大学数学论文范文
导语:无论是在学校还是在社会中,大家都写过论文,肯定对各类论文都很熟悉吧,论文是探讨问题进行学术研究的一种手段。怎么写论文才能避免踩雷呢?以下是我收集整理的论文,希望对大家有所帮助。
论文题目: 大学代数知识在互联网络中的应用
摘要: 代数方面的知识是数学工作者的必备基础。本文通过讨论大学代数知识在互联网络对称性研究中的应用,提出大学数学专业学生检验自己对已学代数知识的掌握程度的一种新思路,即思考一些比较前沿的数学问题。
关键词: 代数;对称;自同构
一、引言与基本概念
《高等代数》和《近世代数》是大学数学专业有关代数方面的两门重要课程。前者是大学数学各个专业最重要的主干基础课程之一,后者既是对前者的继续和深入,也是代数方面研究生课程的重要先修课程之一。这两门课程概念众多,内容高度抽象,是数学专业学生公认的难学课程。甚至,很多学生修完《高等代数》之后,就放弃了继续学习《近世代数》。即使对于那些坚持认真学完这两门课程的学生来讲,也未必能做到“不仅知其然,还知其所以然”,而要做到“知其所以然,还要知其不得不然”就更是难上加难了。众所周知,学习数学,不仅逻辑上要搞懂,还要做到真正掌握,学以致用,也就是“学到手”。当然,做课后习题和考试是检验是否学会的一个重要手段。然而,利用所学知识独立地去解决一些比较前沿的数学问题,也是检验我们对于知识理解和掌握程度的一个重要方法。这样做,不仅有助于巩固和加深对所学知识的理解,也有助于培养学生的创新意识和自学能力。笔者结合自己所从事的教学和科研工作,在这方面做了一些尝试。
互连网络的拓扑结构可以用图来表示。为了提高网络性能,考虑到高对称性图具有许多优良的性质,数学与计算机科学工作者通常建议使用具有高对称性的图来做互联网络的模型。事实上,许多著名的网络,如:超立方体网络、折叠立方体网络、交错群图网络等都具有很强的对称性。而且这些网络的构造都是基于一个重要的代数结构即“群”。它们的对称性也是通过其自同构群在其各个对象(如:顶点集合、边集合等)上作用的传递性来描述的。
下面介绍一些相关的概念。一个图G是一个二元组(V,E),其中V是一个有限集合,E为由V的若干二元子集组成的集合。称V为G的顶点集合,E为G的边集合。E中的每个二元子集{u,v}称为是图G的连接顶点u与v的一条边。图G的一个自同构f是G的顶点集合V上的一个一一映射(即置换),使得{u,v}为G的边当且仅当{uf,vf}也为G的边。图G的全体自同构依映射的合成构成一个群,称为G的全自同构群,记作Aut(G)。图G称为是顶点对称的,如对于G的任意两个顶点u与v,存在G的自同构f使得uf=v。图G称为是边对称的,如对于G的任意两条边{u,v}和{x,y},存在G的自同构f使得{uf,vf}={x,y}。
设n为正整数,令Z2n为有限域Z2={0,1}上的n维线性空间。由《近世代数》知识可知,Z2n的加法群是一个初等交换2群。在Z2n中取出如下n个单位向量:
e1=(1,0,…,0),e2=(0,1,0,…,0),en=(0,…,0,1)。
●n维超立方体网络(记作Qn)是一个以Z2n为顶点集合的图,对于Qn的任意两个顶点u和v,{u,v}是Qn的一条边当且仅当v-u=ei,其中1≤i≤n。
●n维折叠立方体网络(记作FQn)是一个以Z2n为顶点集合的图,对于Qn的任意两个顶点u和v,{u,v}是Qn的一条边当且仅当v-u=ei(1≤i≤n)或者v-u=e1+…+en。
●n维交错群图网络(记作AGn)是一个以n级交错群An为顶点集合的图,对于AGn的任意两个顶点u和v,{u,v}是AGn的一条边当且仅当vu-1=ai或ai-1,这里3≤i≤n,ai=(1,2,i)为一个3轮换。
一个自然的问题是:这三类网络是否是顶点对称的?是否边对称的?但值得我们注意的是,这些问题都可以利用大学所学的代数知识得到完全解决。
二、三类网络的对称性
先来看n维超立方体网络的对称性。
定理一:n维超立方体网络Qn是顶点和边对称的。
