20世纪60年代初,瑞典用活性炭吸附氡,测量子体214Bi的β射线(最大能量 MeV),寻找铀矿。1977年美国用活性炭法找铀矿,测量的是214Bi的γ射线 MeV能量峰的净峰面积,计算氡的浓度。
我国于20世纪70年代末开展了活性炭吸附氡寻找铀矿工作。
活性炭微细的孔隙丰富,比表面积大(700~1600 m2/g),是氡的强吸附剂,在很大容量范围内呈线性关系。
(一)测量土壤氡的操作程序
取直径3 cm左右的塑料瓶(编号),先装活性炭4~5 cm厚;上面装干燥剂至瓶口,既去湿,也可以去除Tn的影响;用纱布封口,扎紧,装入探杯内,埋于采样坑中(参见图6-4-1),一般4~7 d为宜,使Rn与子体达到平衡。取出后,在实验室铅室内,进行γ射线总量测量,或用高分辨半导体测器的多道γ能谱仪选择适当的单能量峰进行测量,一般可选 MeV(214Bi),或 MeV(214Pb)。计算净峰面积,用来计算氡的平均浓度。
(二)测量空气氡的操作程序
活性炭装置,放在待测位置,空气中氡扩散进入活性炭床被吸附,同时衰变产生的新子体,也沉积在活性炭床内。用多道γ能谱仪测量炭床氡子体产生的γ射线单能峰或能量峰群的净峰面积,可以算出空气中氡的浓度。操作程序如下。
1)将选用的活性炭放入烘箱,在120℃下烘烤5~6 h,取出后放入磨口瓶中密封保存待用。
2)准备好采样盒,一般为塑料或金属制成,直径6~10 cm,高3~5 cm,内装25~200 g烘烤后的活性炭(专用的采盒为直径8 cm,高 cm,内装50 g活性炭。上有圆形金属过滤器孔径56 μm),上面覆盖滤膜,称量总重量。
3)样品盒放置在采样点,放在距地面50 cm以上的地方(架子上),面朝上放置,上面20 cm范围内不得有其他物品,放置2~7 d。收回时,立即封好,防止氡再沉积。
4)放置3 h后测量,此时,再称重量与前者相比,计算水的含量。
5)将活性炭盒放入铅室,用半导体探测器的多道γ能谱仪,测量单能峰( MeV或 MeV)或峰群,计算净峰面积,用下式计算空气中平均氡浓度。
核辐射场与放射性勘查
式中:Ap为采样1 h的响应系数,Bq·m-3/cpm,即仪器刻度系数;nγ为特征能量峰的净计数,cpm;kw为水分校正因子(实验求得);t1为采样时间,h;b为累积指数(实验求得,一般为);t2为采样终止到测量开始时间,h。
根据活性炭强吸附氡的性质,湖南六所研究提出活性炭滤纸测氡方法。即用活性炭(90%含量)制成滤纸(20mg/cm2厚),用该活性炭滤纸作为滤膜,抽取氡气样,然后测量上面α粒子的计数率,用下式计算空气中氡的浓度:
核辐射场与放射性勘查
式中:NRn为空气中氡的平均浓度,Bq·m-3;nα为活性炭滤纸上α粒子计数率,cpm;n底为本底计数率cpm;kp为标定常数,cm/Bq·m-3;FT为温度校正系数。
基本原理
通过天然放射性元素随地质活动的变化规律进行地质构造研究,是核地球物理勘探(Nuclear Geophysical Exploration)的内容之一。用航空 γ能谱测量方法进行区域断裂研究是比较成功的,但用地面γ射线测量方法调查活动断层,虽有一些成功实例,但总的来看效果不好,因为异常与背景相对差值较小,且干扰因素较多,目前还难以控制到最有效程度。目前比较有效的方法是各种以测氡为基础的放射性测量方法。
自发产生核衰变的天然放射性元素有铀系、钍系和锕铀系三个系列,以及一些单独的放射性核素。三个天然放射性系列的共同特点是:①每个系列都有一个长寿命的起始核素。铀系的起始核素是 (铀),半衰期为×109年;钍系是 (钍),半衰期为×1010年;锕铀系是 (铀),半衰期为×108年。它们衰变很慢,可以认为数量基本不变,每个系列的各个子体核素的数量相对稳定。②每个系列经过多次核衰变后,最后一个子体都是稳定的铅同位素。③三个衰变系列中间都有一个放射性气体氡的同位素,铀系是 、钍系是 、锕铀系是 ,他们的半衰期差别很大(见表15-1),在实际测量中根据这一特点,很容易把它们分别测出。219Rn半衰期仅为秒,且含量很低难以利用。作为测氡方法主要是测量222Rn和220Rn。在活断层研究中主要是测量222Rn,因为它迁移距离远,有利于传递深部构造信息。
天然放射性元素在自发进行核衰变时,放出α射线的称为α衰变,放出β射线的称为β衰变。由于α射线是高速运动的质量数为4、带两个正电荷的氦原子核,所以α衰变形成的子体核素是比母体质量数少4,原子序数少2的新核素。而β射线是高速运动的电子,所以β衰变形成的子体核素与母体质量数相同,只是原子序数增加一位。此外,α衰变或β衰变形成的子体核素,有的处于高能级的激发态,这种激发态是不稳定的,很快会退激到低能级的稳定基态,并以电磁波的形式放出多余的能量,称为 γ光子或γ射线。由此可见,γ射线总是伴随着α衰变或β衰变同时产生的。如果激发态保持时间较长,就构成独立核素。因为它与基态核素有相同的质量和相同的原子序数,只是能量不同,所以叫同质异能素。
