首页

> 学术期刊知识库

首页 学术期刊知识库 问题

金属激光增材发展研究论文

发布时间:

金属激光增材发展研究论文

激光发展史激光以全新的姿态问世已二十余年。然而,发明激光器的历程却鲜为人知,至于发明者如何从事艰难曲折的探索,就更少人问津了。其实,每一项重大发明,都是科学家们智慧的结晶,里面包涵着他们的汗水和心血。自然,激光器的发明也不例外。 说得准确些,对激光的研究,只是到了20世纪50年代末才出现一个崭新阶段。在此之前,人们只对无线电波和微波有较深研究。科学家们把无线电波波长缩短到十米以内,使得世界性的通讯成为可能,那是30年代的事情。后来,随着速调管和空穴磁控管的发明,科学家便对厘米波的性质进行研究。二次世界大战中,由于射频和光谱学的发展,辐射波和原子只间的联系又重新被强调。大战期间,科学家们发明并研制了雷达(战争对雷达的制造起了推动的作用)。从技术本身来说,雷达是电磁波向超短波、微波发展的产物。大战以后,科学家又开创了微波波谱学,目的是探索光谱的微波范围并把其推广到更短的波长。当时,哥仑比亚大学有一个由汤斯()领导的辐射实验小组,他们一直从事电磁方面以及毫米辐射波的研究。1951年,汤斯提出了微波激射器(Maser全称Microwave Amplification by Stimulated Emission of Radiation)的概念。经过几年的努力,1954年汤斯和他的助手高顿(J. Cordon)、蔡格(H. Zeiger)发明了氨分子束微波激射器并使其正常运行。这为以后激光器的诞生奠定了基础。当时,汤斯希望微波激射器能产生波长为半毫米的微波,遗撼的是,激射器却输出波长为1。25cm的微波。微波激射器问世以后,科学家就希望能制造输出更短波长的激射器。汤斯认为可将微波推到红外区附近,甚至到可见光波段。1958年,肖洛()与汤斯合作,率先发表了在可见光频段工作的激射器的设计方案和理论计算。这又将激光研究推上了一个新阶段。现在,人们都知道,产生激光要具备两个重要条件:一是粒子数反转;二是谐振腔。值得注意的是,自1916年爱因斯坦提出受激辐射的概念以后,1940年前后就有人在研究气体放电实验中,观察到粒子反转现象。按当时的实验技术基础,就具备建立某种类型的激光器的条件。但为什么没能造出来呢?因为没有人,包括爱因斯坦本人没把受激辐射,粒子数反转,谐振腔联系在一起加以考虑。因而也把激光器的发明推迟了若干年。在研究激光器的过程中,应把引进谐振腔的功劳归于肖洛。肖洛长期从事光谱学研究。谐振腔的结构,就是从法——珀干涉仪那里得到启示的。正如肖洛自己所说:“我开始考虑光谐振器时,从两面彼此相向镜面的法——珀干涉仪结构着手研究,是很自然的。”实际上,干涉仪就是一种谐振器。肖洛在贝尔电话实验室的七年中,积累了大量数据,于1958年提出了有关激光的设想。几乎同时,许多实验室开始研究激光器的可能材料和方法,用固体作为工作物质的激光器的研究工作始于1958年。如肖洛所述:“我完全彻底地受到灌输,使我相信,可以在气体中做的任何事情,在固体中同样可以做,且在固体中做得更好些。因此,我开始探索、寻找固体激光器的材料…...”的确,不到一年,在1959年9月召开的第一次国际量子电子会议上,肖洛提出了用红宝石作为激光的工作物质。不久,肖洛又具体地描述了激光器的结构:“固体微波激射器的结构较为简单,实质上,它有一棒(红宝石),它的一端可作全反射,另一端几乎全反射,侧面作光抽运。”遗撼的是,肖洛没有得到足够的光能量使粒子数反转,因而没获成功。可喜的是,科学家迈曼()巧妙地利用氙灯作光抽运,从而获得粒子数反转。于是,1960年6月,在Rochester大学,召开了一个有关光的相干性的会议,会议上,迈曼成功地操作了一台激光器。7月份,迈曼用红宝石制成的激光器被公布于众。至此,世界上第一台激光器宣告诞生。激光具有单色性,相干性等一系列极好的特性。从诞生那天开始,人们就预言了它的美好前景。20多年来,人们制造了输出各种不同波长的激光器,甚至是可调激光器。大功率激光器的研制成功,又开拓了新的领域。1977年出现的自由电子激光器,机制则完全不同,它的工作物质是具有极高能量的自由电子,人们可以期望通过这种激光器,实现连续大功率输出,而且覆盖频率范围可向长短两个方向发展。现在,激光应用已经遍及光学、医学、原子能、天文、地理、海洋等领域,它标志着新技术革命的发展。诚然,如果将激光发展的历史与电子学及航空发展的历史相比,你不得不意识到现在还是激光发展的早期阶段,更令人激动的美好前景将要来到。 能发1954年制成了第一台微波量子放大器,获得了高度相干的微波束。1958年.肖洛和.汤斯把微波量子放大器原理推广应用到光频范围,并指出了产生激光的方法。1960年.梅曼等人制成了第一台红宝石激光器。1961年A.贾文等人制成了氦氖激光器。1962年.霍耳等人创制了砷化镓半导体激光器。以后,激光器的种类就越来越多。按工作介质分,激光器可分为气体激光器、固体激光器、半导体激光器和染料激光器4大类。近来还发展了自由电子激光器,其工作介质是在周期性磁场中运动的高速电子束,激光波长可覆盖从微波到X射线的广阔波段。按工作方式分,有连续式、脉冲式、调Q和超短脉冲式等几类。大功率激光器通常都是脉冲式输出。各种不同种类的激光器所发射的激光波长已达数千种,最长的波长为微波波段的毫米,最短波长为远紫外区的210埃,X射线波段的激光器也正在研究中。 除自由电子激光器外,各种激光器的基本工作原理均相同,装置的必不可少的组成部分包括激励(或抽运)、具有亚稳态能级的工作介质和谐振腔( 见光学谐振腔)3部分。激励是工作介质吸收外来能量后激发到激发态,为实现并维持粒子数反转创造条件。激励方式有光学激励、电激励、化学激励和核能激励等。工作介质具有亚稳能级是使受激辐射占主导地位,从而实现光放大。谐振腔可使腔内的光子有一致的频率、相位和运行方向,从而使激光具有良好的定向性和相干性。 激光工作物质 是指用来实现粒子数反转并产生光的受激辐射放大作用的物质体系,有时也称为激光增益媒质,它们可以是固体(晶体、玻璃)、气体(原子气体、离子气体、分子气体)、半导体和液体等媒质。对激光工作物质的主要要求,是尽可能在其工作粒子的特定能级间实现较大程度的粒子数反转,并使这种反转在整个激光发射作用过程中尽可能有效地保持下去;为此,要求工作物质具有合适的能级结构和跃迁特性。 激励(泵浦)系统 是指为使激光工作物质实现并维持粒子数反转而提供能量来源的机构或装置。根据工作物质和激光器运转条件的不同,可以采取不同的激励方式和激励装置,常见的有以下四种。①光学激励(光泵)。是利用外界光源发出的光来辐照工作物质以实现粒子数反转的,整个激励装置,通常是由气体放电光源(如氙灯、氪灯)和聚光器组成。②气体放电激励。是利用在气体工作物质内发生的气体放电过程来实现粒子数反转的,整个激励装置通常由放电电极和放电电源组成。③化学激励。是利用在工作物质内部发生的化学反应过程来实现粒子数反转的,通常要求有适当的化学反应物和相应的引发措施。④核能激励。是利用小型核裂变反应所产生的裂变碎片、高能粒子或放射线来激励工作物质并实现粒子数反转的。 激光器的种类是很多的。下面,将分别从激光工作物质、激励方式、运转方式、输出波长范围等几个方面进行分类介绍。 按工作物质分类 根据工作物质物态的不同可把所有的激光器分为以下几大类:①固体(晶体和玻璃)激光器,这类激光器所采用的工作物质,是通过把能够产生受激辐射作用的金属离子掺入晶体或玻璃基质中构成发光中心而制成的;②气体激光器,它们所采用的工作物质是气体,并且根据气体中真正产生受激发射作用之工作粒子性质的不同,而进一步区分为原子气体激光器、离子气体激光器、分子气体激光器、准分子气体激光器等;③液体激光器,这类激光器所采用的工作物质主要包括两类,一类是有机荧光染料溶液,另一类是含有稀土金属离子的无机化合物溶液,其中金属离子(如Nd)起工作粒子作用,而无机化合物液体(如SeOCl)则起基质的作用;④半导体激光器,这类激光器是以一定的半导体材料作工作物质而产生受激发射作用,其原理是通过一定的激励方式(电注入、光泵或高能电子束注入),在半导体物质的能带之间或能带与杂质能级之间,通过激发非平衡载流子而实现粒子数反转,从而产生光的受激发射作用;⑤自由电子激光器,这是一种特殊类型的新型激光器,工作物质为在空间周期变化磁场中高速运动的定向自由电子束,只要改变自由电子束的速度就可产生可调谐的相干电磁辐射,原则上其相干辐射谱可从X射线波段过渡到微波区域,因此具有很诱人的前景。 按激励方式分类 ①光泵式激光器。指以光泵方式激励的激光器,包括几乎是全部的固体激光器和液体激光器,以及少数气体激光器和半导体激光器。②电激励式激光器。大部分气体激光器均是采用气体放电(直流放电、交流放电、脉冲放电、电子束注入)方式进行激励,而一般常见的半导体激光器多是采用结电流注入方式进行激励,某些半导体激光器亦可采用高能电子束注入方式激励。③化学激光器。这是专门指利用化学反应释放的能量对工作物质进行激励的激光器,反希望产生的化学反应可分别采用光照引发、放电引发、化学引发。④核泵浦激光器。指专门利用小型核裂变反应所释放出的能量来激励工作物质的一类特种激光器,如核泵浦氦氩激光器等。 按运转方式分类 由于激光器所采用的工作物质、激励方式以及应用目的的不同,其运转方式和工作状态亦相应有所不同,从而可区分为以下几种主要的类型。①连续激光器,其工作特点是工作物质的激励和相应的激光输出,可以在一段较长的时间范围内以连续方式持续进行,以连续光源激励的固体激光器和以连续电激励方式工作的气体激光器及半导体激光器,均属此类。由于连续运转过程中往往不可避免地产生器件的过热效应,因此多数需采取适当的冷却措施。②单次脉冲激光器,对这类激光器而言,工作物质的激励和相应的激光发射,从时间上来说均是一个单次脉冲过程,一般的固体激光器、液体激光器以及某些特殊的气体激光器,均采用此方式运转,此时器件的热效应可以忽略,故可以不采取特殊的冷却措施。③重复脉冲激光器,这类器件的特点是其输出为一系列的重复激光脉冲,为此,器件可相应以重复脉冲的方式激励,或以连续方式进行激励但以一定方式调制激光振荡过程,以获得重复脉冲激光输出,通常亦要求对器件采取有效的冷却措施。④调激光器,这是专门指采用一定的 开关技术以获得较高输出功率的脉冲激光器,其工作原理是在工作物质的粒子数反转状态形成后并不使其产生激光振荡 (开关处于关闭状态),待粒子数积累到足够高的程度后,突然瞬时打开 开关,从而可在较短的时间内(例如10~10秒)形成十分强的激光振荡和高功率脉冲激光输出(见技术'" class=link>激光调 技术)。⑤锁模激光器,这是一类采用锁模技术的特殊类型激光器,其工作特点是由共振腔内不同纵向模式之间有确定的相位关系,因此可获得一系列在时间上来看是等间隔的激光超短脉冲(脉宽10~10秒)序列,若进一步采用特殊的快速光开关技术,还可以从上述脉冲序列中选择出单一的超短激光脉冲(见激光锁模技术)。⑥单模和稳频激光器,单模激光器是指在采用一定的限模技术后处于单横模或单纵模状态运转的激光器,稳频激光器是指采用一定的自动控制措施使激光器输出波长或频率稳定在一定精度范围内的特殊激光器件,在某些情况下,还可以制成既是单模运转又具有频率自动稳定控制能力的特种激光器件(见激光稳频技术)。⑦可调谐激光器,在一般情况下,激光器的输出波长是固定不变的,但采用特殊的调谐技术后,使得某些激光器的输出激光波长,可在一定的范围内连续可控地发生变化,这一类激光器称为可调谐激光器(见激光调谐技术)。 按输出波段范围分类 根据输出激光波长范围之不同,可将各类激光器区分为以下几种。①远红外激光器,输出波长范围处于25~1000微米之间, 某些分子气体激光器以及自由电子激光器的激光输出即落入这一区域。②中红外激光器,指输出激光波长处于中红外区(~25微米)的激光器件,代表者为CO分子气体激光器(微米)、 CO分子气体激光器(5~6微米)。③近红外激光器,指输出激光波长处于近红外区(~微米)的激光器件,代表者为掺钕固体激光器(微米)、CaAs半导体二极管激光器(约 微米)和某些气体激光器等。④可见激光器,指输出激光波长处于可见光谱区(4000~7000埃或~微米)的一类激光器件,代表者为红宝石激光器 (6943埃)、 氦氖激光器(6328埃)、氩离子激光器(4880埃、5145埃)、氪离子激光器(4762埃、5208埃、5682埃、6471埃)以及一些可调谐染料激光器等。⑤近紫外激光器,其输出激光波长范围处于近紫外光谱区(2000~4000埃),代表者为氮分子激光器(3371埃)氟化氙(XeF)准分子激光器(3511埃、3531埃)、 氟化氪(KrF)准分子激光器(2490埃)以及某些可调谐染料激光器等⑥真空紫外激光器,其输出激光波长范围处于真空紫外光谱区(50~2000埃)代表者为(H)分子激光器 (1644~1098埃)、氙(Xe)准分子激光器(1730埃)等。⑦X射线激光器, 指输出波长处于X射线谱区(~50埃)的激光器系统,目前软X 射线已研制成功,但仍处于探索阶段[编辑本段]激光器的发明 激光器的发明是20世纪科学技术的一项重大成就。它使人们终于有能力驾驶尺度极小、数量极大、运动极混乱的分子和原子的发光过程,从而获得产生、放大相干的红外线、可见光线和紫外线(以至X射线和γ射线)的能力。激光科学技术的兴起使人类对光的认识和利用达到了一个崭新的水平。 激光器的诞生史大致可以分为几个阶段,其中1916年爱因斯坦提出的受激辐射概念是其重要的理论基础。这一理论指出,处于高能态的物质粒子受到一个能量等于两个能级之间能量差的光子的作用,将转变到低能态,并产生第二个光子,同第一个光子同时发射出来,这就是受激辐射。这种辐射输出的光获得了放大,而且是相干光,即如多个光子的发射方向、频率、位相、偏振完全相同。 此后,量子力学的建立和发展使人们对物质的微观结构及运动规律有了更深入的认识,微观粒子的能级分布、跃迁和光子辐射等问题也得到了更有力的证明,这也在客观上更加完善了爱因斯坦的受激辐射理论,为激光器的产生进一步奠定了理论基础。20世纪40年代末,量子电子学诞生后,被很快应用于研究电磁辐射与各种微观粒子系统的相互作用,并研制出许多相应的器件。这些科学理论和技术的快速发展都为激光器的发明创造了条件。 如果一个系统中处于高能态的粒子数多于低能态的粒子数,就出现了粒子数的反转状态。那么只要有一个光子引发,就会迫使一个处于高能态的原子受激辐射出一个与之相同的光子,这两个光子又会引发其他原子受激辐射,这样就实现了光的放大;如果加上适当的谐振腔的反馈作用便形成光振荡,从而发射出激光。这就是激光器的工作原理。1951年,美国物理学家珀塞尔和庞德在实验中成功地造成了粒子数反转,并获得了每秒50千赫的受激辐射。稍后,美国物理学家查尔斯·汤斯以及苏联物理学家马索夫和普罗霍洛夫先后提出了利用原子和分子的受激辐射原理来产生和放大微波的设计。 然而上述的微波波谱学理论和实验研究大都属于“纯科学”,对于激光器到底能否研制成功,在当时还是很渺茫的。 但科学家的努力终究有了结果。1954年,前面提到的美国物理学家汤斯终于制成了第一台氨分子束微波激射器,成功地开创了利用分子和原子体系作为微波辐射相干放大器或振荡器的先例。 汤斯等人研制的微波激射器只产生了厘米波长的微波,功率很小。生产和科技不断发展的需要推动科学家们去探索新的发光机理,以产生新的性能优异的光源。1958年,汤斯与姐夫阿瑟·肖洛将微波激射器与光学、光谱学的理论知识结合起来,提出了采用开式谐振腔的关键性建议,并预防了激光的相干性、方向性、线宽和噪音等性质。同期,巴索夫和普罗霍洛夫等人也提出了实现受激辐射光放大的原理性方案。 此后,世界上许多实验室都被卷入了一场激烈的研制竞赛,看谁能成功制造并运转世界上第一台激光器。 1960年,美国物理学家西奥多·梅曼在佛罗里达州迈阿密的研究实验室里,勉强赢得了这场世界范围内的研制竞赛。他用一个高强闪光灯管来刺激在红宝石水晶里的铬原子,从而产生一条相当集中的纤细红色光柱,当它射向某一点时,可使这一点达到比太阳还高的温度。 “梅曼设计”引起了科学界的震惊和怀疑,因为科学家们一直在注视和期待着的是氦氖激光器。 尽管梅曼是第一个将激光引入实用领域的科学家,但在法庭上,关于到底是谁发明了这项技术的争论,曾一度引起很大争议。竞争者之一就是“激光”(“受激辐射式光频放大器”的缩略词)一词的发明者戈登·古尔德。他在1957年攻读哥伦比亚大学博士学位时提出了这个词。与此同时,微波激射器的发明者汤斯与肖洛也发展了有关激光的概念。经法庭最终判决,汤斯因研究的书面工作早于古尔德9个月而成为胜者。不过梅曼的激光器的发明权却未受到动摇。 1960年12月,出生于伊朗的美国科学家贾万率人终于成功地制造并运转了全世界第一台气体激光器——氦氖激光器。1962年,有三组科学家几乎同时发明了半导体激光器。1966年,科学家们又研制成了波长可在一段范围内连续调节的有机染料激光器。此外,还有输出能量大、功率高,而且不依赖电网的化学激光器等纷纷问世。 由于激光器具备的种种突出特点,因而被很快运用于工业、农业、精密测量和探测、通讯与信息处理、医疗、军事等各方面,并在许多领域引起了革命性的突破。比如,人们利用激光集中而极高的能量,可以对各种材料进行加工,能够做到在一个针头上钻200个孔;激光作为一种在生物机体上引起刺激、变异、烧灼、汽化等效应的手段,已在医疗、农业的实际应用上取得了良好效果;在通信领域,一条用激光柱传送信号的光导电缆,可以携带相当于2万根电话铜线所携带的信息量;激光在军事上除用于通信、夜视、预警、测距等方面外,多种激光武器和激光制导武器也已经投入实用。 今后,随着人类对激光技术的进一步研究和发展,激光器的性能将进一步提升,成本将进一步降低,但是它的应用范围却还将继续扩大,并将发挥出越来越巨大的作用。