证明:对于Z2n中的任一向量x=(x1,…,xn),如下定义V(Qn)=Z2n上面的一个映射:f(x):u→u+x,u取遍V(Qn)中所有元素。容易验证f(x)是一个1-1映射。(注:这个映射在《高等代数》中已学过,即所谓的平移映射。)而{u,v}是Qn的一条边,当且仅当v-u=ei(1≤i≤n),当且仅当vf(x)-uf(x)=ei(1≤i≤n),当且仅当{v(fx),u(fx)}是Qn的一条边。所以,f(x)也是Qn的一个自同构。这样,任取V(Qn)中两个顶点u和v,则uf(v-u)=v。从而说明Qn是顶点对称的。
下面证明Qn是边对称的。只需证明:对于Qn的任一条边{u,v},都存在Qn的自同构g使得{ug,vg}={0,e1},其中0为Z2n中的零向量。事实上,{uf(-u),vf(-u)}={0,v-u},其中v-u=ei(1≤i≤n)。显然,e1,…,ei-1,ei,ei+1,…,en和ei,…,ei-1,e1,ei+1,…,en是Z2n的两组基向量。由《高等代数》知识可知存在Z2n上的可逆线性变换t使得t对换e1和ei而不动其余向量。此时易见,若{a,b}是Qn的一条边,则a-b=ej(1≤j≤n)。若j=1,则at-bt=ei;若j=i,则at-bt=e1;若j≠1,i,则at-bt=ej;所以{at,bt}也是Qn的一条边。由定义可知,t是Qn的一个自同构。进一步,{0t,(v-u)t}={0,e1},即{uf(-u)t,vf(-u)t}={0,e1}。结论得证。
利用和定理一相似的办法,我们进一步可以得到如下定理。
定理二:n维折叠立方体网络FQn是顶点和边对称的。
最后,来决定n维交错群图网络的对称性。
定理三:n维交错群图网络AGn是顶点和边对称的。
证明:首先,来证明AGn是顶点对称的。给定An中的一个元素g,如下定义一个映射:R(g):x→xg,其中x取遍An中所有元素。容易验证R(g)为AGn顶点集合上上的一个1-1映射。(注:这个映射在有限群论中是一个十分重要的'映射,即所谓的右乘变换。)设{u,v}是AGn的一条边,则vu-1=ai或ai-1,这里1≤i≤n。易见,(vg)(ug)-1=vu-1。所以,{vR(g),uR(g)}是AGn的一条边。因此,R(g)是AGn的一个自同构。这样,对于AGn的任意两个顶点u和v,有uR(g)=v,这里g=u-1v。这说明AGn是顶点对称的。
下面来证明AGn是边对称的。只需证明对于AGn的任一条边{u,v},都存在AGn的自同构g使得{ug,vg}={e,a3},其中e为An中的单位元。给定对称群Sn中的一个元素g,如下定义一个映射:C(g):x→g-1xg,其中x取遍An中所有元素。由《近世代数》知识可知,交错群An是对称群Sn的正规子群。容易验证C(g)是AGn的顶点集合上的一个1-1映射。(注:这个映射其实就是把An中任一元素x变为它在g下的共轭。这也是有限群论中一个十分常用的映射。)令x=(1,2),y(j)=(3,j),j=3,…,n。下面证明C(x)和C(y(j))都是AGn的自通构。取{u,v}为AGn的任一条边,则vu-1=ai或ai-1。从而,vC(x)(u-1)C(x)=(x-1vx)(x-1u-1x)=x-(1vu-1)x=ai-1或ai。
因此,{uC(x),vC(x)}也是AGn的一条边。从而说明C(x)是AGn的自通构。同理,若j=i,有vC(y(j))(u-1)C(y(j))=a3-1或a3;若j≠i,则有vC(y(j))(u-1)C(y(j))=ai-1或ai。这说明{uC(y(j)),vC(y(j))}也是AGn的一条边,从而C(y(j))是AGn的自通构。现在,对于AGn的任一条边{u,v},令g=u-1,则{uR(g),vR(g)}={e,vu-1}={e,ai}或{e,ai-1}。若i=3,则{e,a3-1}C(x)={e,a3}。而若i≠3,则{e,ai}C(y(j))={e,a3}而{e,ai-1}C(y(j))={e,a3-1}。由此可见,总存在AGn的自同构g使得{ug,vg}={e,a3},结论得证。
至此,完全决定了这三类网络的对称性。不难看出,除了必要的图论概念外,我们的证明主要利用了《高等代数》和《近世代数》的知识。做为上述问题的继续和深入,有兴趣的同学还可以考虑以下问题:
1、这些网络是否具有更强的对称性?比如:弧对称性?距离对称性?
