激光发展史激光以全新的姿态问世已二十余年。然而,发明激光器的历程却鲜为人知,至于发明者如何从事艰难曲折的探索,就更少人问津了。其实,每一项重大发明,都是科学家们智慧的结晶,里面包涵着他们的汗水和心血。自然,激光器的发明也不例外。 说得准确些,对激光的研究,只是到了20世纪50年代末才出现一个崭新阶段。在此之前,人们只对无线电波和微波有较深研究。科学家们把无线电波波长缩短到十米以内,使得世界性的通讯成为可能,那是30年代的事情。后来,随着速调管和空穴磁控管的发明,科学家便对厘米波的性质进行研究。二次世界大战中,由于射频和光谱学的发展,辐射波和原子只间的联系又重新被强调。大战期间,科学家们发明并研制了雷达(战争对雷达的制造起了推动的作用)。从技术本身来说,雷达是电磁波向超短波、微波发展的产物。大战以后,科学家又开创了微波波谱学,目的是探索光谱的微波范围并把其推广到更短的波长。当时,哥仑比亚大学有一个由汤斯()领导的辐射实验小组,他们一直从事电磁方面以及毫米辐射波的研究。1951年,汤斯提出了微波激射器(Maser全称Microwave Amplification by Stimulated Emission of Radiation)的概念。经过几年的努力,1954年汤斯和他的助手高顿(J. Cordon)、蔡格(H. Zeiger)发明了氨分子束微波激射器并使其正常运行。这为以后激光器的诞生奠定了基础。当时,汤斯希望微波激射器能产生波长为半毫米的微波,遗撼的是,激射器却输出波长为1。25cm的微波。微波激射器问世以后,科学家就希望能制造输出更短波长的激射器。汤斯认为可将微波推到红外区附近,甚至到可见光波段。1958年,肖洛()与汤斯合作,率先发表了在可见光频段工作的激射器的设计方案和理论计算。这又将激光研究推上了一个新阶段。现在,人们都知道,产生激光要具备两个重要条件:一是粒子数反转;二是谐振腔。值得注意的是,自1916年爱因斯坦提出受激辐射的概念以后,1940年前后就有人在研究气体放电实验中,观察到粒子反转现象。按当时的实验技术基础,就具备建立某种类型的激光器的条件。但为什么没能造出来呢?因为没有人,包括爱因斯坦本人没把受激辐射,粒子数反转,谐振腔联系在一起加以考虑。因而也把激光器的发明推迟了若干年。在研究激光器的过程中,应把引进谐振腔的功劳归于肖洛。肖洛长期从事光谱学研究。谐振腔的结构,就是从法——珀干涉仪那里得到启示的。正如肖洛自己所说:“我开始考虑光谐振器时,从两面彼此相向镜面的法——珀干涉仪结构着手研究,是很自然的。”实际上,干涉仪就是一种谐振器。肖洛在贝尔电话实验室的七年中,积累了大量数据,于1958年提出了有关激光的设想。几乎同时,许多实验室开始研究激光器的可能材料和方法,用固体作为工作物质的激光器的研究工作始于1958年。如肖洛所述:“我完全彻底地受到灌输,使我相信,可以在气体中做的任何事情,在固体中同样可以做,且在固体中做得更好些。因此,我开始探索、寻找固体激光器的材料…...”的确,不到一年,在1959年9月召开的第一次国际量子电子会议上,肖洛提出了用红宝石作为激光的工作物质。不久,肖洛又具体地描述了激光器的结构:“固体微波激射器的结构较为简单,实质上,它有一棒(红宝石),它的一端可作全反射,另一端几乎全反射,侧面作光抽运。”遗撼的是,肖洛没有得到足够的光能量使粒子数反转,因而没获成功。可喜的是,科学家迈曼()巧妙地利用氙灯作光抽运,从而获得粒子数反转。于是,1960年6月,在Rochester大学,召开了一个有关光的相干性的会议,会议上,迈曼成功地操作了一台激光器。7月份,迈曼用红宝石制成的激光器被公布于众。至此,世界上第一台激光器宣告诞生。激光具有单色性,相干性等一系列极好的特性。从诞生那天开始,人们就预言了它的美好前景。20多年来,人们制造了输出各种不同波长的激光器,甚至是可调激光器。大功率激光器的研制成功,又开拓了新的领域。1977年出现的自由电子激光器,机制则完全不同,它的工作物质是具有极高能量的自由电子,人们可以期望通过这种激光器,实现连续大功率输出,而且覆盖频率范围可向长短两个方向发展。现在,激光应用已经遍及光学、医学、原子能、天文、地理、海洋等领域,它标志着新技术革命的发展。诚然,如果将激光发展的历史与电子学及航空发展的历史相比,你不得不意识到现在还是激光发展的早期阶段,更令人激动的美好前景将要来到。 能发1954年制成了第一台微波量子放大器,获得了高度相干的微波束。1958年.肖洛和.汤斯把微波量子放大器原理推广应用到光频范围,并指出了产生激光的方法。1960年.梅曼等人制成了第一台红宝石激光器。1961年A.贾文等人制成了氦氖激光器。1962年.霍耳等人创制了砷化镓半导体激光器。以后,激光器的种类就越来越多。按工作介质分,激光器可分为气体激光器、固体激光器、半导体激光器和染料激光器4大类。近来还发展了自由电子激光器,其工作介质是在周期性磁场中运动的高速电子束,激光波长可覆盖从微波到X射线的广阔波段。