一、前言

激光增材制造(LAM)属于以激光为能量源的增材制造技术,能够彻底改变传统金属零件的加工模式,主要分为以粉床铺粉为技术特征的激光选区熔化(SLM)、以同步送粉为技术特征的激光直接沉积(LDMD) [1] 。目前 LAM 技术在航空、航天和医疗领域的应用发展最为迅速 [2~4]。鉴于相关领域主要涉及金属结构制造,本文重点开展金属LAM 技术的发展研究。

随着金属零件使用性能和结构复杂程度的提高,采用铸造、锻造等传统工艺实施制造的难度、成本和周期迅速增加,而兼具技术先进性和资源经济性的 LAM 技术为高性能、复杂结构制造提供了新型解决方案:实现拓扑优化结构、点阵结构、梯度材料结构、复杂内部流道结构等不再困难,结构功能一体化、轻量化、超强韧、耐极端载荷、超强散热等新型结构得以应用,相应结构效能大幅提高 [1,4]。例如,美国通用电气公司(GE)SLM 航空发动机燃油喷嘴、北京航空航天大学 LDMD 飞机钛合金框是典型应用案例。

从当前国内外金属 LAM 技术的发展情况来看,真正走向产业化的技术方向还属少数,这是因为基础理论积淀、关键技术突破、工程化应用技术成熟度、技术研发商业化推广等方面在不同程度上制约了 LAM 技术产业化应用。目前国内外研究主要集中在控性研究,侧重孔隙率、裂纹、组织特征、各向异性等基础研究 [5~9]。有关控形、检测、产品标准等偏向产品研发的研究报道较少,这也表明金属 LAM 整体上处于从技术研究向产业应用过渡的发展阶段。

本文通过文献、现场和问卷调研,对金属 LAM 领域研究与应用的发展现状和趋势进行系统梳理,分析国内与国外、理论研究与应用需求的差距,提出产业化应用涉及的核心关键技术和瓶颈工艺,以期推动我国金属 LAM 技术产业应用的发展。

二、金属激光增材制造需求分析

LAM 基于数模切片,通过逐层堆积来实现金属零件的近净成形制造,尤其适合复杂形状零件、梯度材质与性能构件、复合材料零件和难加工材料零件的制造,在航空航天等先进制造方向备受青睐。一方面,相关零件外形复杂多变、材料性能要求高、难以加工且成本较高;另一方面,新型飞行器朝着高性能、长寿命、高可靠性、低成本的方向发展,采用复杂、大型化的整体结构成为设计亟需。

SLM 成形的零件精度较高,但零件尺寸受加工室限制,故 SLM 主要用于小尺寸或中等尺寸的复杂精密结构精确成形,相应产品结构的功能属性一般大于承载属性。为了满足总体性能需求,航空发动机的燃油喷嘴(具有复杂的内部油路、气路和型腔)、轴承座、控制壳体、叶片,飞机舱门支座、铰链,辅助动力舱格栅结构进气门、排气门,卫星支架等零件,需进行结构创新设计,成为 SLM 技术的适宜应用对象。