2、完全决定这些网络的全自同构群。
实际上,利用与上面证明相同的思路,结合对图的局部结构的分析,利用一些组合技巧,这些问题也可以得到解决。
三、小结
大学所学代数知识在数学领域中的许多学科、乃至其他领域都有重要的应用。笔者认为任课教师可以根据自己所熟悉的科研领域,选取一些与大学代数知识有紧密联系的前沿数学问题,引导一些学有余力的学生开展相关研究,甚至可以吸引一些本科生加入自己的课题组。当然,教师要给予必要的指导,比如讲解相关背景知识、必要的概念和方法等。指导学生从相对简单的问题入手,循序渐进,由易到难,逐步加深对代数学知识的系统理解,积累一些经验,为考虑进一步的问题奠定基础。
结束语
本文所提到的利用《高等代数》和《近世代数》的知识来研究网络的对称性就是笔者在教学工作中曾做过的一些尝试。在该方面,笔者指导完成了由三名大三学生参加的国家级大学生创新实验项目一项。这样以来,学生在学习经典数学知识的同时,也可以思考一些比较前沿的数学问题;学生在巩固已学知识的同时,也可以激发其学习兴趣,训练学生的逻辑思维,培养学生的创新思维,以及独立发现问题和解决问题的能力。
【摘要】
随着数学文化的普及与应用,学术界开始重视对于数学文化的相关内容进行挖掘,这其中数学史在阶段我国大学数学教学之中,具有着重要的意义。从实现大学数学皎月的两种现象进行分析,在揭示数学本质的基础上,着重分析数学史在我国大学数学教育之中的重要作用,强调在数学教学之中利用数学史进行启发式教学活动。本文从数学史的角度,对于大学数学教学进行全面的分析,从中分析出适合我国大学数学教育的主要意义与作用。
【关键词】
数学史;大学数学教育;作用
一、引言
数学史是数学文化的一个重要分支,研究数学教学的重要部分,其主要的研究内容与数学的历史与发展现状,是一门具有多学科背景的综合性学科,其中不仅仅有具体的数学内容,同时也包含着历史学、哲学、宗教、人文社科等多学科内容。这一科目,距今已经有二千年的历史了。其主要的研究内容有以下几个方面:
第一,数学史研究方法论的相关问题;
第二,数学的发展史;
第三,数学史各个分科的历史;
第四,从国别、民族、区域的角度进行比较研究;
第五,不同时期的断代史;
第六、数学内在思想的流变与发展历史;
第七,数学家的相关传记;
第八,数学史研究之中的文献;
第九,数学教育史;
第十,数学在发展之中与其他学科之间的关系。
二、数学史是在大学数学教学之中的作用
数学史作为数学文化的重要分支,对于大学数学教学来说,有着重要的作用。利用数学史进行教学活动,由于激发学生的学习兴趣,锻炼学生的思维习惯,强化数学教学的有效性。
笔者根据自身的教学经验,进行了如下总结:首先,激发学生的学习兴趣,在大学数学的教学之中应用数学史,进行课堂教学互动,可以最大限度的弱化学生在学习之中的困难,将原本枯燥、抽象的数学定义,转变为简单易懂的生动的事例,具有一定的指导意义,也更便于学生理解。
从学生接受性的角度来讲,数学史促进了学生的接受心理,帮助学生对于数学概念形成了自我认知,促进了学生对于知识的透彻掌握,激发了学生兴趣的产生。其次,锻炼学生的创新思维习惯,数学史实际意义上来说,有很多讲授数学家在创新思维研发新的理论的故事,这些故事从很多方面对于当代大学生据有启迪作用。例如数学家哈密顿格拉斯曼以及凯利提出的不同于普通代数的具有某种结构的规律的代数的方法代开了抽象代数的研究时代。用减弱或者勾去普通代数的各种各样的假设,或者将其中一个或者多个假定代之一其他的假定,就有更多的体系可以被研究出来。这种实例,实际上让学生从更为根本的角度对于自己所学的代数的思想进行了了解,对于知识的来龙去脉也有了一定的认识,针对这些过程,学生更容易产生研究新问题的思路与方法。
再次,认识数学在社会生活之中的广泛应用,在以往的大学数学教学之中,数学学科往往是作为一门孤立的学科而存在的,其研究往往是形而上的研究过程,人们对于数学的理解也是枯燥的,是很难真正了解到其内涵的。但是数学史的应用,与其在大学数学教学之中的应用,可以让学生了解到更多的在社会生活之中的数学,在数学的教学之中使得原本枯燥的理论更加贴近生活,更加具有真实性,将原本孤立的学科,拉入到了日常生活之中。从这一点上来说,数学史使得数学更加符合人类科学的特征。
三、数学史在大学数学教学之中的应用