按工作方式分,有连续式、脉冲式、调Q和超短脉冲式等几类。大功率激光器通常都是脉冲式输出。各种不同种类的激光器所发射的激光波长已达数千种,最长的波长为微波波段的毫米,最短波长为远紫外区的210埃,X射线波段的激光器也正在研究中。 除自由电子激光器外,各种激光器的基本工作原理均相同,装置的必不可少的组成部分包括激励(或抽运)、具有亚稳态能级的工作介质和谐振腔( 见光学谐振腔)3部分。激励是工作介质吸收外来能量后激发到激发态,为实现并维持粒子数反转创造条件。激励方式有光学激励、电激励、化学激励和核能激励等。工作介质具有亚稳能级是使受激辐射占主导地位,从而实现光放大。谐振腔可使腔内的光子有一致的频率、相位和运行方向,从而使激光具有良好的定向性和相干性。 激光工作物质 是指用来实现粒子数反转并产生光的受激辐射放大作用的物质体系,有时也称为激光增益媒质,它们可以是固体(晶体、玻璃)、气体(原子气体、离子气体、分子气体)、半导体和液体等媒质。对激光工作物质的主要要求,是尽可能在其工作粒子的特定能级间实现较大程度的粒子数反转,并使这种反转在整个激光发射作用过程中尽可能有效地保持下去;为此,要求工作物质具有合适的能级结构和跃迁特性。 激励(泵浦)系统 是指为使激光工作物质实现并维持粒子数反转而提供能量来源的机构或装置。根据工作物质和激光器运转条件的不同,可以采取不同的激励方式和激励装置,常见的有以下四种。①光学激励(光泵)。是利用外界光源发出的光来辐照工作物质以实现粒子数反转的,整个激励装置,通常是由气体放电光源(如氙灯、氪灯)和聚光器组成。②气体放电激励。是利用在气体工作物质内发生的气体放电过程来实现粒子数反转的,整个激励装置通常由放电电极和放电电源组成。③化学激励。是利用在工作物质内部发生的化学反应过程来实现粒子数反转的,通常要求有适当的化学反应物和相应的引发措施。④核能激励。是利用小型核裂变反应所产生的裂变碎片、高能粒子或放射线来激励工作物质并实现粒子数反转的。 激光器的种类是很多的。下面,将分别从激光工作物质、激励方式、运转方式、输出波长范围等几个方面进行分类介绍。 按工作物质分类 根据工作物质物态的不同可把所有的激光器分为以下几大类:①固体(晶体和玻璃)激光器,这类激光器所采用的工作物质,是通过把能够产生受激辐射作用的金属离子掺入晶体或玻璃基质中构成发光中心而制成的;②气体激光器,它们所采用的工作物质是气体,并且根据气体中真正产生受激发射作用之工作粒子性质的不同,而进一步区分为原子气体激光器、离子气体激光器、分子气体激光器、准分子气体激光器等;③液体激光器,这类激光器所采用的工作物质主要包括两类,一类是有机荧光染料溶液,另一类是含有稀土金属离子的无机化合物溶液,其中金属离子(如Nd)起工作粒子作用,而无机化合物液体(如SeOCl)则起基质的作用;④半导体激光器,这类激光器是以一定的半导体材料作工作物质而产生受激发射作用,其原理是通过一定的激励方式(电注入、光泵或高能电子束注入),在半导体物质的能带之间或能带与杂质能级之间,通过激发非平衡载流子而实现粒子数反转,从而产生光的受激发射作用;⑤自由电子激光器,这是一种特殊类型的新型激光器,工作物质为在空间周期变化磁场中高速运动的定向自由电子束,只要改变自由电子束的速度就可产生可调谐的相干电磁辐射,原则上其相干辐射谱可从X射线波段过渡到微波区域,因此具有很诱人的前景。 按激励方式分类 ①光泵式激光器。指以光泵方式激励的激光器,包括几乎是全部的固体激光器和液体激光器,以及少数气体激光器和半导体激光器。②电激励式激光器。大部分气体激光器均是采用气体放电(直流放电、交流放电、脉冲放电、电子束注入)方式进行激励,而一般常见的半导体激光器多是采用结电流注入方式进行激励,某些半导体激光器亦可采用高能电子束注入方式激励。③化学激光器。这是专门指利用化学反应释放的能量对工作物质进行激励的激光器,反希望产生的化学反应可分别采用光照引发、放电引发、化学引发。④核泵浦激光器。指专门利用小型核裂变反应所释放出的能量来激励工作物质的一类特种激光器,如核泵浦氦氩激光器等。 按运转方式分类 由于激光器所采用的工作物质、激励方式以及应用目的的不同,其运转方式和工作状态亦相应有所不同,从而可区分为以下几种主要的类型。①连续激光器,其工作特点是工作物质的激励和相应的激光输出,可以在一段较长的时间范围内以连续方式持续进行,以连续光源激励的固体激光器和以连续电激励方式工作的气体激光器及半导体激光器,均属此类。由于连续运转过程中往往不可避免地产生器件的过热效应,因此多数需采取适当的冷却措施。②单次脉冲激光器,对这类激光器而言,工作物质的激励和相应的激光发射,从时间上来说均是一个单次脉冲过程,一般的固体激光器、液体激光器以及某些特殊的气体激光器,均采用此方式运转,此时器件的热效应可以忽略,故可以不采取特殊的冷却措施。