LDMD 成形的零件力学性能好,但尺寸精度相对不高,主要用于中等尺寸或大尺寸复杂承力结构的制造,相应产品结构的承载属性一般大于功能属性。航空发动机各类机匣、压气机 / 涡轮整体叶盘等结构,形状较为复杂,为了提高效能甚至需采用异种或功能梯度材料结构。为了兼顾质量减轻和承载效能提升,飞机接头、起落架、承力框、滑轮架,高速飞行器机翼 / 空气舵的格栅结构承载骨架等承力构件,需进行结构拓扑优化设计。这类结构突出的复杂性和制造难度,对 LDMD 技术提出了明确需求。

此外,飞机、发动机的某些带有局部凸台、耳片等特殊结构的承力构件,采用锻造工艺将难以保证局部构型和性能;大型飞机的超大规格钛合金承力框已经超出现有锻造设备的加工能力上限。这对锻造 + 增材制造 / 增材连接的复合制造技术提出了明确需求。

三、国外金属激光增材制造发展现状

(一)技术研究现状

1. 激光选区熔化技术

相关企业采用真空感应气雾化(VIGA)、无坩埚电极感应熔化气体雾化(EIGA)、等离子旋转雾化(PREP)、等离子火炬(PA)等方法制备 SLM 用粉末,具有批量供货能力,占据了全球主要市场 [10] 。

LAM 工艺研究的关注点主要是组织性能调控,完成了较多有关 SLM 组织、缺陷、性能及其与工艺参数的关系研究。例如,对于不锈钢零件SLM,增加激光功率、降低扫描速度均有利于提高致密度 [11] ;高的表面粗糙度和孔隙率都会降低AlSi10Mg 铝合金 SLM 的耐腐蚀性能,而形成的氧化膜可提高耐腐蚀性能;AW7075 铝合金 SLM 试样内部产生垂直于增材方向的裂纹,而预热铝粉对裂纹控制无改善作用,内部裂纹导致疲劳寿命远低于传统工艺 [7] 。

能量密度对 Ti-6Al-4V 钛合金的 SLM 组织和缺陷存在明显的影响 [5,12,13]:低能量密度造成片层状的 α+β 相组织,容易引发气孔和熔合不良现象;高能量密度造成针状马氏体 α′ 组织,促进铝元素偏聚和 α2 -Ti3Al 相形成;沉积态 Ti-6Al-4V 合金疲劳强度比锻件降低约 80% [6] ;热等静压可降低孔隙率并改善性能。对于 CMSX486 单晶合金 SLM,低能量密度减少裂纹,高能量密度降低孔隙率 [8] 。CM247LC 合金 SLM 纵截面主要由柱状 γ 晶粒组成,Hf、Ta、W、Ti 偏聚增加了沉淀物和残余应力,造成零件内部开裂 [14] 。IN738LC 高温合金 SLM 的微裂纹与 Zr 在晶界处富集偏析有关 [15] 。适量添加 Re 可以细化 IN718 合金的树枝状晶,但过量的 Re 对疲劳强度不利 [14] 。SLM 的 Hastelloy-X 合金经热处理形成等轴晶,屈服强度降低;经热等静压后抗拉强度恢复沉积态水平,延伸率可提高 15% [16] 。

对于金属 LAM 工艺,国外开展了较多精细的研究。据了解,德国设备商针对一种新材料进行 SLM 工艺开发,需耗时 6~8 个月,调整参数达70 余个。通过拓扑优化来实现结构轻量化设计也是SLM 应用研究的重点,国外对应提出了设计引导制造、功能性优先等新理念。还发展了特殊支撑设计技术,使得制件与基板分离无需线切割,有效缩短了取件周期。

此外,金属 LAM 标准研究和制定工作一直与技术应用同步发展。2002 年,美国发布了《退火Ti-6Al-4V 钛合金激光沉积产品》,随后陆续颁布了19 项相关标准,涵盖产品退火和热等静压制度、时效制度,制造过程消除应力退火制度等诸多方面。标准的及时形成对 LAM 技术的产业应用发挥了基础支撑作用。

2. 激光直接沉积技术

1995 年,美国约翰斯 · 霍普金斯大学、宾夕法尼亚州立大学、MTS 系统公司共同开发了基于大功率 CO2 激光器的大尺寸钛合金零件 LDMD 技术,沉积速率为 1~2 kg/h,促成 LDMD 零件在飞机上的应用 [12] 。

LDMD 技术研究主要包括成形工艺和组织性能。美国桑地亚国家实验室和洛斯 · 阿拉莫斯国家实验室制备的 LDMD 成形零件,其力学性能接近甚至超过传统锻造零件。瑞士洛桑联邦理工学院研究了单晶叶片 LDMD 修复过程的稳定性、零件精度、组织、力学性能与工艺参数的关系,形成的修复技术已获得工程应用。

国外学者针对 Ti-6Al-4V 合金的 LDMD 技术进行了深入研究,揭示了工艺参数和增材制造组织、力学性能之间的联系,阐明了工艺调整和热等静压对组织、性能的调整作用 [13,17~19]。LDMD 技术为材料显微组织控制提供了较大的自由度:通过调节镍基高温合金 LDMD 形核与生长条件得到了符合预期的单晶与多晶组织 [9] ;美国国家航空航天局(NASA)发展的混合沉积多种金属于同一结构的 LDMD 技术,可使零件性能随部位不同而变化。德国企业将 LAM 技术与传统切削加工方法进行整合,可加工出传统工艺难以制造的复杂形状零件,且产品精度提高、表面粗糙度改善 [11] 。

(二)设备发展现状

LAM 技术推广应用的基础是经济高效的 LAM 设备。SLM 设备研制集中在德国、法国、英国、日本、比利时等国家,LDMD 设备研制国家主要有美国和德国等。

1. 激光选区熔化设备

德国是 SLM 技术及设备研究起步最早的国家,EOS 公司推出的 SLM 设备具有一定的技术优势,相关设备应用于 GE 公司 LEAP 航空发动机燃油喷嘴的加工制造,通过监控增材制造过程来进一步提高制造产品的质量;Realizer GmbH 公司的全方位设计、零件堆叠技术方案别具特色;Concept Laser 公司的设备以构建尺寸大见长;SLM Solutions 公司的激光技术和气流管理技术处于领先位置。美国3D Systems 公司依靠其专用粉末沉积系统的技术优势,可以成形精密的细节特征。英国 Renishaw PLC 公司在材料使用灵活性、更换便捷性方面具有技术特色。

2. 激光直接沉积设备

美国 EFESTO 公司在大尺寸金属 LAM 方面具有技术优势,所研制的 LDMD 设备工作室尺寸可达 1500 mm 1500 mm 2100 mm。美国 Optomec 公司推出的 LDMD 设备具有 900 mm 1500 mm 900 mm 的工作室空间,配置了 5 轴移动工作台,最大成形速度为 kg/h。德国企业提供的激光综合加工系统也是主流的 LDMD 设备。

近年来,增减材复合加工设备成为市场新热点。日本 DMG 公司推出了配有 2 kW 激光器、辅以5 轴联动数控铣床的 LDMD 设备,成形速度较普通粉床提高 20 倍,可在制造过程中铣削最终零件的不可达部位。日本 Mazak 公司推出的相关设备能够进行 5 轴车铣复合加工,使用对象包括多棱体锻件或铸件、回转体零件和复杂异形零件。

(三)应用状况

钛合金 LAM 在航空领域取得重要应用。美国率先将 LDMD 钛合金承力零件用于舰载歼击机;Carpenter 技术公司采用高强度的定制不锈钢进行增材制造,生产先进的航空齿轮;F-22 飞机维修采用了 SLM 耐蚀支架,使得维修时间显著缩短。英国成功将 LDMD 技术应用于无人机的整体框架制造。

SLM 技术在航空发动机的复杂零件制造方面获得广泛应用。美国 GE 公司率先将 SLM 技术应用于高压压气机的温度传感器外壳生产,产品获得美国联邦航空管理局(FAA)批准,配装了超过400 台 GE90-40B 航空发动机。GE 公司 LEAP 系列航空发动机的燃油喷嘴同样采用 SLM 技术进行生产(2020 年具备 44 000 个 / 年的生产能力)。美国普惠公司采用 SLM 技术生产管道镜套筒,配装了 PW1100G-JM 航空发动机。英国罗罗公司采用SLM 制造了遄达 XWB-97 航空发动机的钛合金前轴承组件(包含 48 个翼型导叶)。

2012 年起,LAM 技术获得了航天飞行器制造方面的应用。NASA 采用 LAM 技术制造 RS-25 火箭发动机的弯曲接头,在零件、焊缝、机械加工工序的数量方面相比传统方法下降了约 60%;若氢氧火箭发动机采用整体化设计和制造方法,零件总数将下降 80%。法国泰雷兹集团采用 SLM 技术制造了 Koreasat5A、Koreasat7 通信卫星的测控天线支撑零件(铝合金),降低质量约 22%,节省经费约30%。

LAM 技术的推广应用,加速了航空航天飞行器的结构拓扑优化和点阵结构设计。欧洲 Astrium 公司 Eurostar E3000 卫星平台的遥测 / 遥控天线铝合金安装支架,采用 LAM 进行整体制造后降低质量约 35%、提高结构刚度约 40%。美国 Cobra Aero 公司与英国 Renishaw PLC 公司合作,完成了具有复杂点阵结构的发动机整体部件 LAM 制造。此外,增减材复合加工技术开始走向应用。维珍轨道公司(Virgin Orbit)使用增减材混合机床进行火箭发动机燃烧室零件制造与精加工,2019 年完成了 24 次发动机测试运行。

(四)发展经验与启示

回顾国际上金属 LAM 技术的发展过程,以产业发展牵引技术研究和设备开发,通过产业链整合提高市场竞争力是重要的经验。应用企业关注自身产品的制造质量和生产成本,作为技术发展的主体和最大受益者,由其来整合材料、工艺、设备、验证、标准研究和人员培训,可以更加高效地推动LAM 产业的发展。例如,美国 GE 公司 LAM 产业应用居于世界领先地位,主要归因于产业链整合策略,收购了制造质量控制公司和增材制造设备公司以加强 LAM 产业链条的完整性;产品制造利用了遍布全球的 300 多台工业级制造设备。国外企业注重 LAM 产品制造方面的人员培训,如 GE 公司设有增材制造培训中心,配置专门设备,每年可培训数百名工程师。

四、国内金属激光增材制造发展现状与差距分析

(一)发展现状

1. 金属 LAM 技术

国内围绕 LDMD 组织、缺陷、应力变形控制等完成了较多的研究工作 [11,13,14]。北京航空航天大学发展了钛合金大型结构件 LDMD 内部缺陷和质量控制等关键技术 [20] 。西北工业大学完成了飞机超大尺寸钛合金缘条的 LDMD 制造,成形精度和变形控制达到较高水平。沈阳航空航天大学提出分区扫描成形方法,有效控制了 LDMD 过程零件变形和开裂。有研工程技术研究院有限公司突破了叶盘和进气道的 TC11、TA15/Ti2AlNb 异种材料界面质量控制及复杂外形一体化控制难题,产品通过试验考核。