第一,在课堂教学之中融入数学史,以往枯燥的数学课堂教学,学生除了记笔记验算,推导以外,只能听老师讲课,课堂内容显得比较生硬,教师针对数学史的作用,可以在教学之中融入数学史,在教学活动之中将数学家的个人传记等具有生动的故事性的数学史内容,进行讲解,提高学生对于课堂教学的兴趣。例如一元微积分学的相关概念,学生在普通的课堂之中,很难做到真正意义的掌握,而更具教学大纲,多数老师的教学设计是:极限——导数与微分——不定积分——定积分。这种传统的教学方式虽然比较呼和学生的一般认知规律,但是却忽视了其产生与又来,教师在教学之中可穿插的讲授拗断——莱布尼茨公式的又来,将微积分艰难的发展史以故事的形式呈现出来,更加便于学生理解的同时也激发了学生的学习热情。
第二,利用数学方法论进行教学,数学方法论是数学史的之中的有机组成部分,而方法论的探索对于大学数学教学来说,也具有着重要的意义,例如在极限理论的课堂教学来说,除了单纯的对于极限的相关概念进行讲解的基础上,也可以将第二次数学危机以及古希腊善跑英雄阿基里斯永远追不上乌龟等相关故事,融入到课堂之中。这种让学生带着疑问的听课方式,更进一步促进了学生对于教学内容的兴趣,全面的促进了学生在理解之中自然而然的形成了理解极限的形成思想,并逐渐的享受自身与古代数学家的共鸣,从而促进自身对于数学的理解,提高学生的学习兴趣,进一步提高课堂的教学效果。所以,在大学数学课堂教学之中,融入数学史的相关内容,不仅具有积极的促进作用,同时在实践之中,也具有一定的可操作性。这种教学模式与方法对于提高我国大学数学教学的质量有着积极的推动作用,同时也更进一步推动了大学数学教学改革的进行。
作为工科类大学公共课的一种,高等数学在学生思维训练上的培养、训练数学思维等上发挥着重要的做用。进入新世纪后素质教育思想被人们越来越重视,如果还使用传统的教育教学方法,会让学生失去学习高等数学的积极性和兴趣。以现教育技术为基础的数学建模,在实际问题和理论之间架起沟通的桥梁。在实际教学的过程中,高数老师以课后实验着手,在高等数学教学中融入数学建模思想,使用数学建模解决实际问题。
一、高等数学教学的现状
(一)教学观念陈旧化
就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及逻辑思维能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。
(二)教学方法传统化
教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。
二、建模在高等数学教学中的作用
对学生的想象力、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。
高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。
三、将建模思想应用在高等数学教学中的具体措施
(一)在公式中使用建模思想
在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。
(二)讲解习题的时候使用数学模型的方式
课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。
(三)组织学生积极参加数学建模竞赛
一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。
四、结束语
高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。