③重复脉冲激光器,这类器件的特点是其输出为一系列的重复激光脉冲,为此,器件可相应以重复脉冲的方式激励,或以连续方式进行激励但以一定方式调制激光振荡过程,以获得重复脉冲激光输出,通常亦要求对器件采取有效的冷却措施。④调激光器,这是专门指采用一定的 开关技术以获得较高输出功率的脉冲激光器,其工作原理是在工作物质的粒子数反转状态形成后并不使其产生激光振荡 (开关处于关闭状态),待粒子数积累到足够高的程度后,突然瞬时打开 开关,从而可在较短的时间内(例如10~10秒)形成十分强的激光振荡和高功率脉冲激光输出(见技术'" class=link>激光调 技术)。⑤锁模激光器,这是一类采用锁模技术的特殊类型激光器,其工作特点是由共振腔内不同纵向模式之间有确定的相位关系,因此可获得一系列在时间上来看是等间隔的激光超短脉冲(脉宽10~10秒)序列,若进一步采用特殊的快速光开关技术,还可以从上述脉冲序列中选择出单一的超短激光脉冲(见激光锁模技术)。⑥单模和稳频激光器,单模激光器是指在采用一定的限模技术后处于单横模或单纵模状态运转的激光器,稳频激光器是指采用一定的自动控制措施使激光器输出波长或频率稳定在一定精度范围内的特殊激光器件,在某些情况下,还可以制成既是单模运转又具有频率自动稳定控制能力的特种激光器件(见激光稳频技术)。⑦可调谐激光器,在一般情况下,激光器的输出波长是固定不变的,但采用特殊的调谐技术后,使得某些激光器的输出激光波长,可在一定的范围内连续可控地发生变化,这一类激光器称为可调谐激光器(见激光调谐技术)。 按输出波段范围分类 根据输出激光波长范围之不同,可将各类激光器区分为以下几种。①远红外激光器,输出波长范围处于25~1000微米之间, 某些分子气体激光器以及自由电子激光器的激光输出即落入这一区域。②中红外激光器,指输出激光波长处于中红外区(~25微米)的激光器件,代表者为CO分子气体激光器(微米)、 CO分子气体激光器(5~6微米)。③近红外激光器,指输出激光波长处于近红外区(~微米)的激光器件,代表者为掺钕固体激光器(微米)、CaAs半导体二极管激光器(约 微米)和某些气体激光器等。④可见激光器,指输出激光波长处于可见光谱区(4000~7000埃或~微米)的一类激光器件,代表者为红宝石激光器 (6943埃)、 氦氖激光器(6328埃)、氩离子激光器(4880埃、5145埃)、氪离子激光器(4762埃、5208埃、5682埃、6471埃)以及一些可调谐染料激光器等。⑤近紫外激光器,其输出激光波长范围处于近紫外光谱区(2000~4000埃),代表者为氮分子激光器(3371埃)氟化氙(XeF)准分子激光器(3511埃、3531埃)、 氟化氪(KrF)准分子激光器(2490埃)以及某些可调谐染料激光器等⑥真空紫外激光器,其输出激光波长范围处于真空紫外光谱区(50~2000埃)代表者为(H)分子激光器 (1644~1098埃)、氙(Xe)准分子激光器(1730埃)等。⑦X射线激光器, 指输出波长处于X射线谱区(~50埃)的激光器系统,目前软X 射线已研制成功,但仍处于探索阶段[编辑本段]激光器的发明 激光器的发明是20世纪科学技术的一项重大成就。它使人们终于有能力驾驶尺度极小、数量极大、运动极混乱的分子和原子的发光过程,从而获得产生、放大相干的红外线、可见光线和紫外线(以至X射线和γ射线)的能力。激光科学技术的兴起使人类对光的认识和利用达到了一个崭新的水平。 激光器的诞生史大致可以分为几个阶段,其中1916年爱因斯坦提出的受激辐射概念是其重要的理论基础。这一理论指出,处于高能态的物质粒子受到一个能量等于两个能级之间能量差的光子的作用,将转变到低能态,并产生第二个光子,同第一个光子同时发射出来,这就是受激辐射。这种辐射输出的光获得了放大,而且是相干光,即如多个光子的发射方向、频率、位相、偏振完全相同。 此后,量子力学的建立和发展使人们对物质的微观结构及运动规律有了更深入的认识,微观粒子的能级分布、跃迁和光子辐射等问题也得到了更有力的证明,这也在客观上更加完善了爱因斯坦的受激辐射理论,为激光器的产生进一步奠定了理论基础。20世纪40年代末,量子电子学诞生后,被很快应用于研究电磁辐射与各种微观粒子系统的相互作用,并研制出许多相应的器件。这些科学理论和技术的快速发展都为激光器的发明创造了条件。 如果一个系统中处于高能态的粒子数多于低能态的粒子数,就出现了粒子数的反转状态。那么只要有一个光子引发,就会迫使一个处于高能态的原子受激辐射出一个与之相同的光子,这两个光子又会引发其他原子受激辐射,这样就实现了光的放大;如果加上适当的谐振腔的反馈作用便形成光振荡,从而发射出激光。这就是激光器的工作原理。1951年,美国物理学家珀塞尔和庞德在实验中成功地造成了粒子数反转,并获得了每秒50千赫的受激辐射。稍后,美国物理学家查尔斯·汤斯以及苏联物理学家马索夫和普罗霍洛夫先后提出了利用原子和分子的受激辐射原理来产生和放大微波的设计。 然而上述的微波波谱学理论和实验研究大都属于“纯科学”,对于激光器到底能否研制成功,在当时还是很渺茫的。 