国内针对 SLM 技术方向重点开展了形状尺寸、表面粗糙度精确控制等研究。西安铂力特激光成形技术有限公司采用 SLM 方法加工的流道类零件最小孔径约为 mm,薄壁零件的最小壁厚约为 mm;零件整体尺寸精度达到 mm,粗糙度Ra 不大于 μm。南京航空航天大学以 SLM 精密制造为主线,通过全流程控制来提升零件综合性能。西安交通大学将 LAM 应用于空心涡轮叶片、航天推进器、 汽车 零件等的制造 [11] 。

中国航发北京航空材料研究院完成了 LAM 技术综合研究:LDMD 制造的镍基双合金涡轮整体叶盘通过超转试验考核,增材修复的伊尔 -76 飞机起落架获得批量应用;研制了 LAM 超声扫查与评价系统,建立了检测标准与对比试块,评价和无损检测技术成果应用于飞机滑轮架、框架等装机零件的批量检测。

在 SLM 粉末方面,国内产品基本满足成形工艺要求。中国科学院金属研究所突破了 SLM 用超细钛合金和高温合金粉末的洁净化制备技术,性能达到进口产品水平。西安欧中材料 科技 有限公司研制的钛合金和高温合金粉末产品获得工程应用。

2. 金属 LAM 设备

国内的LDMD和SLM设备研发能力相对较强,获得一定份额的市场应用。西安铂力特激光成形技术有限公司自主开发了 SLM 系列装备、激光高性能修复系列装备。南京中科煜宸激光技术有限公司研制了自动变焦同轴送粉喷头、长程送粉器、高效惰性气体循环净化箱体等核心器件,形成了金属LDMD 系列化装备。此外,北京易加三维 科技 有限公司、北京星航机电装备有限公司在工业级和小型金属 SLM 设备小批量生产,上海航天设备制造总厂有限公司在标准型和大幅面 SLM 设备和机器人型 LDMD 设备研制等方面均取得了良好进展。

3. 金属 LAM 应用

LDMD 主要应用于承力结构制造。北京航空航天大学制造的主承力框、主起落架等部件获得了航空航天飞行器、燃气涡轮发动机等装备应用。航空工业沈阳飞机设计研究所通过工程化应用验证来促进 LDMD 技术成熟度提升,实现了 8 种金属材料、10 类结构件的飞行器应用。航空工业第一飞机设计研究院实现了大型飞机外主襟翼滑轮架、尾翼方向舵支臂 LDMD 零件的装机应用。北京机电工程研究所实现了大尺寸薄壁骨架舱段结构的 LDMD 制造及应用。

SLM 主要应用于复杂形状零件制造。在航空领域,中国航空制造技术研究院实现了 SLM 产品装机应用;航空工业成都飞机设计研究所在飞机上使用了 SLM 辅助动力舱格栅结构进 / 排气门;航空工业直升机设计研究所在通风格栅结构、淋雨密封结构、进气道多腔体结构等方面实现了 SLM 零件装机应用。在航天领域,上海航天设备制造总厂有限公司的贮箱间断支架、空间散热器、导引装置等 SLM 产品获得装机应用;北京星航机电装备有限公司的舱段类结构件、操纵面等 SLM 产品通过地面试验及飞行试验验证;北京机电工程研究所实现了小型复杂零件的 SLM 制造,操纵面、支架等产品的技术成熟度达到 5 级;鑫精合激光 科技 发展(北京)有限公司应用 SLM 制造了大尺寸薄壁钛合金点阵夹层结构件(集热窗框),满足了深空探测飞行器的严格技术要求。

此外,西安铂力特激光成形技术有限公司利用SLM 技术,每年可为航空航天领域提供 8000 余件零件;华中 科技 大学通过增减材复合加工方式制造了具有随形冷却水道的梯度材料模具,获得了较多的行业应用。

(二)面临的差距

1. 金属 LAM 材料设计和制备技术存在差距

国内 LAM 专用材料的设计理论和方法体系尚显薄弱,专用材料设计工作少而分散。材料基因组技术缩短研发周期并降低研发成本,在国外相关材料设计方面取得了成功应用。国内在材料基因组技术的研究以及用于提高 LAM 专用材料性能等方面的基础较为薄弱。

在粉末制备方面,国内真空氩气雾化制粉技术相对成熟,制备的不锈钢、镍基合金类粉末性能基本满足成形工艺要求。但在钛合金、铝合金超细粉末制备方面存在不小差距,主要问题是粉末球形度差、细粉收得率低,不能满足 SLM 成形要求,使得实际应用仍依赖进口。

2. 金属 LAM 装备设计和制造技术存在差距

我国与美国、德国等 LAM 技术强国的差距主要在于工艺装备。国内应用的 SLM 设备较多依赖德国进口,而大尺寸工程应用的 SLM 设备主要依靠进口。国内企业在激光器、振镜等核心部件方面缺乏自研能力,国产设备的加工尺寸、稳定性、加工精度亟待提升,有关粉末流态、熔池状态等过程监控与成形的国产控制软件不够完善。

3. 金属 LAM 工艺研究不足

随着涡轮发动机、飞机等重要装备用材的使用性能不断提高,材料工艺性出现了下降。国内对航空主干材料的 LAM 工艺研究不足,未能形成应力变形、开裂控制等有效方法,制件内部组织缺陷的问题尚未得到根治,制件力学性能均匀一致性、批次稳定性欠佳。而先进航空发动机、高速飞行器所需的超高温结构材料的 LAM 工艺研究更为欠缺。

4. 产品尺寸精度和表面粗糙度不满足技术要求

LDMD 飞机结构件一般留有加工余量,尺寸精度和表面粗糙度不一定是关键制约因素。然而涡轮发动机零件多为带内部流道、空腔的复杂结构零件,相应 SLM 成形尺寸精度约为 mm、表面粗糙度Ra 约为 ,尚与精密铸件存在差距。相关产品还面临着成形、内表面加工等技术研究不足的问题。

5. 金属 LAM 的指导标准欠缺

现阶段我国 LAM 行业面临的共性问题是缺少质量控制标准,使得在金属 LAM 产品的设计、材料、工艺、检测、组织性能、尺寸精度等方面缺乏验收依据。作为零件应用基础的无损检测、力学性能、冶金图谱等基本数据,由于缺乏整理而致使产品标准制定困难、产业化应用推广保障不足。

五、我国金属激光增材制造关键技术分析

1. 激光加工头等核心器件的设计制造

开展具有自主知识产权核心器件研制,重点在于提高处理器、存储器、工业控制器、高精度传感器、数字 / 模拟转换器等基础器件质量性能,开展工艺装备核心器件、关键部件的设计与制造;研发高光束质量激光器及光束整形系统,大功率激光扫描振镜、动态聚焦镜等精密光学器件,高精度喷嘴加工头等核心部件。

2. 扫描策略、参数规划及在线监控

突破数据设计、数据处理、工艺库、工艺分析及工艺智能规划、在线检测与监测系统、成形过程自适应智能控制等方面的软件技术,构建具有自主知识产权的 LAM 核心支撑软件体系。

3. 基于材料基因组的 LAM 材料设计优选

发展远离平衡条件的专用材料高通量技术模型,开发适用于高通量计算的多尺度模拟算法。研究成分和组织结构微区可控的粉体材料制备技术,通过高通量实验来建立材料基因数据库。通过高通量计算、实验、数据库的协同,快速研发具有优异性能的 LAM 专用材料。

4. 主干材料典型结构 LAM 控性与控形

针对若干关键材料及典型零件,开展 LAM 控性、控形共性关键技术、零件工程化应用的研究。掌握零件生产制造过程中影响最终质量的因素和解决措施,形成工程可用的 LAM 技术体系,涉及原材料控制、工艺设备、成形工艺、热处理、机械加工、表面处理、无损检测和验证试验等。重视LAM 零件的均匀一致性和批次稳定性,契合工程实际应用需求。

六、结语

为了在金属 LAM 技术及其工程应用方面迎头赶上,我国 LAM 的发展应遵循“技术 – 产品 – 产业”的客观规律,夯实组织性能控制技术基础,补齐核心设备在硬件 / 软件研发与集成方面的短板,强化产品质量控制、标准和验证,稳步推进产业化应用。

(1)夯实激光增材制造研究基础,发挥高等院校和科研院所的技术 探索 与攻关能力。由工业部门或应用单位牵头开展产品 LAM 工艺开发和性能验证,本着先易后难原则,由常规金属逐步向金属间化合物、铌 – 硅超高温合金等先进材料方向拓展。

(2)有序推进工程化应用研究。先期在航空、航天领域选取代表性产品开展 LAM 质量控制、标准和验证工作,尽快实现产品量产和工程应用;随后逐步向结构复杂、工况苛刻、加工性差的高价值产品拓展,在核工业、兵器、 汽车 、电力装备等先进制造领域推广应用。

(3)扎实开展 LAM 产品质量控制标准研究与制定。积累有关 LAM 的缺陷无损检测、力学性能、冶金图谱、疲劳寿命等基本数据,确定材料、工艺、无损检测、组织与力学性能、尺寸精度、表面粗糙度等方面验收依据,制定我国 LAM 产品技术标准。

(4)结合工业实际需求,在高等院校、职业技术学院增设 LAM 相关专业,为企业培养专业技术和技能人才。在优势技术企业内设立 LAM 培训中心,对我国诸多行业的设计人员、工艺人员和设备操作人员进行专项培训,从而为 LAM 产业发展提供智力支持。

