模型。
4.求解阶段
对已建立的数学模型,运用数学方法、数学软件及相关的工具进行求解。
5.验证阶段
用实际数据检验模型,如果偏差较大,就要分析假设中某些因素的合理性,修改模型,直至吻合或接近现实。如果建立的模型经得起实践的检验,那么此模型就是符合实际规律的,能解决实际问题或有效预测未来的,这样的建模就是成功的,得到的模型必被推广应用。
二、加强数学建模教育的作用和意义
(一) 加强数学建模教育有助于激发学生学习数学的兴趣,提高数学修养和素质
数学建模教育强调如何把实际问题转化为数学问题,进而利用数学及其有关的工具解决这些问题, 因此在大学数学的教学活动中融入数学建模思想,鼓励学生参与数学建模实践活动,不但可以使学生学以致用,做到理论联系实际,而且还会使他们感受到数学的生机与活力,激发求知的兴趣和探索的欲望,变被动学习为主动参与其效率就会大为改善。数学修养和素质自然而然得以培养并提高。
(二)加强数学建模教育有助于提高学生的分析解决问题能力、综合应用能力
数学建模问题来源于社会生活的众多领域,在建模过程中,学生首先需要阅读相关的文献资料,然后应用数学思维、数学逻辑及相关知识对实际问题进行深入剖析研究并经过一系列复杂计算,得出反映实际问题的最佳数学模型及模型最优解。因此通过数学建模活动学生的视野将会得以拓宽,应用意识、解决复杂问题的能力也会得到增强和提高。
(三)加强数学建模教育有助于培养学生的创造性思维和创新能力
所谓创造力是指"对已积累的知识和 经验 进行科学地加工和创造,产生新概念、新知识、新思想的能力,大体上由感知力、 记忆力 、思考力、 想象力 四种能力所构成"[1].现今教育界认为,创造力的培养是人才培养的关键,数学建模活动的各个环节无不充满了创造性思维的挑战。
很多不同的实际问题,其数学模型可以是相同或相似的,这就要求学生在建模时触类旁通,挖掘不同事物间的本质,寻找其内在联系。而对一个具体的建模问题,能否把握其本质转化为数学问题,是完成建模过程的关键所在。同时建模题材有较大的灵活性,没有统一的标准答案,因此数学建模过程是培养学生创造性思维,提高创新能力的过程[2].
(四)加强数学建模教育有助于提高学生科技论文的撰写能力
数学建模的结果是以论文形式呈现的,如何将建模思想、建立的模型、最优解及其关键环节的处理在论文中清晰地表述出来,对本科生来说是一个挑战。经历数学建模全过程的磨练,特别是数模论文的撰写,学生的文字语言、数学表述能力及论文的撰写能力无疑会得到前所未有的提高。
(五)加强数学建模教育有助于增强学生的团结合作精神并提高协调组织能力建模问题通常较复杂,涉及的知识面也很广,因此数学建模实践活动一般效仿正规竞赛的规则,三人为一队在三天内以论文形式完成建模题目。要较好地完成任务,离不开良好的组织与管理、分工与协作[3].
三、开展数学建模教育及活动的具体途径和有效方法
(一)开展数学建模课堂教学
即在课堂教学中,教师以具体的案例作为主要的教学内容,通过具体问题的建模,介绍建模的过程和思想方法及建模中要注意的问题。案例教学法的关键在于把握两个重要环节:
案例的选取和课堂教学的组织。
教学案例一定要精心选取,才能达到预期的教学效果。其选取一般要遵循以下几点。
1. 代表性:案例的选取要具有科学性,能拓宽学生的知识面,突出数学建模活动重在培养兴趣提高能力等特点。
2. 原始性:来自媒体的信息,企事业单位的 报告 ,现实生活和各学科中的问题等等,都是数学建模问题原始资料的重要来源。
3. 创新性:案例应注意选取在建模的某些环节上具有挑战性,能激发学生的创造性思维,培养学生的创新精神和提高创造能力。
案例教学的课堂组织,一部分是教师讲授,从实际问题出发,讲清问题的背景、建模的要求和已掌握的信息,介绍如何通过合理的假设和简化建立优化的数学模型。还要强调如何用求解结果去解释实际现象即检验模型。另一部分是课堂讨论,让学生自由发言各抒己见并提出新的模型,简介关键环节的处理。最后教师做出点评,提供一些改进的方向,让学生自己课外独立探索和钻研,这样既突出了教学重点,又给学生留下了进一步思考的空间,既避免了教师的"满堂灌",也活跃了课堂气氛,提高了学生的课堂学习兴趣和积极性,使传授知识变为学习知识、应用知识,真正地达到提高素质和培养能力的教学目的[4].