但科学家的努力终究有了结果。1954年,前面提到的美国物理学家汤斯终于制成了第一台氨分子束微波激射器,成功地开创了利用分子和原子体系作为微波辐射相干放大器或振荡器的先例。 汤斯等人研制的微波激射器只产生了厘米波长的微波,功率很小。生产和科技不断发展的需要推动科学家们去探索新的发光机理,以产生新的性能优异的光源。1958年,汤斯与姐夫阿瑟·肖洛将微波激射器与光学、光谱学的理论知识结合起来,提出了采用开式谐振腔的关键性建议,并预防了激光的相干性、方向性、线宽和噪音等性质。同期,巴索夫和普罗霍洛夫等人也提出了实现受激辐射光放大的原理性方案。 此后,世界上许多实验室都被卷入了一场激烈的研制竞赛,看谁能成功制造并运转世界上第一台激光器。 1960年,美国物理学家西奥多·梅曼在佛罗里达州迈阿密的研究实验室里,勉强赢得了这场世界范围内的研制竞赛。他用一个高强闪光灯管来刺激在红宝石水晶里的铬原子,从而产生一条相当集中的纤细红色光柱,当它射向某一点时,可使这一点达到比太阳还高的温度。 “梅曼设计”引起了科学界的震惊和怀疑,因为科学家们一直在注视和期待着的是氦氖激光器。 尽管梅曼是第一个将激光引入实用领域的科学家,但在法庭上,关于到底是谁发明了这项技术的争论,曾一度引起很大争议。竞争者之一就是“激光”(“受激辐射式光频放大器”的缩略词)一词的发明者戈登·古尔德。他在1957年攻读哥伦比亚大学博士学位时提出了这个词。与此同时,微波激射器的发明者汤斯与肖洛也发展了有关激光的概念。经法庭最终判决,汤斯因研究的书面工作早于古尔德9个月而成为胜者。不过梅曼的激光器的发明权却未受到动摇。 1960年12月,出生于伊朗的美国科学家贾万率人终于成功地制造并运转了全世界第一台气体激光器——氦氖激光器。1962年,有三组科学家几乎同时发明了半导体激光器。1966年,科学家们又研制成了波长可在一段范围内连续调节的有机染料激光器。此外,还有输出能量大、功率高,而且不依赖电网的化学激光器等纷纷问世。 由于激光器具备的种种突出特点,因而被很快运用于工业、农业、精密测量和探测、通讯与信息处理、医疗、军事等各方面,并在许多领域引起了革命性的突破。比如,人们利用激光集中而极高的能量,可以对各种材料进行加工,能够做到在一个针头上钻200个孔;激光作为一种在生物机体上引起刺激、变异、烧灼、汽化等效应的手段,已在医疗、农业的实际应用上取得了良好效果;在通信领域,一条用激光柱传送信号的光导电缆,可以携带相当于2万根电话铜线所携带的信息量;激光在军事上除用于通信、夜视、预警、测距等方面外,多种激光武器和激光制导武器也已经投入实用。 今后,随着人类对激光技术的进一步研究和发展,激光器的性能将进一步提升,成本将进一步降低,但是它的应用范围却还将继续扩大,并将发挥出越来越巨大的作用。
一、前言
激光增材制造(LAM)属于以激光为能量源的增材制造技术,能够彻底改变传统金属零件的加工模式,主要分为以粉床铺粉为技术特征的激光选区熔化(SLM)、以同步送粉为技术特征的激光直接沉积(LDMD) [1] 。目前 LAM 技术在航空、航天和医疗领域的应用发展最为迅速 [2~4]。鉴于相关领域主要涉及金属结构制造,本文重点开展金属LAM 技术的发展研究。
随着金属零件使用性能和结构复杂程度的提高,采用铸造、锻造等传统工艺实施制造的难度、成本和周期迅速增加,而兼具技术先进性和资源经济性的 LAM 技术为高性能、复杂结构制造提供了新型解决方案:实现拓扑优化结构、点阵结构、梯度材料结构、复杂内部流道结构等不再困难,结构功能一体化、轻量化、超强韧、耐极端载荷、超强散热等新型结构得以应用,相应结构效能大幅提高 [1,4]。例如,美国通用电气公司(GE)SLM 航空发动机燃油喷嘴、北京航空航天大学 LDMD 飞机钛合金框是典型应用案例。
从当前国内外金属 LAM 技术的发展情况来看,真正走向产业化的技术方向还属少数,这是因为基础理论积淀、关键技术突破、工程化应用技术成熟度、技术研发商业化推广等方面在不同程度上制约了 LAM 技术产业化应用。目前国内外研究主要集中在控性研究,侧重孔隙率、裂纹、组织特征、各向异性等基础研究 [5~9]。有关控形、检测、产品标准等偏向产品研发的研究报道较少,这也表明金属 LAM 整体上处于从技术研究向产业应用过渡的发展阶段。
本文通过文献、现场和问卷调研,对金属 LAM 领域研究与应用的发展现状和趋势进行系统梳理,分析国内与国外、理论研究与应用需求的差距,提出产业化应用涉及的核心关键技术和瓶颈工艺,以期推动我国金属 LAM 技术产业应用的发展。
二、金属激光增材制造需求分析
LAM 基于数模切片,通过逐层堆积来实现金属零件的近净成形制造,尤其适合复杂形状零件、梯度材质与性能构件、复合材料零件和难加工材料零件的制造,在航空航天等先进制造方向备受青睐。一方面,相关零件外形复杂多变、材料性能要求高、难以加工且成本较高;另一方面,新型飞行器朝着高性能、长寿命、高可靠性、低成本的方向发展,采用复杂、大型化的整体结构成为设计亟需。