金属材料研究进展论文

多孔金属材料的制备工艺及性能分析多领域有着广泛的应用前景。本文概述了多孔金属材料的常用制备方法及其主要性能。关键词:多孔金属材料;制备;性能;应用摘 要 :多孔金属材料是一种性能优异的新型功能材料和结构材料 ,具有独特的结构和性能 ,在很科学家极大的兴趣 ,成为材料类研究的热点方向之1 引言一 ,自 20世纪 90年代以来 ,美国的哈佛大学、英国在传统的金属材料中 ,孔洞 (宏观的或微观的 )的剑桥大学、德国的 Fraunhofer材料研究所、日本的被认为是一种缺陷 ,因为它们往往是裂纹形成和扩东京大学等对多孔金属材料的制备工艺和性能进行展的中心 ,对材料的理化性能及力学性能产生不利了广泛的研究 ,获得了一批研究成果 [2-5]。在我国 ,的影响。但是 ,当材料中的孔洞数量增加到一定程多孔金属材料的基础和应用研究也逐步得到重视和度时 ,材料就会因孔洞的存在而产生一些奇异的功发展。近年来 ,研究队伍不断壮大 ,在制备技术、结能 ,从而形成一类新的材料 ,这就是多孔金属材料。构和物性等方面的基础研究以及在各种民用和国防按照孔之间是否连通 ,可以把多孔金属材料分为闭领域的应用研究均取得了一定的进展 ,已经引起我孔和通孔两类 ,如图 1所示。该类材料具有良好的国政府、中科院和航空航天等部门的高度重视 ,尤其吸能性能、高阻尼性能、吸声性能、电磁屏蔽性能及值得一提的是 ,我国在 2005年立项的国家重大基础良好的导热导电性能 [1] ,因而在一般工业领域 (如研究计划 (973计划 )“超轻多孔材料和结构创新构汽车工业 )、国防科技领域及环境保护领域等有着型的多功能化基础研究 ” ,更是体现了对该类材料广泛的应用前景 ,它的设计、开发和应用引起了中外研究的重要性和迫切性。水化物等,然后将均混的混合物压制成密实块体即到目前为止 ,已开发的制备多孔金属的方法很多 ,涉及到的领域也非常广。根据在制备过程中金属所处的状态 ,可将多孔金属的制备工艺分为以下三类 :液相法、粉末烧结法和沉积法。 2. 1 液相法液相法包括的种类比较多 ,且较易制备大块的多孔金属和产品易商业化 ,成为多孔金属材料制备的主要手段,液相法主要包括以下几种: 2. 1. 1 颗粒渗流法颗粒渗流法[ 6 ]原理是首先将颗粒在模具内压实,烘干形成预制块。然后通过压力将金属液渗入中,并强烈搅拌使空心小球分散,最后得到空心球与金属基体形成的多孔金属材料。空心球铸造法的特点是孔径和孔隙率易于控制,材料综合力学性能好。2. 2 粉末冶金法粉末冶金法主要包括粉末烧结发泡法、烧结-脱溶法、松散粉末烧结法、中空球烧结法等。2. 2. 1 粉末烧结发泡法这种工艺[ 12 ]是首先将金属粉末和相应的发泡剂按一定比例均匀混合,发泡剂可以是金属氢化物、半成品,最后将此半成品加热到接近或高于混合物熔点的温度,使发泡剂分解,金属熔化,从而形成多孔泡沫材料。此种方法易于制作近半成品的零件和到颗粒预制块的间隙中,最后将颗粒溶除即可得到通孔结构的多孔金属材料。2. 1. 2 精密铸造法精密铸造法 [8]是首先用耐火材料浆料填满海绵状泡沫塑料的孔隙 ,待耐火材料固化后 ,加热除去塑料 ,即形成一个多孔预制块体。然后把液态金属液浇入到预制块上 ,加压渗流 ,这一点类似于渗流过程。最后再除去耐火材料 ,就形成与原来海绵状塑料结构相同的多孔金属材料。 2. 1. 3 熔融金属发泡法熔融金属发泡工艺可分为两种 ,发泡剂发泡和通气发泡 [9, 10 ]。前者是在熔融的金属液中加入发泡剂 (如 TiH2 ) ;后者则是在金属液中通入气体 (如惰性气体 )。这两种工艺的共同特点是可制备孔隙率高、尺寸大、闭孔结构的多孔金属 ,但过程控制较为复杂 ,孔结构分布均匀性不高。 2. 1. 4 空心球铸造法空心球铸造法 [11 ]的原理是先采用商用酚醛塑料小球在惰性气体环境中加热直至塑料碳化 ,形成中空的小球。然后将这些中空的小球加入到金属液三明治式的复合材料 ,而且孔隙率较高 ,孔分布均匀。 2. 2. 2 烧结 -脱溶法这种制备工艺 [13 ]首先是将金属粉末和可去除填充颗粒均匀混合 ,其中可去除填充颗粒一般包括两类 ,一类为可溶于水或其它溶剂的盐 (如 NaCl等 ),一类为可分解有机物 (如尿素、碳酸氢氨等 ),均混后把混合物压制成致密的半成品 ,然后在一合适的温度烧结。若填充颗粒为可分解有机物 ,则烧结过程中颗粒会分解气化 ;若填充颗粒为可溶性盐 ,则在烧结后可用溶剂将其溶去便得到多孔金属材料。2. 2. 3 松散粉末烧结法松散粉末烧结 [14 ]是把松散状态的金属粉末不经压实直接进行烧结的方法。此种方法可用于生产多孔金属电极。 2. 2. 4 中空球烧结法通过将金属中空球烧结 ,使之扩散结合而制造多孔材料的方法。此方法制造的多孔材料兼有通孔和闭孔。金属中空球可通过下述方法制备 :在球形树脂上化学沉积或电沉积一层金属 ,然后将树脂除 明显的三阶段特征 ,即初始的弹性段 (Linear Elasticity)、中间的平台段 ( Plateau)和最后的致密段 (Densification)。其中 ,平台段的起始点应力称为泡沫材料的屈服或坍塌强度 ,此强度远小于其基体的屈服强度 [1]。当多孔金属材料受到外加载荷时 ,因屈服强度低很容易发生变形 ,而且变形量大、流动应力低 ,在变形过程中通过孔的变形、坍塌、破裂、胞壁摩擦等形式消耗大量能量而不使应力升的。高 ,从而能有效地吸收冲击能。这种在较低应力水形成金属烟。金属烟在自身重力作用及惰性气流的平下吸收大量冲击能的特征正是冲击缓冲所需要携带下沉积和冷却。因其温度低 ,原子难以迁移和扩散 ,故金属烟微粒只是疏散地堆砌起来 ,形成多孔3. 2 高阻尼性能泡沫结构 [16 ]。 多孔金属材料可看作是由三维网络状金属骨架去 ,或将树脂球和金属粉一同混合 ,随后烧结使金属粉结合 ,同时树脂球挥发 [ 15 ]。 2. 3 沉积法沉积法主要包括金属气相蒸发沉积法、原子溅射沉积法和电化学沉积法三种。 2. 3. 1 金属气相蒸发沉积法在较高惰性气氛中 ,缓慢蒸发金属材料 ,蒸发出来的金属原子在前进过程中与惰性气体发生一系列碰撞作用 ,使之迅速失去动能 ,从而部分凝聚起来 ,与高压惰性气体原子碰撞 2. 3. 2 原子溅射沉积法在惰性气体的压力下,元素原子在飞溅路程中,金属原子一方面捕获气体原子 ,另一方面凝聚成金属液滴 ,然后到达衬底。在衬底上获得均匀包裹气体原子的金属体 ,最后在高于金属熔点的温度下把金属加热足够长的时间使捕获的气体膨胀 ,形成多孔金属材料。这种方法的特点是孔结构非常理想 ,但成本昂贵 ,不易制备大件 [ 17 ]。 2. 3. 3 电化学沉积法这种方法是以聚氨基甲酸乙脂发泡材料为骨架 ,进行电解沉积 ,然后加热去除有机聚合物骨架 ,得到多孔金属材料。这种方法制备的多孔材料不但孔隙率高 ,孔分布均匀 ,且孔互相连通呈三维网状结构 [ 18 ]。 3 多孔金属材料的主要性能多孔金属材料作为一类区别于致密材料的新型材料 ,具有一些其基体或母体所不具备的特殊性能和功能 ,主要表现如下 : 3. 1 吸能性能图 4 多孔金属材料典型的压缩应力 -应变曲线多孔金属材料的应力 -应变 (σ -ε)响应具有与孔洞所组成的两相复合材料。除了孔洞与金属基体之间所形成的界面外 ,材料内部还存在其它大量微观的 (主要是位错 )和宏观的 (较小的孔洞和裂纹 )缺陷 ,其组织状态和缺陷分布极不均匀。因此当外力作用于多孔金属材料上时 ,将在基体中产生不均匀的应变 ,特别是在孔洞 (宏观的或微观的 )或裂纹附近 ,其应变情况更为复杂 ,从而引起缺陷区域原子重排。缺陷区的这种响应是粘滞性的 ,因而引起粘滞性应变 ,造成能量的损耗 ,导致材料的阻尼增加。 3. 3 吸声性能多孔金属材料的高孔隙率结构使其具有良好的吸声性能 [19 ]。一般来讲 ,通孔或半通孔多孔金属的吸声效果比闭孔的好。多孔金属材料的吸声机制主要可归为两种 ,即声波经过多孔金属时流动阻力的升高造成的粘性损失以及声波与孔洞表面热量交换造成的热损失。 3. 4 电磁屏蔽、导热和导电性能多孔金属具有良好的导电性和很高的比表面积 ,因此具备很高的电磁屏蔽性能 ,即良好的吸收和反射电磁波的能力。同时又具有良好的导热性能 [ 20, 21 ]。 3. 5 其它性能质轻 ,易着色 ,易加工 ,耐高温。 4 结语 (1)多孔金属材料具有良好的理化性能和力学性能 ,因而可以作为功能材料和结构材料 ,具有良好的应用前景。多孔金属材料的制备工艺很多 ,因而可以满足多样化的需求 ,可以根据不同的应用需求 采用不同的制备工艺。 and energy absorbing characteristic of foamed aluminum. (2)部分制备工艺在结构的可控性、孔径的均Metall[J]. Mater. Trans, 1998 (A29): 2497-2502. 匀性、样品的大尺寸化等方面仍存在局限性 ,因而制[10 ]Cymat Corp, Canada. Product Information Sheets. http: / / 备工艺还需要进一步的探索和完善。 www. cymat. com. (3)随着工业和科技的进步 ,人们对多孔金属[11 ]张勇 ,舒光冀 ,何德坪 .用低压渗流法制备泡沫铝合金 [J ].材料科学进展 , 1993 (7) : 473 -47. 材料的需求量越来越大 ,要求也越来越高 ,但目前的[12]J. Baumeister, J. Banhart, M. Weber[M]. German Pa2研究也只是涉及到了多孔金属材料的一部分性能特terntDE 4426627. 1997. 点 ,相当多的潜在价值尚未被开发出来 MechanicalBehaviorofMetailicFomas[J]. . Mater. Sci, 2000 (30):191-227. Olurin,. ,或仅局限在(44) : 105 -110. [ 14 ]B. C.社,1982. [13]YA Novel sintering processformanufacturingAlfoams[J]. . Y. Zhao, D. X. Sun. -dissolution 实验室阶段 ,因而对性能的研究又提出了新课题。Scr. Mater, 2001 参考文献 : [1]L. J. Gibson, M. F. Ashby. Cellular Solids: Structure and 拉科夫斯基 .工程烧结材料 [M ].冶金工业出版Properties. 2nd ed[M ], Cambridge University Press, UK, 1997. [15]O. Andersen, U. Waag, L. Schneider, G. Stephani, B. [2 ]L. J. Gibson. Kieback. Novel Metallic Hollow Sphere Structures [ J ]. Annu. RevAdv. Eng. Mater, 2000 (2) : 192 -195. [3]O. B. Fleck, M. F. Ashby, Deformation and [16]张流强 ,常富华 .低密度金属泡沫的研制 [J ].功能材FractureofAluminum Foams[J]. Mater. Sci. Eng. 2000 料 , 1996, 27 (1) : 88 -91. (A291): 136-146. [17]. Lavernia,N. J. Grant. SprayDepositionofMetals?: [4]J. Banhart, W. Brinkrs. FatigureBehaviorofAluminum AReview[J]. Mater. Sci. Eng, 1998 (98):381-394. Foams[J]. J. Mater. Sci, 1999 (18):617-619. [18]X. Badiche, S. Forest, T. Guibert, Y. Bienvenu, M. [5]Y. Yamada, C. Wen, K. Shimojima,M. Mabuchi. Effects Corset, H. Bernet. MechanicalPropertiesandNon-Hom2 ofCellGeometryon theCompressivePropertiesofNickelFo2 ogeneousDeformation of Open -Cell Nicked Foams?: Ap2 mas[J]. Mater. Trans, 2000 (41):1136-1138. plicationoftheMechanicsofCellularSolidsandPorousMa2 [6]张勇 ,舒光冀 ,何德坪 .用低压渗流法制备泡沫铝合金 terials[J]. Mater. Sci. Eng, 2000 (A289):276-288. [J ].材料科学进展 ,1993 (7):473 -478. [19]许庆彦 ,陈玉勇 ,李庆春 .加压渗流铸造多孔铝合金及[7 ]J. Banhart. Manufacture, characterization and application 其吸声性能 [J]1铸造 ,1998 (4):1 -4. ofcellularmetalsandmetalfoams[J]. ProgressinMateri2 [20 ]黄福祥 ,金吉琰 ,范嗣元等 .发泡金属的电磁屏蔽性能als Science, 2001 (46) : 559 -632. 研究 [J]1功能材料 , 1996 (27) : 52 -54. [8]F. Frei, V. Gergely, A. Mortensen, . Clyne. The [21]J. Kovacik, F. FoamModulusofE2 effectofpriordeformationon thefoamingbehaviorof“form2 lasticity and Electrical Conductivity According To Percola2 grip”precursormaterial[J ] 1Adv. Eng. Mater, 2002 (4): tionTheory[J]. Scr. Mater, 1998 (39):239-246. 749 -752. [责任编辑 朱联营 ] [9]F. S. Han, Z. G. Zhu , J. C. Gao. Compressive deformation On the Preparation and Properties of the PorousMetallicMaterials HAO Gang -ling1 , HAN Fu -sheng2 , LIWei-dong1, BAIShao-min1,YANGNeng-xun 1 (1. College of Physics and Electronic Information, Yanan University, Yanan, Shaanxi 716000 2. KeyLaboratoryofMaterialsPhysics, InstituteofSolidStatePhysics, Chinese Academy of Sciences, Hefei, Anhui 230031) Abstract: Porousmetallicmaterialswithuniqueexcellentstructuresandpropertiescanbeutilizedasnew function2 aland structuralmaterials, which indicatsthattheporousmetallicmaterialshaveawidelypromisingapplication in manyfields. Thevariouspopularmanufacturingmethodsandthemainpropertiesoftheporousmetallicmaterials, in the present paper, were summarized. Key words: porousmetallic materials; preparation; properties; ppplication