一、数学知识研究 传统上认为数学教师至少要掌握他所教的数学知识。班级授课制成熟后,人们开始同意这样一个原则:除了所教的数学知识以外,数学教师还需要掌握像组织教学、控制课堂秩序等一些教学知识。随着教学研究的深入,人们发现教师仅仅知道他所教的数学的术语、概念、命题、法则等知识是不够的。…除此之外,教师还要知道数学的学科结构。学科结构的概念最早源于Schwab。他指出了理解学科结构的两种方式:一个方式是句法性地(syntactically),另一个方式是实体性地(substantively)。所谓句法性地是指从学科所表现出来的逻辑结构方面去了解学科结构。比如,引入无理数表示不可公度线段,引入负数与复数表示某些方程的解。前者可以看到,后者看不到,仅是为了保持方程都有解这个论断的完整性和通用性所做出的一种假设与解释。对这三个概念含义的理解,只能通过产生这些概念的前后联系才能揭示。所谓实体性地是指从学科的概念设计角度去了解学科结构。比如,欧氏几何与解析几何有不同的概念框架。Ball把数学的学科结构知识称为关于数学的知识。它是指知识从哪里来,又是如何发展的,真理是如何确认的,又将用到哪里去。 主要有三个维度:一是约定与逻辑建构的区别。正数在数轴的右边或者我们使用十进位值制都是任意的、约定的。而0做除数没有定义或者任意一个数的零次幂都等于1就不是任意的、约定的;二是数学内部之问的联系以及数学与其他领域之间的联系;三是了解数学领域中的基本活动:寻找模式、提出猜想、证明断言、证实解法和寻求一般化。 对数学知识的研究,拓宽了人们对教学用的数学知识的理解。它显示教学用的数学知识是很复杂的,除了术语、概念、法则、程序之外,还有数学学科结构或者关于数学的知识。这些知识对于教师确定为什么教、选择教什么和怎么教都会产生影响。比如,约定的与逻辑建构的概念的教学策略会有很大的不同,逻辑建构的概念就必须讲清楚它怎么来的,为什么要定义这个概念,怎样定义,它会有什么用,它与其他的概念的关系是怎样的,它的应用有哪些限度。而约定的概念就没有这些必要。但是,有效地数学教学,仅仅具有上述知识还不够。它缺少对学生的考虑,不能给教师提供教授一群特定的学生所必须的教学上的理解。比如,仅仅通过推导知道(+6)=a+2ab+b对有效教学是不够的,教师还需要知道一些学生容易把分配律过度推广而记成+6)=a+b,知道用矩形的面积表征可以有效地消除这一误解。学生误解的知识与消除误解的教学策略显然不能纳入数学知识的框架,教学用的数学知识的复杂性要求更精致的框架来描述。 二、教材分析研究 有效的教学必须考虑学生已有的知识和知识呈现的最佳序列。在数学学科中,马力平的知识包(Knowledgepackage)是国际上较为典型的此类研究。知识包是围绕着一个中心概念而组织起来的一系列相关概念,是在学生的头脑里培育这样一个领域的纵向过程。(n知识包含有三种主要成分:中心概念、概念序列和概念结点,也包括概念的表征、意义和建立在这些概念之上的算法。下例是20以内数的加减法的知识包(图1)。在这个知识包内,中心概念是20至100数的“借位减法”,它是学习多位数的加减的关键前提。 马力平的知识包实际上是我国内地传统的教材分析研究。这类研究结果是教学参考书的主要内容之一。它是一种课程知识,是教师对课程的分析,比对数学知识的分析更接近教学用的数学。但它也不是教师教学时使用的数学知识。它最多是教师对教学的考虑,没有考虑师生互动时产生的数学需求。教师在教学时,能够动员起来的知识不一定符合教学情境的需要。比如教师预期的一种学生的反应在与学生的互动中没有出现,教师以学生的这种反应为跳板的后继知识就没有了用武之地。马力平概括出的知识包,与教师在课堂教学时使用的数学知识还有一段距离,教师在教学时可能用得上,也可能用不上。教师在教学时所需要的数学知识远远超出教材分析所能提供的内容。
数学中的测量在现实生活中的应用一、创设教学情景,使“数学教学生活化”。以此激发学生的学习兴趣,调动学生积极性。 创设教学情境是模拟生活,使课堂教学更贴近现实生活,让学生身临其境,如见其人,如闻其声,加强感知,突出重点,突破难点,激发兴趣,开发思维。课堂教学中如何创设教学情境呢?我认为可这样做: 1、运用实例创设情境。如教学循环小数概念时,我给学生讲永远讲不完的故事:“从前,山上有座庙,庙里有个老和尚在给小和尚讲故事:老和尚说:从前山上有座庙……”,通过实例初步感知“不断重复”,再举出自然现象“水→汽→云→水”的循环变化,引出“循环”的概念。 2、运用实物(挂图)创设情境。“圆的认识”教学时,我这样引入:出示一幅颜色鲜艳的用正方形做轮子的自行车,问同学们这自行车漂亮吗?喜不喜欢?为什么?学生们回答:“不喜欢。因为这车虽然漂亮但踩不动。”我把正方形车轮换成椭圆后再问学生喜不喜欢,同学们还是说不喜欢,因为骑这样的自行车,即使是在平坦大路上也象在颠跛不平的路上骑一样,我再把椭圆形车轮换成圆形,学生才满意。 