氡( )是α衰变的辐射体,经过α衰变后转变为 ,再衰变后连续生成几个短寿命的放射性子体核素,包括氡在内都是系列中较强的α、γ辐射体,如表15-1所列。通过测量这些核素的α射线(粒子)或 γ射线强度,可以确定土壤中氡气浓度分布,并依此确定地质构造特征。
镭的同位素衰变成氡的同位素,而氡的同位素又衰变生成新的子体,因此氡的同位素按下述规律由镭同位素积累,并达到数量上的平衡。
表15-1氡同位素及其子体的特征
地质灾害勘查地球物理技术手册
式中:N2为第二种物质,即氡同位素(子体)在t时的原子数;N1为第一种物质,即镭同位素的初始(t=0)原子数;λ1、λ2为母体和子体物质的衰变常数(s-1);t为第二种物质,即氡同位素的积累时间。
考虑到镭同位素的衰变常数A1=×10-11,氡同位素222R的衰变常数为A2=×10-6,即Al<<λ2,因此上式可以简化为:
地质灾害勘查地球物理技术手册
可见氡同位素是按指数规律积累的。
如果已知镭的质量CRa(以贝克贝可(Bq),放射性活度单位,每秒核衰变一次为1Bq(s-1);Bq/kg表示质量活度(比活度);Bq/L和Bq/m3表示体积活度(活度浓度);1埃曼=×103Bq/m3=。计),氡(222Rn)的积累量CRa,可用下式计算:
地质灾害勘查地球物理技术手册
岩石中镭经过核衰变产生氡,但这些氡只有一部分可以析出到岩石的孔隙或裂隙中,并向周围逸散、迁移,这一部分氡称为自由氡,不能析出的氡称为束缚氡。在一定时间内,析出氡量(N1)与产生的氡总量(N2)之比,称为射气系数η=N1/N2×100%。射气系数大小与土壤、岩石的结构关系密切,松散、破碎、孔隙度大的岩石射气系数大,且受湿度、温度影响明显。地下水与岩石作用时,使氡溶于水,其溶解系数(ω)与温度、压力关系密切,在常温下ω为~,在0℃时约为,温度升高到30℃时变为。岩石受挤压,射气系数迅速增大,所以岩层裂隙射气浓度增大是地震的前兆。
自由氡在岩石和土壤中主要通过扩散和对流作用进行迁移。断裂和破碎带使地层由封闭变为开放状态,有利于氡的迁移和聚集,也使氡的子体在这里沉积,形成氡及其子体的分布异常,成为断裂、滑坡、地面塌陷、地裂缝以及地面沉降、地震、火山、煤田自燃等的标志异常。地面沉降(挤压)和扩张都会使射气系数增大。
测定断层含氡气的方法是一个应用比较广泛的方法。气体氡是放射性核素,既有气体的迁移特点,又具有方便现场测量的放射性特色,是极有前景的应用方法。
测量方法
放射性测量主要是测量放射性核素在核衰变过程中放出的α,β,y射线,以及其作用于周围介质,引起的电离或激发所留下的痕迹。
α射线(或称α粒子)质量大,在气体中的径迹是一条直线,在穿过介质时使介质产生电离或激发,收集所产生的电离电荷就可以探测α射线,电离室、硫化锌闪烁体,以及常用的金硅面垒半导体探测器都是利用这个原理。氡及其子体都是主要的 α辐射体,因此这些都是测氡的常规方法。α射线又是带正电的重粒子,而金属薄片的表面具有大量带负电的自由电子,所以α辐射体容易沉积在金属薄片的表面。1913年,卢瑟福就是利用这个方法收集氡及其子体,测量α射线,现在常用的α卡测量方法也是利用这个原理。如果设法使卡片带上负电性(或静电),可以更有效地收集α辐射体,这就是常用的带电α卡或静电α卡测氡方法。α粒子打到醋酸纤维胶片上或某些结晶物质表面,使其造成电离损伤的斑点或痕迹,氡浓度越大,单位面积上产生的斑点就越多,这就是α径迹测氡方法。天然放射性元素放出的α射线能量为4~8MeVα,β,γ射线能量单位:电子伏(electron-Volt),写为eV;103=KeV;106=MeV。,在温度 T=15℃,气压 P=情况下,在空气中的最大射程为,这决定了测氡电离室的大小。
β射线通过物质时主要产生三种作用:①产生电离和激发;②与原子核及核外电子作用,产生多次散射;③当被原子核库伦场阻止时伴生有电磁辐射,称为轫致辐射。对β射线的探测就是利用了这些作用原理。
γγ射线通过物质时能量最强。当一个 γ射线与原子壳层电子(主要是 K或 L层电子)碰撞时,将全部能量传给电子,使电子抛出原子之外,而 γ光子全被吸收。这种光子消失产生电子的作用叫做光电效应。较高能量的 γ光子与壳层电子作用时,将部分能量传给电子,使电子呈一定方向抛出,而光子由于碰撞损失能量改变了原来的运动方向,这种作用叫康普顿效应。当 γ光子能量大于时,与物质原子作用产生电子对效应,即入射光子能量被全部吸收,而抛出正负电子对。这些作用一方面说明 γ射线的基本特征,另一方面表明探测 γ射线和γ射线能谱的基本原理。