SLM 成形的零件精度较高,但零件尺寸受加工室限制,故 SLM 主要用于小尺寸或中等尺寸的复杂精密结构精确成形,相应产品结构的功能属性一般大于承载属性。为了满足总体性能需求,航空发动机的燃油喷嘴(具有复杂的内部油路、气路和型腔)、轴承座、控制壳体、叶片,飞机舱门支座、铰链,辅助动力舱格栅结构进气门、排气门,卫星支架等零件,需进行结构创新设计,成为 SLM 技术的适宜应用对象。
LDMD 成形的零件力学性能好,但尺寸精度相对不高,主要用于中等尺寸或大尺寸复杂承力结构的制造,相应产品结构的承载属性一般大于功能属性。航空发动机各类机匣、压气机 / 涡轮整体叶盘等结构,形状较为复杂,为了提高效能甚至需采用异种或功能梯度材料结构。为了兼顾质量减轻和承载效能提升,飞机接头、起落架、承力框、滑轮架,高速飞行器机翼 / 空气舵的格栅结构承载骨架等承力构件,需进行结构拓扑优化设计。这类结构突出的复杂性和制造难度,对 LDMD 技术提出了明确需求。
此外,飞机、发动机的某些带有局部凸台、耳片等特殊结构的承力构件,采用锻造工艺将难以保证局部构型和性能;大型飞机的超大规格钛合金承力框已经超出现有锻造设备的加工能力上限。这对锻造 + 增材制造 / 增材连接的复合制造技术提出了明确需求。
三、国外金属激光增材制造发展现状
(一)技术研究现状
1. 激光选区熔化技术
相关企业采用真空感应气雾化(VIGA)、无坩埚电极感应熔化气体雾化(EIGA)、等离子旋转雾化(PREP)、等离子火炬(PA)等方法制备 SLM 用粉末,具有批量供货能力,占据了全球主要市场 [10] 。
LAM 工艺研究的关注点主要是组织性能调控,完成了较多有关 SLM 组织、缺陷、性能及其与工艺参数的关系研究。例如,对于不锈钢零件SLM,增加激光功率、降低扫描速度均有利于提高致密度 [11] ;高的表面粗糙度和孔隙率都会降低AlSi10Mg 铝合金 SLM 的耐腐蚀性能,而形成的氧化膜可提高耐腐蚀性能;AW7075 铝合金 SLM 试样内部产生垂直于增材方向的裂纹,而预热铝粉对裂纹控制无改善作用,内部裂纹导致疲劳寿命远低于传统工艺 [7] 。
能量密度对 Ti-6Al-4V 钛合金的 SLM 组织和缺陷存在明显的影响 [5,12,13]:低能量密度造成片层状的 α+β 相组织,容易引发气孔和熔合不良现象;高能量密度造成针状马氏体 α′ 组织,促进铝元素偏聚和 α2 -Ti3Al 相形成;沉积态 Ti-6Al-4V 合金疲劳强度比锻件降低约 80% [6] ;热等静压可降低孔隙率并改善性能。对于 CMSX486 单晶合金 SLM,低能量密度减少裂纹,高能量密度降低孔隙率 [8] 。CM247LC 合金 SLM 纵截面主要由柱状 γ 晶粒组成,Hf、Ta、W、Ti 偏聚增加了沉淀物和残余应力,造成零件内部开裂 [14] 。IN738LC 高温合金 SLM 的微裂纹与 Zr 在晶界处富集偏析有关 [15] 。适量添加 Re 可以细化 IN718 合金的树枝状晶,但过量的 Re 对疲劳强度不利 [14] 。SLM 的 Hastelloy-X 合金经热处理形成等轴晶,屈服强度降低;经热等静压后抗拉强度恢复沉积态水平,延伸率可提高 15% [16] 。
对于金属 LAM 工艺,国外开展了较多精细的研究。据了解,德国设备商针对一种新材料进行 SLM 工艺开发,需耗时 6~8 个月,调整参数达70 余个。通过拓扑优化来实现结构轻量化设计也是SLM 应用研究的重点,国外对应提出了设计引导制造、功能性优先等新理念。还发展了特殊支撑设计技术,使得制件与基板分离无需线切割,有效缩短了取件周期。
此外,金属 LAM 标准研究和制定工作一直与技术应用同步发展。2002 年,美国发布了《退火Ti-6Al-4V 钛合金激光沉积产品》,随后陆续颁布了19 项相关标准,涵盖产品退火和热等静压制度、时效制度,制造过程消除应力退火制度等诸多方面。标准的及时形成对 LAM 技术的产业应用发挥了基础支撑作用。
2. 激光直接沉积技术
1995 年,美国约翰斯 · 霍普金斯大学、宾夕法尼亚州立大学、MTS 系统公司共同开发了基于大功率 CO2 激光器的大尺寸钛合金零件 LDMD 技术,沉积速率为 1~2 kg/h,促成 LDMD 零件在飞机上的应用 [12] 。
LDMD 技术研究主要包括成形工艺和组织性能。美国桑地亚国家实验室和洛斯 · 阿拉莫斯国家实验室制备的 LDMD 成形零件,其力学性能接近甚至超过传统锻造零件。瑞士洛桑联邦理工学院研究了单晶叶片 LDMD 修复过程的稳定性、零件精度、组织、力学性能与工艺参数的关系,形成的修复技术已获得工程应用。
