首页

医学论文

首页 医学论文 问题

蛋白组学医学期刊

发布时间:

蛋白组学医学期刊

全球有3500万人深受阿尔茨海默症(AD)的困扰,但目前尚无临床有效的治疗手段。为了促进AD治疗手段的发展,研究者进行了大量的遗传学研究。已有研究者通过 GWAS鉴定出许多阿尔茨海默症风险基因,但这些风险基因是如何导致阿尔茨海默症的尚不十分清楚。 全蛋白质组关联研究(Proteome-Wide Association Study, PWAS)通过蛋白质的功能变化将基因和表型联系起来 , 是一种新型的以蛋白质为中心的遗传关联研究方法,在人类遗传学研究领域具有广泛的应用前景。 2021年1月28日,国际学术期刊Nature Genetics(IF=)上报道了来自埃默里大学医学院题为“Integrating human brain proteomes with genome-wide association data implicates new proteins in Alzheimer’s disease pathogenesis”的研究文章。该团队运用全蛋白质组关联研究(proteome-wide association study,PWAS),将阿尔茨海默症(AD)队列 GWAS结果与人脑蛋白质组进行了整合,旨在鉴定通过影响脑蛋白丰度而导致AD风险的基因,深入了解这些基因座如何影响AD的发病机制。 1、PWAS鉴定出AD 相关重要基因 在发现阶段,作者收集到375例捐献者死后大脑的背外侧前额叶皮层(dPFC)样本,使用TMT质谱策略获得人脑蛋白质组数据。整合已有的AD GWAS结果与蛋白质组学结果,通过全蛋白质组关联研究(PWAS)鉴定出13个顺式调节脑蛋白水平的基因(图1,表1)。接下来,作者使用相同的AD GWAS数据与另一组独立的152例人脑蛋白质组数据整合分析,与前面发现的13个蛋白相比较,其中10个在PWAS阶段得到验证(表1)。 表1 AD PWAS鉴定13个重要基因 2、重要风险基因COLOC和SMR分析 为了研究调控脑蛋白的重要基因与AD是否存在因果关系,作者进行了贝叶斯共定位(COLOC)和孟德尔随机化(SMR)分析。首先,使用贝叶斯共定位(COLOC)检验发现13个基因中有9个符合因果关系。然后通过孟德尔随机化(SMR)分析,结果表明顺式调控蛋白丰度介导了这13个基因的遗传变异与AD的关联。总的来说,作者发现7个基因在COLOC和SMR / HEIDI分析的因果关系上具有一致的结果(CTSH,DOC2A,ICA1L,LACTB,PLEKHA1,SNX32和STX4),另外有4个基因的因果关系在这两种分析中结果不一致( ACE,CARHSP1,RTFDC1和STX6),EPHX2和PVR的结果不具备因果关系(表2)。 