铀系222Rn及其子体中218Po、214Po和210Po都是强α辐射体,占铀系α辐射体总能量的;214Pb和214Bi是强γ辐射体,占铀系γ辐射体总照射量率照射量率:γ射线测量专用单位为库伦每千克秒(c/kg·s),而照射量非法定单位是伦琴(R),照射量率为1μR/h=1γ=×10-14C/kg·s。的98%,是测氡各种方法的主要测量辐射体。测量 α射线的方法有:瞬时测氡法、径迹蚀刻(SSNTD)法、α聚集器测量法、钋-210法、硅半导体α仪方法、液体闪烁测量方法等。α和γ兼用的有活性炭吸附器测量法和热释光测量方法等。
下面主要述及几种活断层探测的实用方法。
瞬时氡测量方法
瞬时氡测量方法,又叫传统氡测量方法,目的在于区别20世纪70年代发展起来的多种累积测氡方法。这是最早用于土壤氡测量的方法,不断发展至今仍是测氡的主要方法。它的特点是仪器轻便,现场测量并直接给出测量结果,有异常可以立即重复测量,并加密测点。
土壤氡测量可分为浅孔测量,取样孔深一般为;深孔测量,取样孔深2m左右;浅井测氡,取样孔深从几米到十几米。主要根据覆土层厚度和结构选择测量方式。对于厚度为十几米左右的覆土层,如果透气性较好,通常作浅孔测量,既可达到要求又比较方便。
目前常用的测量仪器,主要有 FD-3017(RaA测氡仪),FD-3016和RM-1003等。无论使用哪种仪器,首先要检查仪器读数的稳定性,然后检查仪器的刻度,确定仪器的刻度系数JRn(Bq/L),以利于从仪器的读数,换算出每个测点的氡浓度(Bq/L)。对于小面积的构造调查,可以不要求刻度系数的准确性,利用仪器出厂给定的刻度系数即可。如果对断裂成因进行研究,观测氡浓度的变化,最好利用氡室对仪器进行刻度。
图15-1FD-3017 RaA测氡仪野外测量概况图
1—操作台;2—探测器;3—高压输出;4—抽气筒;5—活塞;6—导向空向滑杆;7—脚蹬;8—进气三通阀门;9—高压输入;10—取样器;11—收集片;12—干燥器;13—橡皮管
野外测量工作程序如下:
(1)根据地质推测断裂方向,并考虑地表环境有利于测量工作,进行测线布置和测点距的确定,例如西安地裂缝断距不大,一般采用2~5m点距,甚至更小;
(2)在测点上先用六棱钢钎打取气孔(浅孔测量打深),把取气器插入孔中,将周围压实避免大气渗入;
(3)注意取样器与仪器连接的橡皮管不宜过长,避免橡皮管对氡吸附过多。测量方式如图15-1所示;
(4)抽气次数一般5~6次,每点保持一致;
(5)抽完气静置10~20秒,进行读数,然后立即进行排气,准备下一点测量;
(6)发现异常,可适当加密测点,或对部分测点重复检查;
(7)逐点计算氡浓度 N=nJRn,JR。为刻度系数;
(8)用氡浓度 N直接制作剖面图、等值图或平面剖面图,取两倍于背景值以上的值为异常值。
α聚集器测量方法
222Rn衰变的第一代子体218Po(RaA)为α辐射体,半衰期。设法将此α辐射体沉积在一个薄片上,再用α测量仪测量薄片上α粒子的活度。实验证明,α活度与土壤中222Rn浓度成正比。此薄片称为α聚集器,是地质构造探测的常用方法。由此原理出发,演化出的测量方法有多种,主要有如下四类。
(1)α卡测量方法
20世纪70年代,加拿大卡尔顿大学.卡特等根据1913年卢瑟福用金属片收集氡子体的启示,研究成功了α卡测量方法。
该方法属累积测氡方法,探测灵敏度和探测深度都比瞬时测氡方法有很大提高,可达100~200m,或者更深,而且不污染仪器。使用的α卡有金属片(银片、铜片或铝片)和塑料片,卡片面积一般为×。测量仪器有FD-3005、FHS-1α闪烁辐射仪、WAY-80型五通道α辐射仪等。
将α卡片预先放置在专用的T-702型探杯内的支架上固定好,在根据需要布置的测线测点上,挖埋卡探坑,深20cm左右,将杯倒置坑中,上面用塑料布封盖,如图15-2所示。3小时后取出,用仪器测量卡片上沉积218Po的α射线活度。如果埋置时间延长到10小时或更长,则卡上沉积的还会有214Po等子体。根据测量的α活度,可以作剖面图,等值线图或平面剖面图。
图15-2探坑埋杯示意图
在天然环境下,218Po大约有20%带正电性,为了提高探测效率,提出了带电α卡测量方法,即在埋卡同时给α卡加上负300V电压。使用一段时间之后,感到野外应用很不方便,于是进一步提出了静电α卡方法,即:聚乙烯类塑料片通过摩擦易带负电,在野外用一简单的充电设备,在埋片之前先使卡片带静电-600~-800V(每片电压基本一致)。实验证明带电α卡和带静电α卡相对于不带电的天然α卡,可以提高探测灵敏度倍左右。
(2)α膜测量法
为了提高探测灵敏度,用比α卡大25倍的16cm×8cm的透明塑料膜代替α卡,放入特制探杯周围,埋入坑中,取出后反转放入RM-1003型射气仪的闪烁探测室进行α活度测量,它的计数比α卡提高约10倍。其他操作与α卡一致。
(3)α管测量方法