国外学者针对 Ti-6Al-4V 合金的 LDMD 技术进行了深入研究,揭示了工艺参数和增材制造组织、力学性能之间的联系,阐明了工艺调整和热等静压对组织、性能的调整作用 [13,17~19]。LDMD 技术为材料显微组织控制提供了较大的自由度:通过调节镍基高温合金 LDMD 形核与生长条件得到了符合预期的单晶与多晶组织 [9] ;美国国家航空航天局(NASA)发展的混合沉积多种金属于同一结构的 LDMD 技术,可使零件性能随部位不同而变化。德国企业将 LAM 技术与传统切削加工方法进行整合,可加工出传统工艺难以制造的复杂形状零件,且产品精度提高、表面粗糙度改善 [11] 。
(二)设备发展现状
LAM 技术推广应用的基础是经济高效的 LAM 设备。SLM 设备研制集中在德国、法国、英国、日本、比利时等国家,LDMD 设备研制国家主要有美国和德国等。
1. 激光选区熔化设备
德国是 SLM 技术及设备研究起步最早的国家,EOS 公司推出的 SLM 设备具有一定的技术优势,相关设备应用于 GE 公司 LEAP 航空发动机燃油喷嘴的加工制造,通过监控增材制造过程来进一步提高制造产品的质量;Realizer GmbH 公司的全方位设计、零件堆叠技术方案别具特色;Concept Laser 公司的设备以构建尺寸大见长;SLM Solutions 公司的激光技术和气流管理技术处于领先位置。美国3D Systems 公司依靠其专用粉末沉积系统的技术优势,可以成形精密的细节特征。英国 Renishaw PLC 公司在材料使用灵活性、更换便捷性方面具有技术特色。
2. 激光直接沉积设备
美国 EFESTO 公司在大尺寸金属 LAM 方面具有技术优势,所研制的 LDMD 设备工作室尺寸可达 1500 mm 1500 mm 2100 mm。美国 Optomec 公司推出的 LDMD 设备具有 900 mm 1500 mm 900 mm 的工作室空间,配置了 5 轴移动工作台,最大成形速度为 kg/h。德国企业提供的激光综合加工系统也是主流的 LDMD 设备。
近年来,增减材复合加工设备成为市场新热点。日本 DMG 公司推出了配有 2 kW 激光器、辅以5 轴联动数控铣床的 LDMD 设备,成形速度较普通粉床提高 20 倍,可在制造过程中铣削最终零件的不可达部位。日本 Mazak 公司推出的相关设备能够进行 5 轴车铣复合加工,使用对象包括多棱体锻件或铸件、回转体零件和复杂异形零件。
(三)应用状况
钛合金 LAM 在航空领域取得重要应用。美国率先将 LDMD 钛合金承力零件用于舰载歼击机;Carpenter 技术公司采用高强度的定制不锈钢进行增材制造,生产先进的航空齿轮;F-22 飞机维修采用了 SLM 耐蚀支架,使得维修时间显著缩短。英国成功将 LDMD 技术应用于无人机的整体框架制造。
SLM 技术在航空发动机的复杂零件制造方面获得广泛应用。美国 GE 公司率先将 SLM 技术应用于高压压气机的温度传感器外壳生产,产品获得美国联邦航空管理局(FAA)批准,配装了超过400 台 GE90-40B 航空发动机。GE 公司 LEAP 系列航空发动机的燃油喷嘴同样采用 SLM 技术进行生产(2020 年具备 44 000 个 / 年的生产能力)。美国普惠公司采用 SLM 技术生产管道镜套筒,配装了 PW1100G-JM 航空发动机。英国罗罗公司采用SLM 制造了遄达 XWB-97 航空发动机的钛合金前轴承组件(包含 48 个翼型导叶)。
2012 年起,LAM 技术获得了航天飞行器制造方面的应用。NASA 采用 LAM 技术制造 RS-25 火箭发动机的弯曲接头,在零件、焊缝、机械加工工序的数量方面相比传统方法下降了约 60%;若氢氧火箭发动机采用整体化设计和制造方法,零件总数将下降 80%。法国泰雷兹集团采用 SLM 技术制造了 Koreasat5A、Koreasat7 通信卫星的测控天线支撑零件(铝合金),降低质量约 22%,节省经费约30%。
LAM 技术的推广应用,加速了航空航天飞行器的结构拓扑优化和点阵结构设计。欧洲 Astrium 公司 Eurostar E3000 卫星平台的遥测 / 遥控天线铝合金安装支架,采用 LAM 进行整体制造后降低质量约 35%、提高结构刚度约 40%。美国 Cobra Aero 公司与英国 Renishaw PLC 公司合作,完成了具有复杂点阵结构的发动机整体部件 LAM 制造。此外,增减材复合加工技术开始走向应用。维珍轨道公司(Virgin Orbit)使用增减材混合机床进行火箭发动机燃烧室零件制造与精加工,2019 年完成了 24 次发动机测试运行。
(四)发展经验与启示
回顾国际上金属 LAM 技术的发展过程,以产业发展牵引技术研究和设备开发,通过产业链整合提高市场竞争力是重要的经验。应用企业关注自身产品的制造质量和生产成本,作为技术发展的主体和最大受益者,由其来整合材料、工艺、设备、验证、标准研究和人员培训,可以更加高效地推动LAM 产业的发展。例如,美国 GE 公司 LAM 产业应用居于世界领先地位,主要归因于产业链整合策略,收购了制造质量控制公司和增材制造设备公司以加强 LAM 产业链条的完整性;产品制造利用了遍布全球的 300 多台工业级制造设备。国外企业注重 LAM 产品制造方面的人员培训,如 GE 公司设有增材制造培训中心,配置专门设备,每年可培训数百名工程师。