表2 发现阶段AD PWAS中13个重要基因的COLOC和SMR分析 3、确定11个AD PWAS重要基因 通过验证队列重复和因果关系测试的结果,作者在13个通过PWAS发现的重要基因中,确定了11个与AD有因果关系的风险基因(CTSH,DOC2A,ICA1L,LACTB,SNX32,ACE,CARHSP1,RTFDC1,STX6,STX4和PLEKHA1),其中9个重要基因在PWAS阶段得到验证(表3)。 表3 总结11个AD PWAS重要基因,并证明与AD中的因果作用一致 4、PWAS结果不受APOE e4影响 载脂蛋白APOE e4等位基因与阿尔茨海默症密切相关,因此作者为了探究APOE e4是否影响了PWAS结果,从蛋白质组中去除掉APOE e4的作用,使用去除后的蛋白质组图谱进行了AD PWAS。分析发现了13个与发现阶段PWAS结果一致的重要基因和6个其他基因,且所有13个基因都具有与发现阶段PWAS中相同的关联方向。此外,COLOC和SMR / HEIDI测试的结果发现了与原始发现相同的因果关系证据,这些结果均表明本实验发现不受APOE e4的影响。 5、 TWAS锁定与PWAS相关基因 众所周知,分子生物学的中心法则是遗传信息从DNA转录传递给RNA,再从RNA翻译传递给蛋白质。因此,作者收集到888个欧洲个体的大脑转录组数据,将AD GWAS结果与其整合,进行了AD的全转录组关联研究(TWAS)。AD TWAS鉴定了40个基因,其FDR为p<时,其基因调控的mRNA表达水平与AD相关(图2)。与蛋白质水平上鉴定出的11个潜在风险基因相比,ACE,CARHSP1,SNX32,STX4和STX6这5个基因与PWAS结果相似,与AD具有关联性。(表3)。 6、单细胞测序发现细胞类型特异性 最后,作者使用背外侧前额叶皮层样本(dPFC)单细胞RNA测序数据进行分析,发现在先前确定的11个重要风险基因中,有6个基因呈现细胞类型特异性富集。DOC2A,ICA1L,PLEKHA1和SNX32富含兴奋性神经元,而CARHSP1在少突胶质细胞中富集,CTSH在星形胶质细胞和小胶质细胞中富集(图3)。 本文作者通过收集阿尔茨海默症(AD)患者队列,开展多中心、大样本的基因组学和蛋白质组学研究。运用全蛋白质组关联研究(PWAS)挖掘了十多个重要风险基因,这些风险基因可以通过改变大脑中蛋白质丰度进而影响阿尔茨海默症的发生,为AD的发病机制提供了新的见解,并为进一步治疗提供了潜在的靶标。 参考文献 [1].Wingo, Aliza P. , et al. "Integrating human brain proteomes with genome-wide association data implicates new proteins in Alzheimer's disease pathogenesis." Nature Genetics .