此法与α膜法类似,不同的是用一个专门的取样器,在倒扣探杯下方装一根约半米长、直径、带小孔的深部取气导管,在测点打孔深70~80cm,后插入导管,累积取样10小时左右,取出后用RM-1003射气仪测量α活度。此法的特点是对较厚覆盖地区比较有利,缺点是效率较低。
(4)带电瞬时α测量法(亦称218Po法)
是用充电器使塑料α膜带静电 -1000V,放入探杯,埋入坑中5~8分钟,取出测量(2分钟)α活度。由于收集时间短,只是测量218Po,工作效率较高。钋-210(210Po)测量法
美国海军部下属机构的格雷等人,于1978年报道了他们对210Po测量方法的研究成果,测量精度达×10-3Bq。
222Rn衰变后的长寿命子体有三个,210Po是其中之一,半衰期为天,不同于218Po的是210Po为氡的长时间累积体。210Po的量直接反应222Rn的平均值,它的特点是化学性质稳定,一旦形成,基本上不再离开岩层、裂隙、破碎带以及这些构造上方覆盖的土壤中。因此测量210Po的α射线活度,成为确定断层、裂隙和破碎带的重要方法。
(1)野外取样:按照预先布置测线测点,取土壤样品,深度一般为20~40cm,取土样50g。
(2)样品处理:一般取土样4g(等重量)置于100ml烧杯中,加入抗坏血酸及一片直径16mm一面涂漆的紫铜片,再加入20ml、3mol/g盐酸溶液,放入恒温摇床振荡箱,保持60℃振荡小时(或40℃振荡3小时),期间铜和钋发生置换反应,钋被吸附在铜片表面。然后取出铜片、清洗、晾干。
(3)α活度测量:用FD-3005或WAY-80型五通道α辐射仪测量铜片上的α活度,一般测量10分钟。有时为了消除218Po的干扰,需放置30分钟(218Po的10倍半衰期)后进行测量。用测得的α活度绘制出剖面图、等值线图或平面剖面图。在断裂带、破碎带、塌陷、采空区上方,与瞬时氡一样为高值异常。
径迹蚀刻测量方法
固体核径迹探测器(SSNTD)技术,是20世纪60年代初发展起来的。一片透明的云母片或塑料片,被带电粒子照射之后,化学键被打断,成为辐射损伤微区,易受化学侵蚀,在固体片的表面显出照射粒子的径迹,用一般光学显微镜可读出,由此成为粒子探测器。在地质工作中主要应用的是α粒子径迹探测器,探测氡及其子体放出的α粒子,与α聚集器方法类似,属于累积测氡方法。这一方法的优点是均化了自然环境的影响因素,有效地提高了探测灵敏度,对探测深层构造比较有利。
我国常用的α径迹探测器主要是聚碳酸脂片或美国引进的CR-39探测器。
径迹探测工作程序如下:
(1)根据构造延伸方向和方便野外工作布置测线和测点距。
(2)α径迹探测片切成一定形状的片子,一般大小取×,将探测片固定在探杯(T-702)的支架上,并在径迹片和杯上编号。
(3)在测点挖埋杯探坑,一般深40cm,将探杯倒置坑中,如图15-2所示。用石片或塑料袋装土盖坑,再用覆土盖好,插上标志。埋杯时间20天左右。
(4)将取出的探测器放入10mol的KOH溶液中,加温到60℃左右并保持恒温半小时,取出后用清水冲洗、晾干(注意:CR-39与聚碳酸脂的化学蚀刻溶液条件不同,可按《环境空气中氡的标准测量方法GB/T14582-93》进行处理)。
(5)用一般光学显微镜,计数探测器上的径迹密度,或用径迹扫描仪进行密度计数。
(6)用径迹密度绘制剖面图、等值线图或平面剖面图。
α径迹与α卡方法类似,可以根据已有的设备情况选用。在覆盖土层比较厚的地区,例如几十米,甚至一百米以上的地区,用α径迹法探测基岩构造、活断层比较好,与瞬时测氡、α卡等方法一样,在这些构造上方为高值异常显示。该方法的缺点是工作程序多,不如α卡方便。
活性炭吸附器(ROAC)测氡法
20世纪60年代瑞典最早使用活性炭吸附氡方法寻找铀矿。活性炭微细孔隙丰富,有较高的比表面积,是氡的强吸附剂。以GH-18型(9mm2×层状)活性炭对氡吸附容量最大,且对氡的吸附在很大容量范围内呈线性关系。其次是Φ3柱状活性炭。
吸附器的用法有两种:一种是连接在用抽气筒抽取土壤气的回路中,通过抽气过滤吸附氡,叫瞬时法。但主要用法是累积测氡,作为氡的捕集器。目前使用的是直径3cm左右的塑料瓶,先装炭层4~5cm厚,再装干燥剂硅胶置瓶口处,既去湿也能消除钍射气的影响。像α卡一样,将塑料瓶埋入测点探坑中,上盖一个罩杯,埋置时间4~7天为宜,取出后在铅室内进行γ射线测量。一般用多道γ谱仪,测量214Bi放出的γ射线的照射量率。
热释光(TLD)测量方法
热释光测量有三种方法:α热释光,y热释光和天然土壤热释光。前两种都是利用对α射线或y射线能量储存灵敏的人造结晶物质作为剂量探测器,累积测量α或y射线。天然土壤热释光是以天然环境下土壤中存在的石英、方解石等结晶矿物为热释光探测器。因为接受照射时间长,探测灵敏度高,受干扰小,异常稳定。热释光与α径迹方法一样,属累积测量方法。