国家计委和科技部日前共同发布了《当前优先发展的高技术产业化重点领域指南(2001年度)》,确定了当前应优先发展的十个产业的141个高技术产业化重点领域新型金属材料产业优先发展的领域如下:1、稀土材料及其应用稀土是信息产业、绿色能源和环境保护等产业的重要支撑材料我国稀土储量、产量和出口量均占世界首位 已形成较齐全的工业体系近期产业化的重点是:高性能稀土永磁材料及制品、稀土催化材料、稀土贮氢材料、稀土发光材料、超大磁致伸缩材料、高温超导材料、稀土硫化物涂料及颜料的规模生产;加快发展高纯稀土氧化物和高纯稀土单质分离提取工业化生产技术和装备;加快稀土在钢铁冶金、有色金属、玻璃、特种陶瓷、石油化工及农业等方面的应用2、复合金属材料制备工艺及其成套设备由于异质金属复合材料的性能功能化和较低的成本及应用范围广泛,提高了传统金属材料的发展潜力近期产业化的重点是:建设铝-不锈钢、铝-钢、钛-钢、铜-钢带液-固相复合工艺生产线 表面复合精饰技术制备薄覆层()金属复合板带生产线;开发颗粒增强铝基复合材料规模化生产技术、半固态成形技术、连续包敷复合高速钢材料及制品,并实现产业化3、高性能密封材料及制品密封件是保证机械装备高效、长期、安全和稳定运行的重要基础件 其技术水平、质量及性能直接影响配套主机产品质量和运行可靠性我国密封材料及制品经过十多年的发展和技术引进,形成了一定的生产能力和规模 一般产品能满足各类主机的配套要求,但高压、高速、精密、耐高温低温和耐腐蚀的密封件与国际水平有较大差距近期产业化的重点是:轿车及中高档轻型车动力传动、减振、制动系统用密封材料及制品规模化生产示范基地建设;重大成套设备中高压、液压、气动系统用密封件;电力设备中高温、高压机械密封;石化工业中高速透平压缩机非接触气膜密封;金属磁流体动密封4、纳米材料和特种粉末及其制品纳米材料因其纳米效应而具有特殊的性能和广泛的用途 是目前科技发展重要热点之一近年来 我国在纳米材料的研究开发和应用方面取得了很大进展 形成了一批拥有自主知识产权的技术并开始产业化近期产业化的重点是:以纳米粉体材料、纳米膜材料、纳米催化材料和纳米晶金属材料为重点 实现低成本、环境友好以及质量稳定的规模化生产;加快纳米材料规模化应用于信息、通信、医疗和环保等新兴产业以及能源、交通、化工、建材、纺织和轻工等基础产业,改进性能,提高效率 促进技术进步;加快发展粉末冶金摩擦材料、高温合金粉末以及高纯超细陶瓷粉体材料链接: 二十一世纪将是材料-电子一体化的世纪作为新型功能材料家庭中的重要成员,形状记忆合金在工程机械和日常生活中得到了广泛的应用由形状记忆合金构成的结构简单、控制灵活、功率密度大的各类记忆合金驱动器,在轻型机器人及小型化系统中具有独特的技术优势本文详细阐明了形状记忆合金的晶体学、热力学特性,概述了该材料的几种典型应用实例在此基础上,综述了这一功能材料的应用优势

去看下(材料科学)等等这类的期刊吧~找下这样的论文的写作灵感

金属材料的发展论文

很好写的 给你几条例子: 青铜时代,主要是夏商周春秋时代。青铜可塑性差,密度比铁大,器具笨重,兵器不容易锋利,要加入很多其他的金属比如锡、锌和铅来增加可塑性,工艺非常负责,只有有钱人才能用,所以不便推广。很少用于农具(农奴木有钱的)。铁器时代,主要从战国开始,一开始还不是很多,因为铁矿石比青铜难冶炼,铁的熔点比铜高很多。而且高温下比铜更容易氧化。要求的炉温更高。工艺更复杂,但是技术成熟以后逐渐取代铜器。后来发现铁的硬度和含碳量,冷却时间有关,比较容易控制。可塑性高。缺点是容易生锈。但是已经开始逐渐应用在农具上了。大大的提高的生产力。粮食充足了社会就发展的更快了。有更多的人可以不用种地来从事脑力,文艺方面的工作。然后就是现代,以各种合金为主。比如钢,是加了铬或者锰的铁合金,还有铝合金又轻又不容易生锈。钛合金硬度高,密度小,不易生锈......防腐主要有涂漆和电镀等等方法,在铁表面弄上一层保护膜,或者用更活泼的金属比如锌和铁连在一起,在船上一般用这个方法,这样海水就会先腐蚀锌,从而把铁保护起来,这个是原电池的方法。回收现在一般最有价值的就是铝,因为从铝矿里炼铝很难,要先加热到3000多度的高温把矿石融化再用超多的电流电解生产纯铝,非常消耗能量。所以如果回收起来的话会节省很多能量,比其他金属回收的价值更高.....剩下的你自己发挥发挥就出来了

在很大程度上,化学很受人喜爱,因为神奇多变的化学反应可以创造新的物质,让我们的生活更为方便舒适。执著于金属研究的卢柯说,作材料研究是如此地令人激动,有那么多的事情等着我们去发现,去研究!“超音速”的科研经历 卢柯以常人所不能及的“超音速”,20岁念完大学,25岁拿下博士学位,28岁成为研究员,30岁成为博士生导师,32岁任国家重点实验室主任,35岁担任中科院金属研究所所长,37岁当选中国科学院院士,取得了一系列国际公认的高水平科研成果,在《科学》和《物理评论快报》等顶级国际学术期刊发表了一系列论文。大学时就读于机械制造工程系金属材料及热处理专业的卢柯与金属结下了不解之缘,他最喜欢的课程是《金属学》与《金属材料的热处理》。1985年,卢柯从华东工学院(现为南京理工大学)毕业,来到中科院金属研究所攻读硕士学位。在“纳米浪潮”还没有掀起的时候,他较早地进入了后来很热门的纳米领域。攻读博士学位期间,卢柯对非晶态金属的晶化动力学及其微观机制进行了深入研究,在国际上首次提出了非晶态材料的有序原子集团切变沉积化机制,并解释了一系列用经典理论难以解释的实验结果,为以后研究非晶体转变提供了理论依据;修正了被引用10多年的英国科学家斯考特等人确定的Ni-P非晶合金晶化产物间的位向关系;提出非晶态金属的新晶化机制。在新晶化微观机制的基础上,卢柯于1990年提出制备纳米晶体的新方法——非晶晶化法,具有工艺简单、晶粒度易于控制、界面清洁且不含微孔洞等优点。论文在美国及Scripta .发表后,已被引用数百次。美国《应用物理杂志》审稿人对卢柯的这一成果极为赞赏,指出“非晶晶化法无疑对纳米材料研究具有重要价值”。材料科学家师昌绪认为,这一方法“为纳米材料的发展开辟了一条新途径,有广阔的应用前景”。国际学术刊物邀请他撰写此领域的专题综述。该制备方法的确定,使我国在纳米晶体研究领域一跃进入国际前列,已成为目前国际上公认的纳米材料3种主要制备方法之一。如何使金属具有超塑性——可承受很大的塑性变形而不断裂,成为各国材料学家面临的一道难题。20年前,葛莱特教授曾预测:如果将构成金属材料的晶粒尺寸减小到纳米量级,材料在室温下应具备很好的塑性变形能力。但多年来,尽管预测得到了计算机模拟结果的肯定,各国材料学家的实验结果却令人失望:孔隙大、密度小、被污染等因素使绝大多数纳米金属在冷轧中易出现裂纹,塑性很差。2000年,卢柯课题组在实验室发现了纳米金属铜在室温下的“奇异”性能——即纳米金属铜具有超塑延展性而没有加工硬化效应,延伸率高达5100%。论文在《科学》上发表后,获得世界同行的普遍好评,纳米材料的“鼻祖”葛莱特教授认为,这项工作是“本领域的一次突破,它第一次向人们展示了无空隙纳米材料是如何变形的”。专家指出,“奇异”性能的发现,缩短了纳米材料和实际应用的距离,意味着和普通金属力学性能完全不同的纳米金属,在精细加工、电子器件和微型机械的制造上具有重要价值。卢柯及其课题组的另一项重要成果是关于晶体过热熔化微观机制方面的,发表在2001年第87卷的《物理评论快报》上。很快,材料科学家、剑桥大学教授就在《自然》杂志上给予了专题评论。2003年12月31日,卢柯在《科学》杂志上发表第二篇论文,将铁表层的晶粒细化到纳米尺度,其氮化温度显著降低,这为氮化处理更多种材料和器件提供了可能。表面氮化是工业中广泛应用的一种材料表面处理技术。在表面氮化过程中,材料或钢铁的表面氮化处理往往需要在较高温度下(高于500℃)进行,处理时间长达十几个小时,不仅能耗高,更重要的是,许多材料和工件在如此高温下长时间退火后会丧失其基体的高强度或出现变形,因此,表面氮化技术的应用受到很大限制。大幅度降低氮化温度是长期以来表面氮化技术应用中必须解决的重要技术瓶颈。2004年1月12日,“我国金属材料表面纳米化技术和全同金属纳米团簇研究”被评为“2003年中国十大科技进展”之一。2004年4月16日出版的第304卷《科学》杂志上,第三次出现了卢柯的名字。他们的研究表明,在纳米孪晶铜中获得超高强度的同时还保持了其良好的导电率;而以往的研究表明,对铜进行强化以后,其导电率是下降的。成功的“奥秘” 在别人眼中,卢柯是战无不胜的“百胜将军”,是上天最眷顾的人。只有他和课题组的同志才清楚自己曾经的失败,曾经的气馁。“你们所看到的成绩只是我1%的工作,其余的99%都是失败,都是残酷的现实。在我过去的研究中,经常会走到几乎坚持不下去的时候。”卢柯说。“走不下去的时候,我总是勇敢地承认自己失败了。失败了,再换一个思路接着干。当然,这中间有一个心态调整的过程,但是必须调整到一个好的状态,重新开始。失败其实是科学工作的常态。跳高比赛是以失败而结束的,科学工作则是用一次次的失败来铺路,以成功作为新的起点。当你有了一个灵感,钻进了实验室里,半年,十个月,一年甚至两三年下来才有结果,可结果与你预想的完全不一样,当然沮丧极了。但我们的工作就是这样,你可以沮丧,可以暂时地消沉,但你不可以放弃你的目标。失败了,证明这个思路不对,从某种角度看,它就是你到达终极目标的一个过程。我经常对我的学生说,对自己的思维一定要有极强的信心,Nothing is impossible(没有什么事情是不可能的)!”卢柯成功还有一个奥秘——自从上大学后,他就给自己制定了严格的时间表和工作计划,以非常人的工作节奏始终跑在别人的前头。十几年来,他一丝不苟地走在自己的行程中,不受任何外界的干扰。虽然他现在成了媒体追逐的科学明星,但依然故我。“上天是公平的,它给每个人的时间是一样的,做了这个,就不能做那个。有的人活得很轻松,一天的活儿用两天的时间干,我则希望用半天的时间就能把一天的活儿干完。如果这样算来,我干一天的活儿等于别人干两天的活儿。我在金属所干了18年,等于干了三四十年的活儿,那么,我37岁当院士,这样算起来也并不年轻。”卢柯说。材料学面临最好的机会 卢柯在努力工作、享受研究乐趣的同时,也感受到了材料学家的责任感,“现在是中国各个领域发展的最好时期,也给材料学的研究创造了最好的机会”。卢柯说,中国工业化的进程对材料学科提出了许多严峻的、亟待解决的问题。上个世纪90年代,镍的需求量开始上扬,镍的价格不断上涨,2003年,镍的价格已经达到历史最高水平,供需矛盾尖锐,原因就是中国的工业化。镍是用来做不锈钢的,工业化的显著标志是需要大量的不锈钢。其实,现在所有的原材料都在涨价。如果不发展先进的材料,将面临资源减少,价格上涨,中国的工业化成本将是非常巨大的。