期刊:Cell Reports;影响因子: 发表单位:约翰霍普金斯大学等    高级浆液性卵巢癌(HGSC)是导致大多数与卵巢癌相关的死亡的最常见和致命的卵巢癌类型,了解卵巢癌发生、发展和治疗敏感性的分子机制是进一步提高患者生存率的关键步骤。先前已有大规模的组学研究中对肿瘤组织进行了广泛的分析,包括基因组、转录组、蛋白组以及表观修饰等,然而对于蛋白质翻译修饰而言,除磷酸化外,尚未在大规模蛋白质组学研究中研究其他蛋白质修饰。糖基化在癌症发展过程中起着至关重要的作用,例如细胞间粘附、细胞生长、配体-受体结合和肿瘤转移。与其他蛋白质修饰相比,糖蛋白的分析由于糖蛋白结构的巨大复杂性和异质性而受到限制。糖蛋白组学技术的最新进展已使复杂糖蛋白的全面分析成为可能。     2020年10月发表在《Cell Reports》的一项研究中,利用蛋白质组学和N-链接糖基化蛋白质组学技术,系统地分析了83例HGSC患者肿瘤组织及23例健康输卵管组织标本。研究提供了HGSC完整的蛋白组学和糖蛋白组学特性,发现肿瘤中的糖蛋白在多个水平上受到调节,包括糖蛋白丰度、确定的特定糖位处糖基化的总体程度以及糖位处糖基化的类型,并揭示了以前从未研究过的蛋白质糖基化在卵巢癌中的潜在功能。     由于一系列修饰,许多基因产物表现出极大的结构异质性。这些修饰不是直接编码在基因组模板中,但往往影响蛋白质的功能。蛋白质糖基化在蛋白质正常功能中起着至关重要的作用。但是,与其他蛋白质修饰(例如磷酸化)相比,糖蛋白的分析具有挑战性。本研究对83个前瞻性收集的高级浆液性卵巢癌(HGSC)和23个非肿瘤组织进行了蛋白质组学和糖蛋白组学的综合分析,揭示了肿瘤特异性糖基化以及与三个肿瘤簇相关的不同糖基化,并鉴定了与糖基化改变相关的糖基化酶。     83个卵巢癌和23个相关非肿瘤组织的蛋白质组学和糖蛋白组学;     糖基化与3个肿瘤簇相关;     糖蛋白和糖位的肿瘤特异性变化显而易见;     确定负责糖基化改变的酶。     收集了83例未经治疗的HGSC肿瘤和23例非肿瘤组织,用于定量蛋白质组学和N-连接糖蛋白组分析。总共鉴定出8144种蛋白质,其中1690个含N-连接糖基的肽。根据已鉴定的N联聚糖的单糖组成,定义了三种聚糖类型:低聚甘露糖/高甘露糖(HM),含有两个N-乙酰基己糖胺(N)和己糖(H)而没有另外的岩藻糖(F)或唾液酸(S)的聚糖;唾液酸化聚糖(Sia),代表任何含有S的聚糖;以及岩藻糖基化聚糖(Fuc),代表任何已鉴定的含有F的聚糖。    为了研究HGSC的癌症异质性,作者使用糖蛋白组学数据进行聚类分析,鉴定了3种糖肽簇(IGP1-3)。通过计算了IGP簇与临床表型的相关性,IGP3与肿瘤细胞数量呈负相关,与网膜的解剖部位呈负相关。功能分析显示,IGP1富含溶酶体,IGP2中富含磷脂酰肌醇3-激酶(PI3K)-Akt信号通路、粘着斑和细胞外基质(ECM)-受体相互作用,IGP3富含补体和凝血级联。结果还显示了与IGP簇相关的聚糖,包括IGP1中的HM聚糖,IGP2中的HM和Fuc聚糖,IGP3中的Fuc和Sia聚糖。     先前研究已报道,IGP肿瘤簇与分化、免疫反应、间充质和增生等4种亚型有关。作者进一步探索本研究中IGP肿瘤簇与肿瘤亚型的关系,发现免疫反应性亚型的特征蛋白在IGP簇1中升高,间充质的特征蛋白在IGP2中降低而在IGP3中升高,这表明IGP1与免疫反应性亚型有关,而IGP3与间充质亚型有关。通过评估基质细胞和免疫细胞对聚类结果的影响,IGP1簇似乎不受肿瘤纯度或基质评分的影响,IGP2具有相对较高的肿瘤纯度和较低的基质和免疫评分,IGP3具有较低的肿瘤纯度和较高的基质和免疫评分。    