(二)开展数模竞赛的专题培训指导工作
建立数学建模竞赛指导团队,分专题实行教师负责制。每位教师根据自己的专长,负责讲授某一方面的数学建模知识与技巧,并选取相应地建模案例进行剖析。如离散模型、连续模型、优化模型、微分方程模型、概率模型、统计回归模型及数学软件的使用等。学生根据自己的薄弱点,选择适合的专题培训班进行学习,以弥补自己的不足。这种针对性的数模教学,会极大地提高教学效率。
(三)建立数学建模网络课程
以现代 网络技术 为依托,建立数学建模课程网站,内容包括:课程介绍,课程大纲,教师教案,电子课件,教学实验,教学录像,网上答疑等;还可以增加一些有关栏目,如历年国内外数模竞赛介绍,校内竞赛,专家点评,获奖心得交流;同时提供数模学习资源下载如讲义,背景材料,历年国内外竞赛题,优秀论文等。以此为学生提供良好的自主学习网络平台,实现课堂教学与网络教学的有机结合,达到有效地提高学生数学建模综合应用能力的目的。[5,6]
(四)开展校内数学建模竞赛活动
完全模拟全国大学生数模竞赛的形式规则:定时公布赛题,三人一组,只能队内讨论,按时提交论文,之后指导教师、参赛同学集中讨论,进一步完善。笔者负责数学建模竞赛培训近 20 年,多年的实践证明,每进行一次这样的训练,学生在建模思路、建模水平、使用软件能力、论文书写方面就有大幅提高。多次训练之后,学生的建模水平更是突飞猛进,效果甚佳。
如 2008 年我指导的队荣获全国高教社杯大学生数学建模竞赛的最高奖---高教社杯奖,这是此赛设置的唯一一个名额,也是当年从全国(包括香港)院校的约 1 万多个本科参赛队中脱颖而出的。又如 2014 年我校 57 队参加全国大学生数学建模竞赛,43 队获奖,获奖比例达 75%,创历年之最。
(五)鼓励学生积极参加全国大学生数学建模竞赛、国际数学建模竞赛
全国大学生数学建模竞赛创办于 1992 年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛, 国际大学生数学建模竞赛是世界上影响范围最大的高水平大学生学术赛事。参加数学建模大赛可以激励学生学习数学的积极性,提高运用数学及相关工具分析问题解决问题的综合能力,开拓知识面,培养创造精神及合作意识。
四、结束语
数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,而高校数学教学改革的目的之一是要着力培养学生的创造性思维,提高学生的创新能力。因此应将数学建模思想融入教学活动中,通过不断的数学建模教育和实践培养学生的创新能力和应用能力从而提高学生的基本素质以适应社会发展的要求。
参考文献:
[1]辞海[M].上海辞书出版社,2002,1:237.
[2]许梅生,章迪平,张少林。 数学建模的认识与实践[J].浙江科技学院学报,2003,15(1):40-42.
[3]姜启源,谢金星,一项成功的高等教育改革实践[J].中国高教研究,2011,12:79-83.
[4]饶从军,王成。论高校数学建模教学[J].延边大学学报(自然科学学版),2006,32(3):227-230.
[5]段璐灵。数学建模课程教学改革初探[J].教育与职业,2013,5:140-142.