在地质工作中主要应用y热释光。一般选用对γ射线能量响应较宽的氟化锂(LiF)热释光探测器。目前主要应用的是GR-200系列中的LiF(Mg,Cu,P)(氟化锂镁铜磷)热释光探测器,它对γ射线的能量响应范围为30Kev~3Mev,其相对误差<20%,重复使用退火温度控制在240±2℃(不得超过245℃),并保持恒温10分钟。
探测元件要放在α径迹使用的T-702型探杯支架上(其他杯亦可),挖探坑深40cm,装好元件的探杯倒扣埋入坑中,一般放置30天左右。取出后用RGD-3型、FJ-369型或其他热释光剂量仪进行热释光测量,计算γ热释光强度(TL),用以制作剖面图等。
仪器设备
氡气法仪器设备见表15-2。
表15-2氡气测量仪器一览表
土壤表面氡析出率的测定
方法提要
国家标准GB50325—2001《民用建筑工程室内环境污染控制规范》规定土壤表面氡析出率测量所须仪器设备包括取样设备、测量设备。取样设备的形状为盆状,工作原理分为被动收集型和主动抽气采集型两种。现场测量设备须满足以下工作条件要求:温度-10~40℃;相对湿度≤90%;不确定度≤20%;探测下限≤(m2·s)。
测量步骤
首先在建筑场地按20m×20m网格点布点,网格点交叉处进行土壤氡析出率测量。测量时,须清扫采样点地面,去除腐殖质、杂草及石块,把取样器扣在平整后的地面上,并用泥土对取样器周围进行密封,防止漏气,准备就绪后,开始测量并开始计时(t)。
土壤表面氡析出率测量过程中,应注意控制下列几个环节。
1)使用聚集罩时,罩口与介质表面的接缝处应当封堵,避免罩内氡向罩外扩散(一般情况下,可在罩沿周边培一圈泥土,即可满足要求)。对于从罩内抽取空气测量的仪器类型来说,必须更加注意。
2)被测介质表面应平整,保证各个测量点测量过程中罩内空间的体积不出现明显变化。
3)测量的聚集时间等参数应与仪器测量灵敏度相适应,以保证足够的测量准确度。
4)测量应在无风或微风条件下进行。
结果计算(使用聚集罩情况)
用下式求被测地面的氡析出率:
岩石矿物分析第三分册有色、稀有、分散、稀土、贵金属矿石及铀钍矿石分析
式中:R为土壤表面氡析出率,Bq/(m2·s);Nt为t时刻测得的罩内氡浓度,Bq/m3;V为聚集罩与介质表面所围住的空气体积,m3;A为聚集罩所罩住的介质表面的面积,m2;t为测量经历的时间,s。
被动收集型法
(1)径迹蚀刻法
径迹蚀刻法的原理和方法见中径迹刻蚀法。按下式计算222Rn析出率:
岩石矿物分析第三分册有色、稀有、分散、稀土、贵金属矿石及铀钍矿石分析
式中:CRn为222Rn析出率,Bq/(m2·s);TD为单位面积222Rn径迹数,个/m2;V为采样小室体积,m3;S为采样小室底面积,m2;R为CR-39刻度因子,m3·(m2·Bq·s)-1;t为放置时间,h。
测量步骤
把CR-39片子剪成"66mm的圆片,铺到"66mm的采样盒小室内密封。采样时把小盒放到"150mm大塑料盒内部顶端,大盒扣到地面,并在地面放氯化钙干燥剂少许,周围用土壤密封、踩实。采样~2h取出小盒,密封带回实验室测量。
(2)活性炭吸附法
方法提要
本法用活性炭累积吸附,γ能谱分析测定建筑物表面氡析出率,适用于建筑物(含建筑构件)平整表面的氡析出率的测定。各种土壤、岩石表面的氡析出率的测定可参照使用。
仪器和设备
活性炭盒(容器)采用低放射性材料(如聚乙烯、有机玻璃、不锈钢等)制成的内装活性炭的圆柱形容器,其底部直径应等于或稍小于γ探测器的直径,高度以直径的三分之一到三分之二为宜;活性炭选用微孔结构发达、比表面积大、粒径为18~28目的优质椰壳颗粒状活性炭;网罩选用具有良好透气性的材料,如尼龙纱网、金属筛网或纱布,罩于活性炭盒开口表面,网罩栅孔密度应与活性炭粒径相匹配;真空封泥用于密封活性炭盒和待测介质表面之间的缝隙,固定它们之间的相对位置。
γ能谱仪探测器①闪烁探测器NaI(Tl)由不小于"×的圆柱形NaI(Tl)晶体和低噪声光电倍增管组成,探测器对137Cs的γ射线的分辨率应优于9%。②半导体探测器Ge(Li)或高纯锗(HPGe)其灵敏体积大于50cm3,对60Co的特征γ射线的分辨率应优于。
屏蔽室应选用放射性核素含量低且无表面污染的屏蔽材料,探测器应置于壁厚不小于10cm铅当量的屏蔽室中央,屏蔽室内壁距探测器表面的最小距离应大于13cm,铅室的内衬应由原子序数逐渐递减的多层屏蔽材料组成,从外向里可依次由镉、铜及2~3mm厚的有机玻璃材料等组成。屏蔽室应有便于取放试样的门。
高压电源应有保证探测器稳定工作的高压电源,其纹波电压不大于±,对半导体探测器高压应在0~5kV范围内连续可调。谱放大器应有与前置放大器及脉冲高度分析器匹配的具有波形调节的放大器。脉冲高度分析器,NaI(Tl)γ谱仪的道数应不少于256道,对于高分辨半导体γ谱仪其道数应不小于4096道。γ谱仪可以与专用或通用微机联接,进行计算机在线能谱数据处理,亦可以用计算器人工处理。