四、国内金属激光增材制造发展现状与差距分析
(一)发展现状
1. 金属 LAM 技术
国内围绕 LDMD 组织、缺陷、应力变形控制等完成了较多的研究工作 [11,13,14]。北京航空航天大学发展了钛合金大型结构件 LDMD 内部缺陷和质量控制等关键技术 [20] 。西北工业大学完成了飞机超大尺寸钛合金缘条的 LDMD 制造,成形精度和变形控制达到较高水平。沈阳航空航天大学提出分区扫描成形方法,有效控制了 LDMD 过程零件变形和开裂。有研工程技术研究院有限公司突破了叶盘和进气道的 TC11、TA15/Ti2AlNb 异种材料界面质量控制及复杂外形一体化控制难题,产品通过试验考核。
国内针对 SLM 技术方向重点开展了形状尺寸、表面粗糙度精确控制等研究。西安铂力特激光成形技术有限公司采用 SLM 方法加工的流道类零件最小孔径约为 mm,薄壁零件的最小壁厚约为 mm;零件整体尺寸精度达到 mm,粗糙度Ra 不大于 μm。南京航空航天大学以 SLM 精密制造为主线,通过全流程控制来提升零件综合性能。西安交通大学将 LAM 应用于空心涡轮叶片、航天推进器、 汽车 零件等的制造 [11] 。
中国航发北京航空材料研究院完成了 LAM 技术综合研究:LDMD 制造的镍基双合金涡轮整体叶盘通过超转试验考核,增材修复的伊尔 -76 飞机起落架获得批量应用;研制了 LAM 超声扫查与评价系统,建立了检测标准与对比试块,评价和无损检测技术成果应用于飞机滑轮架、框架等装机零件的批量检测。
在 SLM 粉末方面,国内产品基本满足成形工艺要求。中国科学院金属研究所突破了 SLM 用超细钛合金和高温合金粉末的洁净化制备技术,性能达到进口产品水平。西安欧中材料 科技 有限公司研制的钛合金和高温合金粉末产品获得工程应用。
2. 金属 LAM 设备
国内的LDMD和SLM设备研发能力相对较强,获得一定份额的市场应用。西安铂力特激光成形技术有限公司自主开发了 SLM 系列装备、激光高性能修复系列装备。南京中科煜宸激光技术有限公司研制了自动变焦同轴送粉喷头、长程送粉器、高效惰性气体循环净化箱体等核心器件,形成了金属LDMD 系列化装备。此外,北京易加三维 科技 有限公司、北京星航机电装备有限公司在工业级和小型金属 SLM 设备小批量生产,上海航天设备制造总厂有限公司在标准型和大幅面 SLM 设备和机器人型 LDMD 设备研制等方面均取得了良好进展。
3. 金属 LAM 应用
LDMD 主要应用于承力结构制造。北京航空航天大学制造的主承力框、主起落架等部件获得了航空航天飞行器、燃气涡轮发动机等装备应用。航空工业沈阳飞机设计研究所通过工程化应用验证来促进 LDMD 技术成熟度提升,实现了 8 种金属材料、10 类结构件的飞行器应用。航空工业第一飞机设计研究院实现了大型飞机外主襟翼滑轮架、尾翼方向舵支臂 LDMD 零件的装机应用。北京机电工程研究所实现了大尺寸薄壁骨架舱段结构的 LDMD 制造及应用。
SLM 主要应用于复杂形状零件制造。在航空领域,中国航空制造技术研究院实现了 SLM 产品装机应用;航空工业成都飞机设计研究所在飞机上使用了 SLM 辅助动力舱格栅结构进 / 排气门;航空工业直升机设计研究所在通风格栅结构、淋雨密封结构、进气道多腔体结构等方面实现了 SLM 零件装机应用。在航天领域,上海航天设备制造总厂有限公司的贮箱间断支架、空间散热器、导引装置等 SLM 产品获得装机应用;北京星航机电装备有限公司的舱段类结构件、操纵面等 SLM 产品通过地面试验及飞行试验验证;北京机电工程研究所实现了小型复杂零件的 SLM 制造,操纵面、支架等产品的技术成熟度达到 5 级;鑫精合激光 科技 发展(北京)有限公司应用 SLM 制造了大尺寸薄壁钛合金点阵夹层结构件(集热窗框),满足了深空探测飞行器的严格技术要求。
此外,西安铂力特激光成形技术有限公司利用SLM 技术,每年可为航空航天领域提供 8000 余件零件;华中 科技 大学通过增减材复合加工方式制造了具有随形冷却水道的梯度材料模具,获得了较多的行业应用。
(二)面临的差距
1. 金属 LAM 材料设计和制备技术存在差距
国内 LAM 专用材料的设计理论和方法体系尚显薄弱,专用材料设计工作少而分散。材料基因组技术缩短研发周期并降低研发成本,在国外相关材料设计方面取得了成功应用。国内在材料基因组技术的研究以及用于提高 LAM 专用材料性能等方面的基础较为薄弱。
在粉末制备方面,国内真空氩气雾化制粉技术相对成熟,制备的不锈钢、镍基合金类粉末性能基本满足成形工艺要求。但在钛合金、铝合金超细粉末制备方面存在不小差距,主要问题是粉末球形度差、细粉收得率低,不能满足 SLM 成形要求,使得实际应用仍依赖进口。