(材料科学)或者(材料化学前沿),你都可以从这些方面着手写啊~有很多点可以写的~

我觉得~~你可以去看下(材料化学前沿)、(材料科学)、(纳米技术)等这些期刊里面找下呗~

光纤激光器研究进展论文

2002年南开大学报道了在掺Yb3 + 双包层光纤器中得到了脉宽4. 8ns 的自调Q 脉冲输出和混合调Q 双包层光纤激光中得到峰值功率大于8kW ,脉宽小于2ns 的脉冲输出。2003年南开大学报道了利用脉冲泵浦获得100kW 峰值功率的调Q 脉冲,以及得到的60nm 可调谐的调Q 脉冲。2003年11月20日报道,上海科学家在激光领域取得新成果,成功开发出输出功率高达107W的光纤激光器。此激光器的全称为“高功率掺镱双包层光纤激光器”,与已有的激光器相比它的维护费用和功率消耗都要低得多,寿命是普通激光器的几十倍。该课题组的负责人之一楼祺洪研究员告诉记者,激光打印有着广泛的应用前景,与市民生活直接相关的如食品的生产日期、防伪标志等,若以激光打印代替油墨打印清晰度高、永不褪色、难以仿冒、利于环保,具有国际流行的新趋势。上海科学家研制的光纤激光器使光纤激光输出功率又上升了一个新台阶,最大输出功率达107W,已经遥遥领先于全国同行。2004年,南开大学又报道了连续泵浦206kW峰值功率的调Q 脉冲。2004年12月3日,烽火通信继推出激光输出功率达100W以上的双包层掺镱光纤后,经过艰苦的攻关再创佳绩,将该类新型光纤的输出功率成功提高至440W,达到国际领先水平。2012年,国内首台拥有自主知识产权的1000W工业级光纤激光器在西安诞生。这一科研成果的产业化,不仅将满足我国工业加工领域对高功率光纤激光器的市场需求,同时也将打破国外高功率光纤激光器的市场垄断局面,推动我国光纤激光加工产业进一步发展。2012年11月,华工科技旗下华工激光与锐科公司共同研制的4千瓦光纤激光器,通过了省级科技成果鉴定。鉴定专家组主任委员、中国光学学会理事长周炳琨院士指出,这项技术填补了国内空白,达到国际先进水平,获得4项国家发明专利。[5]光纤激光器作为第三代激光技术的代表,具有其他激光器无可比拟的技术优越性。不过,我们认为,在短期内,光纤激光器将主要聚焦在高端用途上随光纤激光器的普及,成本的降低以及产能的提高,最终将可能会替代掉全球大部分高功率CO2激光器和绝大部分YAG激光器。

光纤激光器是指用掺稀土元素玻璃光纤作为增益介质的激光器,光纤激光器可在光纤放大器的基础上开发出来:在泵浦光的作用下光纤内极易形成高功率密度,造成激光工作物质的激光能级“粒子数反转”,当适当加入正反馈回路(构成谐振腔)便可形成激光振荡输出。 光纤激光器应用范围非常广泛,包括激光光纤通讯、激光空间远距通讯、工业造船、汽车制造、激光雕刻激光打标激光切割、印刷制辊、金属非金属钻孔/切割/焊接(铜焊、淬水、包层以及深度焊接)、军事国防安全、医疗器械仪器设备、大型基础建设等等。 2.光纤激光器的优势 光纤激光器作为第三代激光技术的代表,具有以下优势: (1)玻璃光纤制造成本低、技术成熟及其光纤的可饶性所带来的小型化、集约化优势; (2)玻璃光纤对入射泵浦光不需要像晶体那样的严格的相位匹配,这是由于玻璃基质Stark 分裂引起的非均匀展宽造成吸收带较宽的缘故; (3)玻璃材料具有极低的体积面积比,散热快、损耗低,所以上转换效率较高,激光阈值低; (4)输出激光波长多:这是因为稀土离子能级非常丰富及其稀土离子种类之多; (5)可调谐性:由于稀土离子能级宽和玻璃光纤的荧光谱较宽。 (6)由于光纤激光器的谐振腔内无光学镜片,具有免调节、免维护、高稳定性的优点,这是传统激光器无法比拟的。 (7)光纤导出,使得激光器能轻易胜任各种多维任意空间加工应用,使机械系统的设计变得非常简单。 (8)胜任恶劣的工作环境,对灰尘、震荡、冲击、湿度、温度具有很高的容忍度。 (9)不需热电制冷和水冷,只需简单的风冷。 (10)高的电光效率:综合电光效率高达20%以上,大幅度节约工作时的耗电,节约运行成本。 (11)高功率,目前商用化的光纤激光器是六千瓦。 3.高功率的光纤激光器及其包层泵浦技术 双包层光纤的出现无疑是光纤领域的一大突破,它使得高功率的光纤激光器和高功率的光放大器的制作成为现实。自1988年E Snitzer首次描述包层泵浦光纤激光器以来,包层泵浦技术已被广泛地应用到光纤激光器和光纤放大器等领域,成为制作高功率光纤激光器首选途径。 包层泵浦技术,由四个层次组成:①光纤芯;②内包层;③外包层;④保护层。如图(1)所示,将泵光耦合到内包层(内包层一般采用异形结构,有椭圆形、方形、梅花形、D形及其六边形等等),光在内包层和外包层(一般设计为圆形) 之间来回反射,多次穿过单模纤芯被其吸收。这种结构的光纤不要求泵光是单模激光,而且可对光纤的全长度泵浦,因此可选用大功率的多模激光二极管阵列作泵源,将约70%以上的泵浦能量间接地耦合到纤芯内,大大提高了泵浦效率。 包层泵浦技术特性决定了该类激光器有以下几方面的突出性能。 1、高功率 一个多模泵浦二极管模块组可辐射出100瓦的光功率,多个多模泵浦二极管并行设置,即可允许设计出很高功率输出的光纤激光器。 2、无需热电冷却器 这种大功率的宽面多模二极管可在很高的温度下工作,只须简单的风冷,成本低。 3、很宽的泵浦波长范围 高功率的光纤激光器内的活性包层光纤掺杂了铒/镱稀土元素,有一个宽且又平坦的光波吸收区(930-970nm),因此,泵浦二极管不需任何类型的波长稳定装置 4、效率高 泵浦光多次横穿过单模光纤纤芯,因此其利用率高。 5、高可靠性 多模泵浦二极管比起单模泵浦二极管来其稳定性要高出很多。其几何上的宽面就使得激光器的断面上的光功率密度很低且通过活性面的电流密度亦很低。这样一来,泵浦二极管其可靠运转寿命超过100万小时。 目前实现包层泵浦光纤激光器的技术概括起来可分为线形腔单端泵浦、线形腔双端泵浦、全光纤环形腔双包层光纤激光器三大类,不同特色的双包层光纤激光器可由该三种基本类型拓展得到。 OFC-2002的一篇文献采用如图2所示腔体结构,实现了输出功率为、阈值为,倾斜效率高达85%的新型包层泵浦光纤激光器[1]。在产品技术方面,美国IPG公司异军突起,已开发出700W的掺镱双包层光纤激光器,并宣称将推出2000W的光纤激光器。 4.新型的光纤激光器技术 早期对激光器的研制主要集中在研究短脉冲的输出和可调谐波长范围的扩展方面。今天,密集波分复用(DWDM)和光时分复用技术的飞速发展及日益进步加速和刺激着多波长光纤激光器技术、超连续光纤激光器等的进步。同时,多波长光纤激光器和超连续光纤激光器的出现,则为低成本地实现Tb/s的DWDM或OTDM传输提供理想的解决方案。就其实现的技术途径来看,采用EDFA放大的自发辐射、飞秒脉冲技术、超发光二极管等技术均见报道。 5.我国光纤激光器目前研究进展 2002年南开大学报道了在掺Yb3 + 双包层光纤器中得到了脉宽4. 8ns 的自调Q 脉冲输出和混合调Q 双包层光纤激光中得到峰值功率大于8kW ,脉宽小于2ns 的脉冲输出。 2003年南开大学报道了利用脉冲泵浦获得100kW 峰值功率的调Q 脉冲,以及得到的60nm 可调谐的调Q 脉冲。 2003年11月20日报道,上海科学家在激光领域取得新成果,成功开发出输出功率高达107W的光纤激光器。此激光器的全称为“高功率掺镱双包层光纤激光器”,与目前已有的激光器相比它的维护费用和功率消耗都要低得多,寿命是普通激光器的几十倍。该课题组的负责人之一楼祺洪研究员告诉记者,激光打印有着广泛的应用前景,与市民生活直接相关的如食品的生产日期、防伪标志等,若以激光打印代替现在的油墨打印清晰度高、永不褪色、难以仿冒、利于环保,具有国际流行的新趋势。上海科学家研制的光纤激光器使光纤激光输出功率又上升了一个新台阶,最大输出功率达107W,已经遥遥领先于全国同行。 2004年,南开大学又报道了连续泵浦206kW峰值功率的调Q 脉冲。 2004年12月3日,烽火通信报道,继推出激光输出功率达100W以上的双包层掺镱光纤后,经过艰苦的攻关再创佳绩,将该类新型光纤的输出功率成功提高至440W,达到国际领先水平。这是烽火通信在特种光纤领域迈出的重要一步,同时也是我国在高功率激光器用光纤领域的重大突破。掺镱双包层光纤激光器是国际上新近发展的一种新型高功率激光器件,由于其具有光束质量好、效率高、易于散热和易于实现高功率等特点,近年来发展迅速,并已成为高精度激光加工、激光雷达系统、光通信及目标指示等领域中相干光源的重要候选者。双包层掺镱激光器的主要激光增益介质是双包层掺镱光纤,因此双包层掺镱光纤的性能直接决定了该类激光器的转换效率和输出功率。烽火通信作为国内唯一一家进行双包层掺镱光纤研究的单位,在成功推出输出功率达100W以上的完全可商用的双包层掺镱光纤产品后,又加大的研发力度,使得其输出功率实现440W以上,达到国际领先水平。 6.结论 光纤激光器作为第三代激光技术的代表,具有其他激光器无可比拟的技术优越性。不过,我们认为,在短期内,光纤激光器将主要聚焦在高端用途上随光纤激光器的普及,成本的降低以及产能的提高,最终将可能会替代掉全球大部分高功率 CO2激光器和绝大部分YAG激光器。