测量步骤
活性炭盒的制备:将活性炭置于烘箱内,在120℃下烘烤7~8h,以去除活性炭中残存的氡气。将烘烤过的活性炭装满活性炭盒容器,称量,各炭盒间质量差应小于,然后加网罩,加盖,密封待用。留1~2个新制备的,没有暴露于氡和子体的活性炭盒(简称“新鲜”炭盒)于实验室中,作为本底计数测量用。
析出氡的收集:去除实际欲测建筑物表面的灰尘和砂粒。打开活性炭盒,倒扣于该表面,周围用真空泥固定和封严,记下开始收集析出氡的时间。析出氡收集持续5~7d。收集结束时,除去真空泥,小心取下活性炭盒,加盖密封,记录结束时间,带回实验室。
氡的测量:用226Ra检验源检查和调整γ谱仪使之处于正常工作状态。在与试样测量相同的条件下,在γ谱仪上测量“新鲜”活性炭盒的本底γ能谱。收集结束后的活性炭盒放置3h以上。当用高分辨γ谱仪时,测量214Bi的、214Pb的、和其中的一个或几个γ射线峰计数率;当用NaI(Tl)γ谱仪时,测量上述能量相应能区的计数率。
按下式计算建筑物表面氡析出率:
岩石矿物分析第三分册有色、稀有、分散、稀土、贵金属矿石及铀钍矿石分析
式中:R为氡的面积析出率,Bq·m-2·s-1;nc为活性炭盒内所选定的氡子体γ射线峰或能区的计数率,s-1;nb为与nc相对应的“新鲜”活性炭盒的计数率,s-1;t1为活性炭盒收集析出氡的时间,s;t2为收集结束时间到测量开始时间的时间间隔,s;ε为与nc相应的γ射线峰能量或能区处的探测效率;S为被测表面的面积,m2;λ为氡的放射性衰变常数,×10-6s-1。
探测效率刻度
体标准源的制备:标准源基质与活性炭盒所用的活性炭种类相同且等量。称取由国家法定计量部门认定的已知比活度的碳酸钡镭标准粉末(精确至),其总活度应在50~500Bq范围内,比活度的相对标准偏差不大于4%。将标准粉末置于500mL烧杯中,以1mol/LHCl溶解,再用稀释到所需体积(应足以使活性炭基质全部浸入),倒入活性炭颗粒,并不断搅拌;将活性炭在红外灯下烘烤,使其水分不断蒸发,在将近恒量时,转移到另一干净烧杯中,用少量洗液清洗用过的500mL烧杯,将清洗液倒入活性炭中(注意不要与目前盛放活性炭的干净烧杯壁接触),再用红外灯烘烤,不断搅匀,直至恒量。将活性炭转入空的活性炭盒内,铺平,加盖,密封,放置30d。待226Ra与氡及其子体处于放射性平衡后备用。标准源的综合不确定度(一倍标准偏差)应控制在±5%以内。
刻度
按照使用说明书的要求正确安装和调整γ谱仪系统,包括探测器、电源、前置放大器、谱仪放大器、脉冲高度分析器和计算机系统,使其处于最佳工作状态。在与试样测量相同条件下,分别获取上述已知226Ra活度的体标准源γ能谱和“新鲜”活性炭盒本底谱。从净谱中选择氡的子体214Pb的、、以及214Bi的中的一个或几个γ射线的全能峰,并计算其净峰计数率。如果使用NaI(Tl)闪烁探测器,在上述几个γ射线峰不能清楚分开时,亦可计算包含上述一个以上峰的能区净计数;根据所选γ射线的全能峰(或所选能区)净计数率,计算探测效率。
测量的相对标准偏差
面积氡析出率测量结果的相对标准偏差为:
岩石矿物分析第三分册有色、稀有、分散、稀土、贵金属矿石及铀钍矿石分析
式中:σtotal为总相对标准偏差,%;σcalib为效率刻度的相对标准偏差,%;σct为测量计数相对标准偏差,%。
σct可用下式计算:
岩石矿物分析第三分册有色、稀有、分散、稀土、贵金属矿石及铀钍矿石分析
式中:Ns为活性炭盒内选定的氡子体γ射线峰或能区的积分计数;Nb为与Ns相对应的“新鲜”活性炭盒的积分计数;ts为试样计数时间;tb为本底计数时间。
建筑物表面氡析出率的探测下限
主要取决于所用γ谱仪的探测下限,该探测下限是在给定置信度情况下该系统可以测到的最低活度。以计数为单位的探测下限可表示为:
岩石矿物分析第三分册有色、稀有、分散、稀土、贵金属矿石及铀钍矿石分析
式中:C(LLD)为探测下限;Kα为与预选的错误判断放射性存在的风险概率(α)相应的标准正态变量的上限百分位数值;Kβ为与探测放射性存在的预选置信度(1-β)相应的值;σ0为净试样放射性测量的计数统计标准偏差。
对于各种α和β水平,K值列于。
表 各种α和β水平对应的K值
如果α和β值在同一水平上,则Kα=Kβ=K0
岩石矿物分析第三分册有色、稀有、分散、稀土、贵金属矿石及铀钍矿石分析
以计数率为单位的探测下限,是在给定条件下,最小可探测的计数率。如果活性炭盒内氡的放射性活度与本底接近时,最小可探测计数率为:
岩石矿物分析第三分册有色、稀有、分散、稀土、贵金属矿石及铀钍矿石分析
式中:C(LLD,cT)为最小可探测计数率;tb为本底谱测量时间;Nb为本底谱中相应于某一全能峰或能区的本底计数。