2. 金属 LAM 装备设计和制造技术存在差距
我国与美国、德国等 LAM 技术强国的差距主要在于工艺装备。国内应用的 SLM 设备较多依赖德国进口,而大尺寸工程应用的 SLM 设备主要依靠进口。国内企业在激光器、振镜等核心部件方面缺乏自研能力,国产设备的加工尺寸、稳定性、加工精度亟待提升,有关粉末流态、熔池状态等过程监控与成形的国产控制软件不够完善。
3. 金属 LAM 工艺研究不足
随着涡轮发动机、飞机等重要装备用材的使用性能不断提高,材料工艺性出现了下降。国内对航空主干材料的 LAM 工艺研究不足,未能形成应力变形、开裂控制等有效方法,制件内部组织缺陷的问题尚未得到根治,制件力学性能均匀一致性、批次稳定性欠佳。而先进航空发动机、高速飞行器所需的超高温结构材料的 LAM 工艺研究更为欠缺。
4. 产品尺寸精度和表面粗糙度不满足技术要求
LDMD 飞机结构件一般留有加工余量,尺寸精度和表面粗糙度不一定是关键制约因素。然而涡轮发动机零件多为带内部流道、空腔的复杂结构零件,相应 SLM 成形尺寸精度约为 mm、表面粗糙度Ra 约为 ,尚与精密铸件存在差距。相关产品还面临着成形、内表面加工等技术研究不足的问题。
5. 金属 LAM 的指导标准欠缺
现阶段我国 LAM 行业面临的共性问题是缺少质量控制标准,使得在金属 LAM 产品的设计、材料、工艺、检测、组织性能、尺寸精度等方面缺乏验收依据。作为零件应用基础的无损检测、力学性能、冶金图谱等基本数据,由于缺乏整理而致使产品标准制定困难、产业化应用推广保障不足。
五、我国金属激光增材制造关键技术分析
1. 激光加工头等核心器件的设计制造
开展具有自主知识产权核心器件研制,重点在于提高处理器、存储器、工业控制器、高精度传感器、数字 / 模拟转换器等基础器件质量性能,开展工艺装备核心器件、关键部件的设计与制造;研发高光束质量激光器及光束整形系统,大功率激光扫描振镜、动态聚焦镜等精密光学器件,高精度喷嘴加工头等核心部件。
2. 扫描策略、参数规划及在线监控
突破数据设计、数据处理、工艺库、工艺分析及工艺智能规划、在线检测与监测系统、成形过程自适应智能控制等方面的软件技术,构建具有自主知识产权的 LAM 核心支撑软件体系。
3. 基于材料基因组的 LAM 材料设计优选
发展远离平衡条件的专用材料高通量技术模型,开发适用于高通量计算的多尺度模拟算法。研究成分和组织结构微区可控的粉体材料制备技术,通过高通量实验来建立材料基因数据库。通过高通量计算、实验、数据库的协同,快速研发具有优异性能的 LAM 专用材料。
4. 主干材料典型结构 LAM 控性与控形
针对若干关键材料及典型零件,开展 LAM 控性、控形共性关键技术、零件工程化应用的研究。掌握零件生产制造过程中影响最终质量的因素和解决措施,形成工程可用的 LAM 技术体系,涉及原材料控制、工艺设备、成形工艺、热处理、机械加工、表面处理、无损检测和验证试验等。重视LAM 零件的均匀一致性和批次稳定性,契合工程实际应用需求。
六、结语
为了在金属 LAM 技术及其工程应用方面迎头赶上,我国 LAM 的发展应遵循“技术 – 产品 – 产业”的客观规律,夯实组织性能控制技术基础,补齐核心设备在硬件 / 软件研发与集成方面的短板,强化产品质量控制、标准和验证,稳步推进产业化应用。
(1)夯实激光增材制造研究基础,发挥高等院校和科研院所的技术 探索 与攻关能力。由工业部门或应用单位牵头开展产品 LAM 工艺开发和性能验证,本着先易后难原则,由常规金属逐步向金属间化合物、铌 – 硅超高温合金等先进材料方向拓展。
(2)有序推进工程化应用研究。先期在航空、航天领域选取代表性产品开展 LAM 质量控制、标准和验证工作,尽快实现产品量产和工程应用;随后逐步向结构复杂、工况苛刻、加工性差的高价值产品拓展,在核工业、兵器、 汽车 、电力装备等先进制造领域推广应用。
(3)扎实开展 LAM 产品质量控制标准研究与制定。积累有关 LAM 的缺陷无损检测、力学性能、冶金图谱、疲劳寿命等基本数据,确定材料、工艺、无损检测、组织与力学性能、尺寸精度、表面粗糙度等方面验收依据,制定我国 LAM 产品技术标准。
(4)结合工业实际需求,在高等院校、职业技术学院增设 LAM 相关专业,为企业培养专业技术和技能人才。在优势技术企业内设立 LAM 培训中心,对我国诸多行业的设计人员、工艺人员和设备操作人员进行专项培训,从而为 LAM 产业发展提供智力支持。
312 浏览 2 回答
301 浏览 4 回答
105 浏览 2 回答
214 浏览 3 回答
353 浏览 4 回答
275 浏览 3 回答
307 浏览 6 回答
219 浏览 5 回答
144 浏览 3 回答
278 浏览 4 回答
349 浏览 4 回答
243 浏览 1 回答
263 浏览 2 回答
338 浏览 5 回答
349 浏览 3 回答