3、动手操作创设情境。在推导平行四边形面积公式时,我让学生准备几个平行四边形,鼓励他们动手操作,通过画、剪、移、拼等方法把一个平行四边形变成我们学过平面图形——长方形,观察拼成的长方形长和宽与平行四边形的底和高有什么关系,然后推导出:因为长方形面积=长×宽,所以平行四边形面积=底×高。平行四边形面积公式是学生在操作时,通过观察、思考概括而来,学生尝试到成功的快乐,不但能掌握知识,更能培养他们的信心和兴趣。 4、运用多媒体创设情境。多媒体教学具有直观、形象、具体、生活化的特点,运用多媒体创设情境,使抽象概念具体化,使难理解的问题容易化。如教学“长方体的认识”时,相对的面完全相同,相对的棱长度相等,我运用电脑平移两个面和相应的棱,使学生看见两个相对的面完全重合,相对的棱完全相等,从而达到具体,直观的效果。 5、 模拟生活创设情境。如教学两步加减的应用题时,要求每个小组的同学可以邀请别组的同学参加,小组人数可以比原来的人数多也可以比原来的少。 第一小组:我这组原来6人,走了2人,来了4人,现在有8人。 问:谁能把第一小组人员变化情况列成式子?6-2+4=8(人) 又问:谁把它编成求“现在有多少人?”的应用题。 第二小组:我这组原来6人,先来了2人,后面又来了3人,现在有11人。…… 通过若干个小组的汇报训练,学生在活动中完成了两步加减的应用题学习。 创设生活化的情景,让学生经历将现实问题抽象成数学模式的过程。 如我在教三年级教学《分数的初步认识》时,我就安排了这样一个游戏:先请上男、女学生各一名站在讲台前,然后,我拿出4个月饼,请其余学生用手指表示每人分到的月饼个数。要求大家仔细听老师要求,然后做。我边分边说:“我有4个月饼,平均分给蔡伟和熊娴,请用手指个数表示每人分到的月饼个数”。学生很快伸出2个手指。我接着问如果只有一个月饼,要平均分给蔡伟和熊娴,请用手指表示每人分到的月饼个数,这时,许多同学都难住了,有的同学伸出弯着的一个手指,问他表示什么意思,回答说,因为每人分到半个月饼,我进一步问:你能用一个数来表示“半个”吗?学生被问住了。此时,一种新的数(分数)的学习,成了学生自身的欲望,这样创设了一个与生活相关的教学情景,就激发了学生学习的兴趣,激起了学生解决问题的欲望。 二、研究生活中的数学,使数学课堂教学生活化。 知识是前人在生活中积累的经验或是揭示出的规律,而教学目标是为了掌握规律及学习发现规律的方法。我们老师如果只是让学生掌握知识,那就是把学生头脑当成了知识的容器,“头脑不是一个要被填满的容器,而是一把需被点燃的火把”。因此,教学中必须让学生了解知识发生的过程,但40分钟毕竟有限,因此我们老师要引导学生善于去捕促、获取、积累生活中的数学知识。 首先,要挖掘教材中生活资源。我以小学数学第十册举三个例。例1:数据的收集,要求学生在上放学途中遇到红灯时,数一数另一方向经过的大客车、小汽车、摩托车各是多少辆?例2:长方体和正方体的认识,要求学生模仿家庭中长方体和正方体用硬纸板动手做一个长方体和正长体。例3:质数和合数,分解质因数,布置作业,想一想班上每个同学的学号是质数还是合数,并把合数分解质因数。 其次,要指导学生观察生活中的教学。让学生观察生活中的数学,既可积累数学知识,更是培养学生学习数学兴趣的最佳途径。低年级学生数一数客厅的资砖、光碟等数量,比一比身高、体重,认一认周围的平面图形和立体图形。中高年级观察数学美,如形体的美、结构美等。 三、设计“数学生活化”的练习,帮助学生去发现生活中的数学问题,并应用所学的数学知识解决实际问题。使学生通过练习感觉到生活中处处有数学,数学来源于生活并应用于生活。 1、在练习过程中创造性地对教材内容进行还原和再创造,将数学练习融合于生活中,就可以使原有的练习为我所用。如我教《求平均数》(第八册)时,练习中有一题是给出一组学生身高数据,算出平均身高,来巩固平均数=总数÷个数的这种方法。我是这样做的:先给出我省十岁儿童的平均身高是140cm,问“我们组的身高水平是在平均身高之上还是不到平均身高呢?”引出要算本组平均身高,再让学生统计本小组8个人的身高,最后通过计算,得出小组的平均身高,与140cm进行比较。同样是计算学生平均身高的练习,但这样的练习设计不但巩固了求平均数的方法,还让学生明白了算平均数的必要性,也体会到生活中需要平均数;还学会了算平均数的这些数据是怎样来的;从平均数中可以获得哪些信息等等。