蛋白糖基化水平的主成分分析(PCA)显示,肿瘤和非肿瘤样本存在明显界限。与非肿瘤样品相比,在肿瘤中48个糖肽显著上调,而94个糖肽显著下调。为了寻找对卵巢癌诊断的可能有用的差异糖蛋白,作者使用受试者工作特性曲线评估了糖肽特征,显示HYOU1、FKBP10、PSAP和PPT1能够对肿瘤和非肿瘤组织进行良好分类。功能分析显示,溶酶体是肿瘤样品中显著上调的糖肽富集的通路,而补体和凝血级联通路、ECM-受体相互作用、PI3K-Akt信号通路、局灶性在肿瘤样品中被下调糖肽富集。比较肿瘤样品和非肿瘤样品之间糖肽的相对丰度,观察到带有HM型聚糖的糖肽在肿瘤中具有更高丰度,而含有Fuc和Sia的糖肽在肿瘤中丰度低。含HM、Fuc或Sia的糖肽涉及的途径表明,溶酶体途径是含HM的糖肽中最富集的途径,Euc糖肽富集ECM-受体相互作用,Sia糖肽富集凝血级联反应。    比较肿瘤和非肿瘤样品中蛋白糖基化和蛋白表达,糖基化位点和糖蛋白在肿瘤中显示出不同的调节水平,糖蛋白可能受糖基化占有率以及整体蛋白表达的调控。尽管含糖基肽的大多数差异丰度变化仍与相应的整体蛋白表达正相关,但某些糖蛋白糖基的丰度变化可能显示出与其全局水平不同的表达模式。例如,卵巢癌的生物标志物之一MCU16,在HGSC和健康输卵管中蛋白表达量相近,但其两个糖修饰位点MUC16_12272和MCU16_12586的糖基化修饰水平则在HGSC中明显升高,这表明简单地测量蛋白质丰度和随后的基于蛋白质的聚类可能不足以全面了解肿瘤生物学。与非肿瘤相比,肿瘤中糖肽的丰度变化不仅受每个糖位处的糖基化反应程度的调节,也受到修饰糖位的聚糖的影响。含HM聚糖的糖肽在肿瘤中大多过表达,而含其他类型含聚糖的糖肽的丰度变化则各不相同,并观察到在相同糖位上糖基化的异质性。    为了研究聚糖表达的调节,作者将糖肽数据集中每个肿瘤和非肿瘤样品中糖肽的丰度与从蛋白质组学数据集中确定和量化的糖基化酶的蛋白质丰度进行了关联,发现具有HM聚糖糖基化的糖肽与糖苷酶2亚基β(PRKCSH)的表达呈正相关。同时,在所有已识别的糖基化酶中只有PRKCSH被发现在肿瘤中显著上调,经HM聚糖修饰的糖肽在肿瘤样品中增加。     为了确定HM修饰对糖蛋白的潜在作用,作者分析了部分糖基化生物合成途径以合成具有关键糖基化酶功能的HM。肿瘤细胞中PRKCSH表达的增加可能导致具有HM糖基化的糖蛋白升高,从而阻止了进一步详细的复杂碳水化合物合成。HM聚糖修饰的这种增加对于为肿瘤生长大量合成的糖蛋白可能至关重要,对癌细胞中被HM修饰的糖蛋白网络的研究可能有助于鉴定快速细胞生长所需的糖蛋白。通过蛋白网络分析,作者发现肿瘤中上调的HM糖蛋白质参与了一个主要与溶酶体、胶原代谢过程和内膜系统有关的网络。总之,通过分析由HM聚糖修饰的糖肽,该研究确定了糖蛋白是癌症发展所需的潜在靶标。    在这项研究中,综合的多组学分析,包括HGSC的蛋白质组学和糖蛋白组学分析,证明了糖基化与卵巢癌的联系。通过应用多组学数据在肿瘤和非肿瘤之间的差异表达,鉴定了几种潜在的肿瘤特异性蛋白,糖蛋白和聚糖。进一步的研究表明,肿瘤中糖蛋白表达的差异可以表现为糖位处糖基化程度的差异以及糖位上聚糖的类型。肿瘤的糖基化生物合成途径不同于非肿瘤,由于PRKCSH的上调,N-连接的糖蛋白在肿瘤中可以携带更多的HM聚糖,这可能是PRKCSH调节肿瘤中有效糖蛋白产生、抗环境压力和溶酶体过度活化的常见机制。总之,HGSC肿瘤样品的综合蛋白质组学和糖蛋白质组学测量提供了宝贵的公共资源,将糖蛋白与其糖基化程度、聚糖修饰和糖基化酶联系起来的糖蛋白组学数据将改善未来对卵巢癌分子基础的了解。