根据最小可探测计数率,按式()可以计算出最小可探测表面氡析出率。
干扰和影响因素
1)活性炭盒倒扣于建筑物表面,所得结果不代表自然状态下氡的析出率,而相当于外界空气中氡浓度为0时氡的析出率,即最大析出率。这种方法不考虑外界空气风速、交换率的影响。但可能引起活性炭盒所扣处被测材料局部含水量的变化,对氡的析出率产生微小干扰。
2)在收集析出氡期间,面积氡析出率实际上受周围环境的气象、温度、湿度、气压、风速变化等影响,因此,测量结果只代表在对应的环境条件下收集期间内面积氡析出率的平均值。
3)在用NaI(Tl)γ谱仪确定活性炭盒所收集的氡活度时,氡子体214Pb的γ射线峰受Th射气子体212Pb的γ射线峰的干扰;该干扰对测量结果的影响小于1%,用高分辨率的半导体探测器测量,不存在这种干扰。
注意事项
1)这种方法的优点是布样方便,无源,不用维修,可重复使用,适合大规模的氡调查。具有测量结果稳定,受环境因素影响小,探测器被动式测量,不需电源,测量简单。活性炭具有良好的吸附性能和稳定的化学特性,可以耐强酸和强碱,能经受水浸、高温、高压的作用,不易破碎,气流阻力小,便于应用。缺点是活性炭对氡的吸附并非完全积累过程,因此采样结束前的氡浓度对平均结果的影响较大,只能用于短期测量(2~7d)。普通型采样器受温、湿度影响较大,但改进型的采样器则不受温、湿度的影响。
2)还有一种利用解析原理的活性炭吸附法,该方法将活性炭吸附的氡通过加热解析到电离室或闪烁室中进行测量。
3)活性炭吸附法测氡析出率的采样装置有许多,如图所示,它由采集桶和活性炭盒(加滤膜)组成,通过测量活性炭的氡浓度来计算氡析出率。有的采样器采用铝质结构,轻便、抗腐蚀,采样器大小恰好与测量仪器探头的尺寸匹配。采样器分为上下两部分,有螺纹可以衔接。上部分为活性炭室,炭床表面放置一金属网,用于固定活性炭,网眼尺寸与活性炭粒度相匹配,装填活性炭时金属网可取下。下部为储气室,呈管状,与上部内径相同。由于针的半衰期很短,选择的储气室高度足以使针射气衰减掉。在上下两部分之间放置一烧结金属过滤器,烧结金属过滤器可取下,测量时过滤器由采样器内侧车床车出的的沿托住,起到过滤湿气的作用,防止活性炭吸潮后吸附效率降低,图为该采样器示意图。
图 常用的采样装置示意图
图 采样器示意图A—活性炭室;B—储气室
(3)驻极体收集法
方法提要
驻极体收集积分测量法是一种多功能快速测量法。既能测定量体积活度,又能测定量析出率。仪器的采样小室是一个上部封口的塑料桶,其中装有驻极体探测器,下部有一个过滤窗底盘。将未装底盘的采样小室直接扣在被测物的表面,即可实现对量析出率的测量。
图 驻极体收集法测量装置结构原理图
测量装置
驻极体收集法氡析出测量装置由采样小室、驻极体探测盒组成。结构原理见图。采样盒是1个圆柱形塑料筒,盒顶部装有驻极体探测盒。被测表面析出的氡在盒内衰变时形成2l8Po粒子,在驻极体电场作用下,2l8Po粒子大部分被吸附在探测器表面。2l8Po衰变时发射的α粒子会使驻极体的表面电荷特性发生变化。利用驻极体表面电位测量仪记录这种变化,经过刻度就可确定待测空气中的氡浓度。根据其氡浓度可确定氡的析出水平,即氡析出率[Bq/(m2·s)]。因驻极体静电场对氡子体的收集效率受空气湿度影响,盒内放干燥剂,可保持恒定的收集效率。
测量步骤
测量时将收集装置扣在待测材料表面,周围用浮土埋好密封。在采样结束后将驻极体探测盒用驻极体保护盖密封起来,用驻极体读数仪读出各自结束的读数并记录。
注意事项
方法灵敏度高,采样周期短,操作方便,可成批采样。采样点分布不太分散时,用30个采样小室一天可采100多个氡析出率试样。
(4)局部静态法
方法提要
局部静态法是测量暴露表面氡析出率的一种方法。该方法为瞬时测量法,有很高的灵敏度,取样时间短,而且设备简单,适合于测量大地、建筑物表面的极低的氡析出率。其受气象等因素影响大,测量重现性差。其工作原理是:用不透气的板材制成的氡收集器倒扣在被测物的表面上,四周用密封材料封好,这时被测物表面析出的氡将被收集在收集器和被测物表面共同包容的收集空间里,这样便可根据收集空间里氡体积活度的变化计算确定氡析出率。
测量装置
局部静态法测量装置由一个由不透气的材料制成积累箱和氡收集器组成。积累箱用有机玻璃制成,尺寸××。
测量步骤
用积累箱开口一侧紧贴待测物体表面,周围用密封材料密封,构成积累箱,经一定时间后采集箱内气体,进行氡活度分析,分别计算出氡的析出率。
主动抽气采集型法
(1)双滤膜法
方法提要
双滤膜法是一种绝对测氡方法,它是通过测量氡在衰变筒内新生子体的α辐射强度以达到测氡的目的。双滤膜法测量的直接对象是氡的短寿子体的α射线,由于衰变链中的氡与其子体之间有着确定的比例关系,所以通过测定其短寿子体的α射线强度就可以求得析出的氡量,从而计算出氡析出率。
测量装置