[6]郝鹏鹏。工程网络课程教学的实践与思考[J]科技视界,2014,29:76-77.
大部分数学知识是抽象的,概念比较枯燥,造成学生学习困难,而数学建模的运用,在很大程度上可以将抽象的数学知识转化成实体模型,让学生更容易理解和学习数学知识。教师要做的就是了解并掌握数学建模的方法,并且把这种 教学方法 运用到数学教学中。
对教师来说,发现好的教学方法不是最重要的,而是如何把方法与教学结合起来。通过对数学建模的长期研究和实践应用,笔者 总结 了数学建模的概念以及运用策略。
一、数学建模的概念
想要更好地运用数学建模,首先要了解什么是数学建模。可以说,数学建模就像一面镜子,可以使数学抽象的影像产生与之对应的具体化物象。
二、在小学数学教学中运用数学建模的策略
1.根据事物之间的共性进行数学建模
想要运用数学建模,首先要对建模对象有一定的感知。教师要创造有利的条件,促使学生感知不同事物之间的共性,然后进行数学建模。
教师应做好建模前的指导工作,为学生的数学建模做好铺垫,而学生要学会尝试自己去发现事物的共性,争取将事物的共性完美地运用到数学建模中。在建模过程中,教师要引导学生把新知识和旧知识结合起来的作用,将原来学习中发现的好方法运用到新知识的学习、新数学模型的构建中,降低新的数学建模的难度,提高学生数学建模的成功率。如在教学《图形面积》时,教师可以利用不同的图形模板,让学生了解不同图形的面积构成,寻找不同图形面积的差异以及图形之间的共性。这样直观地向学生展示图形的变化,可以加深学生对知识的理解,提高学生的学习效率。
2.认识建模思想的本质
建模思想与数学的本质紧密相连,它不是独立存在于数学教学之外的。所以在数学建模过程中,教师要帮助学生正确认识数学建模的本质,将数学建模与数学教学有机结合起来,提高学生解决问题的能力,让学生真正具备使用数学建模的能力。
建模过程并不是独立于数学教学之外的,它和数学的教学过程紧密相连。数学建模是使人对数学抽象化知识进行具体认识的工具,是运用数学建模思想解决数学难题的过程。因此,教师要将它和数学教学组成一个有机的整体,不仅要帮助学生完成建模,更要带领学生认识数学建模的本质,领悟数学建模思想的真谛,并逐渐引导学生使用数学建模解决数学学习过程中遇到的问题。
3.发挥教材在数学建模上的作用
教材是最基础的教学工具,在数学教材中有很多典型案例可以利用在数学建模上,其中很大一部分来源于生活,更易于小学生学习和理解,有助于学生构建数学建模思想。教师要利用好教材,培养学生的建模能力,帮助学生建造更易于理解的数学模型,从而提高学生的学习效率。如在教学加减法时,教材上会有很多数苹果、香蕉的例题,这些就是很好的数学模型,因为贴近生活,可以激发学生的学习兴趣,培养学生数学建模的能力,所以教师应该深入研究教材。
数学建模是一种很好的数学教学方法,教师要充分利用这种教学方法,真正做到实践与理论完美结合。
1、层次分析法,简称AHP,是指将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。该方法是美国运筹学家匹茨堡大学教授萨蒂于20世纪70年代初,在为美国国防部研究"根据各个工业部门对国家福利的贡献大小而进行电力分配"课题时,应用网络系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法。
2、多属性决策是现代决策科学的一个重要组成部分,它的理论和方法在工程设计、经济、管理和军事等诸多领域中有着广泛的应用,如:投资决策、项目评估、维修服务、武器系统性能评定、工厂选址、投标招标、产业部门发展排序和经济效益综合评价等.多属性决策的实质是利用已有的决策信息通过一定的方式对一组(有限个)备选方案进行排序或择优.它主要由两部分组成:(l) 获取决策信息.决策信息一般包括两个方面的内容:属性权重和属性值(属性值主要有三种形式:实数、区间数和语言).其中,属性权重的确定是多属性决策中的一个重要研究内容;(2)通过一定的方式对决策信息进行集结并对方案进行排序和择优。