我觉得这样的教学就达到了目标。 2、把生活中的数学原型生动地展现在课堂上,使学生眼中的数学不再是简单的做数学练习,而是富有情感、贴近生活,具有活力的东西。如我在教学长“方体和正方体的表面积”一课的练习拓展中,我设计了这样一个题目,我们的教室由于使用时间过长,比较成旧,需要重新粉刷,泥工师傅要按平方受取工资,总务处胡老师想要大家帮他算一算:我们教室要粉刷的面积是多少?请同学们明天作个答复。接着我让同学们讨论:要算出这个教室的粉刷面,需要找到那些数据,同学们准备怎么办?然后,让大家课后完成,可以合作。通过老师的点拨,激发了学生的自主探究和动手实践,学生兴趣高涨,积极动脑思考,动手实践,真正地把数学知识用到了生活当中。 总之,我们数学教师要引导学生善于思考生活中的数学,加强知识与实际联系;要做生活中的有心人,力争结合教学内容和学生的生活经验以及已有的知识,尽可能地创设一些生动有趣、贴近生活、富有生活气息的情景和练习,使学生切实体验到“生活离不开数学”,“人人身边有数学”,用数学可以解决生活中的实际问题,从而对数学产生亲切感,和浓厚的学习兴趣,增强学生对数学知识的应用意识,培养学生的自主创新能力和解决问题的能力。我对“数学教学生活化”的点滴尝试
1111111111111111
古代数学史: ①古希腊曾有人写过《几何学史》,未能流传下来。 ②5世纪普罗克洛斯对欧几里得《几何原本》第一卷的注文中还保留有一部分资料。 ③中世纪阿拉伯国家的一些传记作品和数学著作中,讲述到一些数学家的生平以及其他有关数学史的材料。 ④12世纪时,古希腊和中世纪阿拉伯数学书籍传入西欧。这些著作的翻译既是数学研究,也是对古典数学著作的整理和保存。 近代西欧各国的数学史: 是从18世纪,由J.蒙蒂克拉、C.博絮埃、.克斯特纳同时开始,而以蒙蒂克拉1758年出版的《数学史》(1799~1802年又经拉朗德增补)为代表。从19世纪末叶起,研究数学史的人逐渐增多,断代史和分科史的研究也逐渐展开,1945年以后,更有了新的发展。19世纪末叶以后的数学史研究可以分为下述几个方面。 ①通史研究 代表作可以举出.康托尔的《数学史讲义》(4卷,1880~1908)以及.博耶(1894、.史密斯(2卷,1923~1925)、洛里亚(3卷,1929~1933)等人的著作。法国的布尔巴基学派写了一部数学史收入《数学原理》。以尤什凯维奇为代表的苏联学者和以弥永昌吉、伊东俊太郎为代表的日本学者也都有多卷本数学通史出版。1972年美国M.克莱因所著《古今数学思想》一书,是70年代以来的一部佳作。 ②古希腊数学史 许多古希腊数学家的著作被译成现代文字,在这方面作出了成绩的有.海贝格、胡尔奇、.希思等人。洛里亚和希思还写出了古希腊数学通史。20世纪30年代起,著名的代数学家范·德·瓦尔登在古希腊数学史方面也作出成绩。60年代以来匈牙利的A.萨博的工作则更为突出,他从哲学史出发论述了欧几里得公理体系的起源。 ③古埃及和巴比伦数学史 把巴比伦楔形文字泥板算书和古埃及纸草算书译成现代文字是艰难的工作。查斯和阿奇博尔德等人都译过纸草算书,而诺伊格鲍尔锲而不舍数十年对楔形文字泥板算书的研究则更为有名。他所著的《楔形文字数学史料研究》(1935、1937)、《楔形文字数学书》(与萨克斯合著,1945)都是这方面的权威性著作。他所著《古代精密科学》(1951)一书,汇集了半个世纪以来关于古埃及和巴比伦数学史研究成果。范·德·瓦尔登的《科学的觉醒》(1954)一书,则又加进古希腊数学史,成为古代世界数学史的权威性著作之一。 ④断代史和分科史研究 德国数学家(C.)F.克莱因著的《19世纪数学发展史讲义》(1926~1927)一书,是断代体近现代数学史研究的开始,它成书于20世纪,但其中所反映的对数学的看法却大都是19世纪的。直到1978年法国数学家J.迪厄多内所写的《1700~1900数学史概论》出版之前,断代体数学史专著并不多,但却有(.)H.外尔写的《半个世纪的数学》之类的著名论文。对数学各分支的历史,从数论、概率论,直到流形概念、希尔伯特23个数学问题的历史等,有多种专著出现,而且不乏名家手笔。许多著名数学家参预数学史的研究,可能是基于()H.