在经济学的论文中引用参考文献,具有重要的标志功能、评价功能、保护功能和链接功能,可以反映经济学论文的研究基础和科学依据,可供进一步检索有关资料,共享资源。下面我将为你推荐经济学论文参考文献的内容,希望能够帮到你!

[1]刘思华.生态马克思主义经济学原理[M].北京:人民出版社.2006

[2]叶耀丹.马克思主义生态自然观对中国生态文明建设的启示[D].成都:成都理工大学.2012

[3]陆畅.我国生态文明建设中的政府职能与责任研究[D].长春:东北师范大学.2012

[4]俞可平.科学发展观与生态文明[M].上海:华东师范大学出版社.2007:18

[5]朴光诛等.环境法与环境执法[M].北京:中国环境科学出版社.2004:23

[6]罗能生.非正式制度与中国经济改革和发展[M].北京:中国财政经济出版社.2002: 19

[7]党国英.制度、环境与人类文明一关于环境文明的观察与思考[N].新京报.2005-2-13

[8]张婷婷.生态文明建设的科技需求及政策研究[D].锦州:渤海大学.2012

[9]秦书生.生态文明视野中的绿色技术[J].科技与经济.2010(3): 82-85

[10]陈池波.论生态经济的持续协调发展[J].长江大学学报(社会科学版)2004(1):97-102

[11]张首先.社会主义与生态文明[J].理论与现代化.2010(1): 23-26

[12]黄光宇.陈勇.生态城市理论与规划设计 方法 [M].北京:科学出版社.2002

[13]张首先.生态文明研究[D].成都:西南交通大学.2010

[14]马仁忠.地理环境对种族、民族特征的影响[J].宿州 教育 学院学报.2002(4):

[15]冒佩华.王宝珠.市场制度与生态逻辑[J].教学与研究.2014(8):37-43.

[1]陈凌.应丽芬.代际传承:家族企业继任管理和创新〔J〕.管理世界.2003 ( 6): 89-9

[2]伯纳德‘萨拉尼着.陈新平、王瑞泽、陈宝明、周宗华译.税收经济学〔M〕.北京:中国人民大学出版社.2009:143-144.

[3]彼德·德鲁克.大变革时代的管理〔M〕.上海:上海译文出版社.1999版.

[4]陈凌.信息特征、交易成本和家族式组织〔J〕.经济研究.1998(7):27-33.

[5]. Toward an Economic Theory of Income Distribution〔 C〕.Cambridge, MA: MITPress, 1974,123:137-139.

[6]. The Wealth of Nations ( 1776 )〔M〕.Chicago: University of Chicago Press,1976(reprint): 391.

[7]沈建法.城市化与人口管理[M].北京:科学出版社.1999

[8]张志强.徐中民.程国栋.生态足迹的概念及计算模型[J].生态经济.2000(10) : 8-10

[9]张恒义.刘卫东.林育欣.等.基于改进生态足迹模型的浙江省域生态足迹分析[J].生态学报.2009(5):2738-2748

[10]贺成龙.吴建华.刘文莉.改进投入产出法在生态足迹中的应用[J].资源科学.2008 (12) : 1933-1939,2008 (2) : 261-266

[11]郭军华.幸学俊.中国城市化与生态足迹的动态计量分析[J].华东交通大学学报.2009 (5) : 131-134.

[1] 刘毅. 现代性语境下的正当性与合法性:一个思想史的考察[D]. 中国政法大学 2007

[2] 刘毅. 树突状细胞在兔动脉粥样硬化模型中作用的研究[D]. 南方医科大学 2009

[3] 刘毅. 硅基微环谐振腔光信号处理与布里渊光纤激光器的理论和实验研究[D]. 天津大学 2014

[4] 刘毅. 未来移动通信系统中的协作传输技术研究[D]. 北京邮电大学 2010

[5] 刘毅. 基于图割的交互式图像分割算法研究[D]. 南京理工大学 2013

[6] 刘毅. 基于iTRAQ技术对HBV相关性肝癌血浆差异蛋白的鉴定及功能学研究[D]. 重庆医科大学 2014

[7] 刘毅. 整体性治理视角下的县级政府社会管理体制创新研究[D]. 华中师范大学 2014

[8] 刘毅. 几类切换模糊系统的镇定控制设计[D]. 东北大学 2009

[9] 刘毅. 区域循环经济发展模式评价及其路径演进研究[D]. 天津大学 2012

[10] 刘毅. β-抑制蛋白2对哮喘小鼠CD4~+T细胞表达和产生IL-17的影响及其机制研究[D]. 中南大学 2011

[11] 刘毅. SIRT3在原发性肝癌中的表达及其抑瘤作用的研究[D]. 中南大学 2012

[12] 刘毅. 南中国海与东南极中晚全新世气候环境变化记录与研究方法探索[D]. 中国科学技术大学 2012

[13] 刘毅. 晚期糖基化终产物对心肌微血管内皮细胞及糖尿病心肌缺血再灌注损伤的影响及机制[D]. 第四军医大学 2012

[14] 刘毅. 华喦花鸟画研究[D]. 南京艺术学院 2012

[15] 刘毅. 三甲基芹菜素阻断多种心脏钾通道与增加迟钠电流的作用研究[D]. 华中科技大学 2012

[16] 刘毅. 面向人群的并行多目标疏散模型研究[D]. 武汉理工大学 2012

[17] 刘毅. 采用外周血进行肿瘤分子诊断的转化医学研究[D]. 中国人民解放军军事医学科学院 2012

猜你喜欢:

1. 会计毕业论文参考文献

2. 人力资源会计论文参考文献

3. 国际贸易论文

4. 经济学论文参考文献

5. 有关经济学论文参考文献

液态金属研究发展的论文

液态金属在化学和化工领域的研究发展。化学和化工领域专业。研究领域发展应该说是不可低估的居中社会的发展速度越来越快。

亿泰金属在化学和化工鼎立的研究发展来说的话,化学是比较进步的,而且他在意太里面他是怎么样起反应的。这方面去写。

应该是在化学中的应用有很多啊。你可以去参照一下各个公司平时的一些发表的论文。

当韧性金属(如Cu、Ni和Al)与某些液态金属(如Bi和Ga)接触时,在异常低的应力水平下发生晶间破坏,这种现象被称为 液态金属致脆 (LME)。数十年的研究致力于理解潜在的微观机制,球差校正扫描透射电子显微镜(AC-STEM)的发展解决了一般晶界(GBs)的结构问题,导致在原子尺度上对一些经典的晶间解离系统进行重新评价。Al-Ga体系是LME晶间结构的典型例子,Ga穿透前沿的原子结构仍然不稳定。原位透射电镜显示,液态Ga沿着Al多晶界迅速渗透,形成Ga多吸附层。从理论到实验都进行了大量的研究,不同方法的理论计算预测了不同的偏析行为。已有研究表明,Al-Ga界面可能包含多层,一层固定在Al表面,另一层是Ga层且顶部结合较差,而这种多层结构是由GB结构决定的,但是界面原子结构仍难以捉摸,目前尚不清楚有序的Ga层是否存在于普通的GBs中。

福州大学的研究人员 揭示了Al普通晶界内富集Ga后的原子结构,阐明了以GB为核心的无序Ga层组成,并通过动态蒙特卡罗和分子动力学模拟进一步验证 。相关论文以题为“The interfacial structure underpinning the Al-Ga liquid metal embrittlement: disorder vs. order gradients”发表在Scripta Materialia。

论文链接:

用圆盘打孔机从Al多晶箔(纯度为,晶粒尺寸约为5μm,厚度为100μm)打孔一个3mm的圆盘,圆盘厚度由磨床减少至约25μm,然后立刻转移至110 的热板上,在对磨表面放置Ga颗粒(纯度),进行自发渗透。

研究发现未渗透Ga和含Ga的AlGBs均具有较高的弯曲度,说明Ga的渗透并没有改变GBs的自由度(DOFs)。在Ga渗透的铝晶界内发现了一种具有有序梯度的新形态结构。在渗透前沿的复合层至少由三层组成,其中两层有序地附着在每个铝晶粒表面,第三层在中间,Ga含量表现出递减的次序。混合MC/MD模拟验证了这种有趣的分离行为。

图1 未渗透(a)和Ga渗透(b) Al样品的HAADF图像,GBs用白色箭头指明;(c)放大了Ga渗透GB的HAADF图像;(d, e)元素分布图证实了Ga在晶界的富集;(f)在(c)的GB上取EDS线扫描图

图2 (a) 曲线型Al晶界;(b) 晶界边缘渗透后的HAADF图;(c) 线扫描结果;(d) 无序Ga层的HRTEM图;(e; f) 混合MC/MD仿真模型

图3 (a)GB中分解出的多层;(b) 放大的HAADF图以及线扫描结果;(c) 模拟渗透Ga的晶界原子结构;(d) Ga原子二维平均密度分布和无序参数分布

多层结构可以从高度有序的双分子层过渡到无序层,Ga吸附层将这两种结构特征整合在一个复合层中。这些结果表明,具有多层吸附(2层及以上)的结构可能导致界面脱粘。导致LME产生的根本原因不是界面有序,而是GB核中较弱的原子间相互作用。总的来说,本文揭示了Ga渗透Al通用GBs中复杂的、但普遍存在的界面分离结构,具有有序梯度,这丰富了研究者们对表层结构的认识。(文:破风)

相关百科

热门百科

首页
发表服务