双滤膜法测量氡析出率的装置见图。
图 双滤膜法测量装置示意图
FT-648绝对测氡仪是测量大气氡的常用仪器,测量时将入气口和进气口与积累腔连接即可。积累腔厚约3mm,扣地面积,腔体容积210L。远大于衰变筒的容积,满足测量要求。
测量步骤
先平整测点处的地面,除去杂草。然后扣上积累腔,其周围用掺水的黏土封堵。此道工序必须认真做好,因封堵不严会导致氡泄漏过大;否则就失去了测量的基础。
1)以积累腔开始封闭的时间作为积累时间的起点,并以测量点所在地的大气氡浓度作为t=0时积累腔内的起始浓度。
2)采样测量时间t可以在0到2h之间任选,工作方法是15'+1'+30'的方式(即15min采样,1min换位,30min累计计数),对不同的地点作氡析出率测量。
3)仪器刻度采用与测量时相同的间隔时间测量。
(2)静电收集法
方法提要
当被测物体表面析出的氡进入收集室后,其衰变产生的带正电的氡子体在收集室壁+2500V高压的作用下被收集到探测器表面,α谱仪根据探测到的不同能量α粒子的计数给出α能谱,微处理器和计算芯片根据α能谱识别出218Po和216Po特征峰,并根据系统参数计算出222Rn和220Rn浓度,再计算出氡析出率。
测量装置
以德国TRACERLAB公司生产的ERS-2型静电收集式氡采样器为例,这是一种主要为测量土壤或建材表面氡钍射气析出率而设计的仪器,同时也具有连续测量氡钍射气浓度的功能。仪器具有一个和仪器主体一体化的金属制半球形的集氡腔,体积,有效半径166mm,金属腔壁上连有2500V正高压。ERS-2型仪器测量222Rn、220Rn析出率示意图如图所示。
主要性能参数
1)仪器放置在有弹簧垫圈的铝制手提箱中,方便运输和野外操作。
2)具有一个和仪器主体一体化的金属制半球形的集氡腔,体积,有效半径166mm,金属腔壁上连有2500V正高压。
3)可以使用100~240V的交流电源或有着连续使用12h左右容量的自带电池为仪器供电。电池的充电时间与使用时间相同,如可以一次性充电8h,然后连续使用8h。
4)仪器可以按照事先选择好的测量周期(1~9999min)存储大于750个周期的完整的α计数谱数据和氡钍射气浓度数据,以备以后读出,其存储器断电后数据不会丢失。
5)仪器使用的是金硅面垒型(PIPS)α探测器和256道多道计数器,测量结果的评价和计算由α谱仪给出的α计数谱完成(见图)。ERS-2具有快速响应、效率高的特点,仪器自带的微处理器和计算芯片将实时给出以Bq/m3为单位的222Rn和220Rn浓度。
图 ERS-2型仪器测量222Rn、220Rn析出率示意图
6)仪器自带流量10~75L/h的气泵,可用于连续测量222Rn或220Rn浓度时将待测气体泵进密封的集氡腔。对于析出率测量,只需把集氡腔密封盖去掉,仪器放置在待测表面即可。
7)仪器具有一个可以实现实时显示氡浓度数据、显示系统参数、设置测量周期,和控制仪器本身与气泵的开关等多项功能的触摸式液晶操作键盘。
8)仪器可以通过RS-232接口与PC机实现实时在线数据交换。PC机可以通过超级终端读取存储器上按周期储存的以Bq/m3单位的222Rn和220Rn浓度数据并保存成文本文档,还可以通过超级终端对仪器实行设置系统参数、清空存储器等多项命令。
9)氡析出率的计算,将在PC机上通过提供的数据处理软件完成。该软件读入超级终端保存好的数据文本,经过计算后给出以mBq/(m2·s)为单位的氡析出率值。对于220Rn析出率的计算,由于220Rn半衰期很短,实测数据中很难观察到其线性增长与指数增长的过程,所以软件只采用平台估计法计算220Rn析出率。
测量步骤
1)将充好电的ERS-2仪器集氡腔密封盖取下,在腔口放置好密封用的硅胶圈,把仪器放在事先平整好的地面上,周围用浮土埋好密封。
2)开启电源、高压,设置测量周期T=10min,开始测量并记录起始测量时间与起始周期序数。
3)测量约4~5个周期,关高压、电源并记录终止周期序数。用泵冲洗集氡腔内残余氡气。
4)连接ERS-2与PC机,通过超级终端读取本次测量起始周期与终止周期之间的各周期谱数据或氡浓度数据,保存成文本文档。
5)在PC机上打开数据处理软件,读入文本文档中数据,观察数据点变化趋势,选择拟合起止点,选择线性拟合方式,记录软件给出的氡析出率值。
6)当仪器显示的周期序数接近750时,用PC机通过超级终端发出清空仪器存储器的命令清理数据。
350 浏览 5 回答
81 浏览 5 回答
130 浏览 4 回答
99 浏览 7 回答
193 浏览 3 回答
94 浏览 3 回答
147 浏览 5 回答
335 浏览 5 回答
192 浏览 3 回答
176 浏览 3 回答
203 浏览 4 回答
256 浏览 3 回答
318 浏览 5 回答
246 浏览 5 回答
236 浏览 3 回答