庞加莱的如下信念,即:“如果我们想要预见数学的将来,适当的途径是研究这门科学的历史和现状”,或是如H.外尔所说的:“如果不知道远溯古希腊各代前辈所建立的和发展的概念方法和结果,我们就不可能理解近50年来数学的目标,也不可能理解它的成就。” ⑤历代数学家的传记以及他们的全集与《选集》的整理和出版 这是数学史研究的大量工作之一。此外还有多种《数学经典论著选读》出现,辑录了历代数学家成名之作的珍贵片断。 ⑥专业性学术杂志 最早出现于19世纪末,.康托尔(1877~1913,30卷)和洛里亚(1898~1922,21卷)都曾主编过数学史杂志,最有名的是埃内斯特勒姆主编的《数学宝藏》(1884~1915,30卷)。现代则有国际科学史协会数学史分会主编的《国际数学史杂志》。 中国数学史: 中国以历史传统悠久而著称于世界,在历代正史的《律历志》“备数”条内常常论述到数学的作用和数学的历史。例如较早的《汉书·律历志》说数学是“推历、生律、 制器、 规圆、矩方、权重、衡平、准绳、嘉量,探赜索稳,钩深致远,莫不用焉”。《隋书·律历志》记述了圆周率计算的历史,记载了祖冲之的光辉成就。历代正史《列传》中,有时也给出了数学家的传记。正史的《经籍志》则记载有数学书目。 在中国古算书的序、跋中,经常出现数学史的内容。 如刘徽注《九章算术》序 (263)中曾谈到《九章算术》形成的历史;王孝通“上缉古算经表”中曾对刘徽、祖冲之等人的数学工作进行评论;祖颐为《四元玉鉴》所写的序文中讲述了由天元术发展成四元术的历史。宋刊本《数术记遗》之后附录有“算学源流”,这是中国,也是世界上最早用印刷术保存下来的数学史资料。程大位《算法统宗》(1592)书末附有“算经源流”,记录了宋明间的数学书目。 以上所述属于零散的片断资料,对中国古代数学史进行较为系统的整理和研究,则是在乾嘉学派的影响下,在清代中晚期进行的。主要有:①对古算书的整理和研究,《算经十书》(汉唐间算书)和宋元算书的校订、注释和出版,参预此项工作的有戴震(1724~1777)、李潢(?~1811)、阮元(1764~1849)、沈钦裴(1829年校算《四元玉鉴》)、罗士琳(1789~1853)等人 ②编辑出版了《畴人传》(数学家和天文学家的传记),它“肇自黄帝,迄于昭(清)代,凡为此学者,人为之传”,它是由阮元、李锐等编辑的(1795~1799)。其后,罗士琳作“补遗”(1840),诸可宝作《畴人传三编》(1886),黄钟骏又作《畴人传四编》(1898)。《畴人传》,实际上就是一部人物传记体裁的数学史。收入人物多,资料丰富,评论允当,它完全可以和蒙蒂克拉的数学史相媲美。 利用现代数学概念,对中国数学史进行研究和整理,从而使中国数学史研究建立在现代科学方法之上的学科奠基人,是李俨和钱宝琮。他们都是从五四运动前后起,开始搜集古算书,进行考订、整理和开展研究工作的 经过半个多世纪,李俨的论文自编为《中算史论丛》(1~5集,1954~1955),钱宝琮则有《钱宝琮科学史论文集》(1984)行世。从20世纪30年代起,两人都有通史性中国数学史专著出版,李俨有《中国算学史》(1937)、《中国数学大纲》(1958);钱宝琮有《中国算学史》(上,1932)并主编了《中国数学史》(1964)。钱宝琮校点的《算经十书》(1963)和上述各种专著一道,都是权威性著作。 从19世纪末,即有人(伟烈亚力、赫师慎等)用外文发表中国数学史方面的文章。20世纪初日本人三上义夫的《数学在中国和日本的发展》以及50年代李约瑟在其巨著《中国科学技术史》(第三卷)中对中国数学史进行了全面的介绍。有一些中国的古典算书已经有日、英、法、俄、德等文字的译本。在英、美、日、俄、法、比利时等国都有人直接利用中国古典文献进行中国数学史的研究以及和其他国家和地区数学史的比较研究。
对于高考中的导数题 求导之后一定要配方或者因式分解 一般会考到分类讨论
351 浏览 6 回答
194 浏览 5 回答
175 浏览 5 回答
338 浏览 3 回答
278 浏览 3 回答
167 浏览 3 回答
307 浏览 4 回答
113 浏览 6 回答
265 浏览 4 回答
342 浏览 5 回答
286 浏览 3 回答
207 浏览 5 回答
322 浏览 3 回答
309 浏览 3 回答
276 浏览 4 回答