3、灰色预测模型(Gray Forecast Model)是通过少量的、不完全的信息,建立数学模型并做出预测的一种预测方法.当我们应用运筹学的思想方法解决实际问题,制定发展战略和政策、进行重大问题的决策时,都必须对未来进行科学的预测.预测是根据客观事物的过去和现在的发展规律,借助于科学的方法对其未来的发展趋势和状况进行描述和分析,并形成科学的假设和判断。
4、Dijkstra算法能求一个顶点到另一顶点最短路径。它是由Dijkstra于1959年提出的。实际它能出始点到 其它 所有顶点的最短路径。
Dijkstra算法是一种标号法:给赋权图的每一个顶点记一个数,称为顶点的标号(临时标号,称T标号,或者固定标号,称为P标号)。T标号表示从始顶点到该标点的最短路长的上界;P标号则是从始顶点到该顶点的最短路长。
5、Floyd算法是一个经典的动态规划算法。用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径。从动态规划的角度看问题,我们需要为这个目标重新做一个诠释(这个诠释正是动态规划最富创造力的精华所在)从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过若干个节点k到j。所以,我们假设Dis(i,j)为节点u到节点v的最短路径的距离,对于每一个节点k,我们检查Dis(i,k) + Dis(k,j) < Dis(i,j)是否成立,如果成立,证明从i到k再到j的路径比i直接到j的路径短,我们便设置Dis(i,j) = Dis(i,k) + Dis(k,j),这样一来,当我们遍历完所有节点k,Dis(i,j)中记录的便是i到j的最短路径的距离。
6、模拟退火算法是模仿自然界退火现象而得,利用了物理中固体物质的退火过程与一般优化问题的相似性从某一初始温度开始,伴随温度的不断下降,结合概率突跳特性在解空间中随机寻找全局最优解。
7、种群竞争模型:当两个种群为争夺同一食物来源和生存空间相互竞争时,常见的结局是,竞争力弱的灭绝,竞争力强的达到环境容许的最大容量。使用种群竞争模型可以描述两个种群相互竞争的过程,分析产生各种结局的条件。
8、排队论发源于上世纪初。当时美国贝尔电话公司发明了自动电话,以适应日益繁忙的工商业电话通讯需要。这个新发明带来了一个新问题,即通话线路与电话用户呼叫的数量关系应如何妥善解决,这个问题久久未能解决。1909年,丹麦的哥本哈根电话公司.埃尔浪(Erlang)在热力学统计平衡概念的启发下解决了这个问题。
9、线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源.线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域。决策变量、约束条件、目标函数是线性规划的三要素。
10、非线性规划:非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。20世纪50年代初,库哈() 和托克 () 提出了非线性规划的基本定理,为非线性规划奠定了理论基础。这一方法在工业、交通运输、经济管理和军事等方面有广泛的应用,特别是在“最优设计”方面,它提供了数学基础和计算方法,因此有重要的实用价值。
数学建模全国优秀论文相关 文章 :
★ 数学建模全国优秀论文范文
★ 2017年全国数学建模大赛获奖优秀论文
★ 数学建模竞赛获奖论文范文
★ 小学数学建模的优秀论文范文
★ 初中数学建模论文范文
★ 学习数学建模心得体会3篇
★ 数学建模论文优秀范文
★ 大学生数学建模论文范文(2)
★ 数学建模获奖论文模板范文
★ 大学生数学建模论文范文
248 浏览 3 回答
325 浏览 3 回答
302 浏览 2 回答
272 浏览 3 回答
182 浏览 4 回答
120 浏览 4 回答
305 浏览 4 回答
247 浏览 2 回答
149 浏览 6 回答
288 浏览 3 回答
261 浏览 5 回答
140 浏览 2 回答
182 浏览 8 回答
122 浏览 4 回答
177 浏览 2 回答