植病蛋白组学论文名称

字数可能有点超,你自己截取吧~~ 分子生物学(molecular biology) 在分子水平上研究生命现象的科学。研究生物大分子(核酸、蛋白质)的结 构、功能和生物合成等方面来阐明各种生命现象的本质。研究内容包括各种生命过程如光合作用、发育的分子机制、神经活动的机理、癌的发生等。 从分子水平研究生物大分子的结构与功能从而阐明生命现象本质的科学。自20世纪50年代以来,分子生物学是生物学的前沿与生长点,其主要研究领域包括蛋白质体系、蛋白质-核酸体系 (中心是分子遗传学)和蛋白质-脂质体系(即生物膜)。 生物大分子,特别是蛋白质和核酸结构功能的研究,是分子生物学的基础。现代化学和物理学理论、技术和方法的应用推动了生物大分子结构功能的研究,从而出现了近30年来分子生物学的蓬勃发展。分子生物学和生物化学及生物物理学关系十分密切,它们之间的主要区别在于:①生物化学和生物物理学是用化学的和物理学的方法研究在分子水平,细胞水平,整体水平乃至群体水平等不同层次上的生物学问题。而分子生物学则着重在分子(包括多分子体系)水平上研究生命活动的普遍规律;②在分子水平上,分子生物学着重研究的是大分子,主要是蛋白质,核酸,脂质体系以及部分多糖及其复合体系。而一些小分子物质在生物体内的转化则属生物化学的范围;③分子生物学研究的主要目的是在分子水平上阐明整个生物界所共同具有的基本特征,即生命现象的本质;而研究某一特定生物体或某一种生物体内的某一特定器官的物理、化学现象或变化,则属于生物物理学或生物化学的范畴。 发展简史 结构分析和遗传物质的研究在分子生物学的发展中作出了重要的贡献。结构分析的中心内容是通过阐明生物分子的三维结构来解释细胞的生理功能。1912年英国 .布喇格和.布喇格建立了X射线晶体学,成功地测定了一些相当复杂的分子以及蛋白质的结构。以后布喇格的学生.阿斯特伯里和.贝尔纳又分别对毛发、肌肉等纤维蛋白以及胃蛋白酶、烟草花叶病毒等进行了初步的结构分析。他们的工作为后来生物大分子结晶学的形成和发展奠定了基础。50年代是分子生物学作为一门独立的分支学科脱颖而出并迅速发展的年代。首先是在蛋白质结构分析方面,1951年.波林等提出了 α-螺旋结构,描述了蛋白质分子中肽链的一种构象。1955年F.桑格完成了胰岛素的氨基酸序列的测定。接着 .肯德鲁和.佩鲁茨在X射线分析中应用重原子同晶置换技术和计算机技术分别于1957和1959年阐明了鲸肌红蛋白和马血红蛋白的立体结构。1965年中国科学家合成了有生物活性的胰岛素,首先实现了蛋白质的人工合成。 另一方面,M.德尔布吕克小组从1938年起选择噬菌体为对象开始探索基因之谜。噬菌体感染寄主后半小时内就复制出几百个同样的子代噬菌体颗粒,因此是研究生物体自我复制的理想材料。1940年.比德尔和.塔特姆提出了“一个基因,一个酶”的假设,即基因的功能在于决定酶的结构,且一个基因仅决定一个酶的结构。但在当时基因的本质并不清楚。1944年.埃弗里等研究细菌中的转化现象,证明了DNA是遗传物质。1953年.沃森和.克里克提出了DNA的双螺旋结构,开创了分子生物学的新纪元。在此基础上提出的中心法则,描述了遗传信息从基因到蛋白质结构的流动。遗传密码的阐明则揭示了生物体内遗传信息的贮存方式。1961年F.雅各布和J.莫诺提出了操纵子的概念,解释了原核基因表达的调控。到20世纪60年代中期,关于DNA自我复制和转录生成RNA的一般性质已基本清楚,基因的奥秘也随之而开始解开了。 仅仅30年左右的时间,分子生物学经历了从大胆的科学假说,到经过大量的实验研究,从而建立了本学科的理论基础。进入70年代,由于重组DNA研究的突破,基因工程已经在实际应用中开花结果,根据人的意愿改造蛋白质结构的蛋白质工程也已经成为现实。 基本内容 蛋白质体系 蛋白质的结构单位是α-氨基酸。常见的氨基酸共20种。它们以不同的顺序排列可以为生命世界提供天文数字的各种各样的蛋白质。 蛋白质分子结构的组织形式可分为 4个主要的层次。一级结构,也叫化学结构,是分子中氨基酸的排列顺序。首尾相连的氨基酸通过氨基与羧基的缩合形成链状结构,称为肽链。肽链主链原子的局部空间排列为二级结构。二级结构在空间的各种盘绕和卷曲为三级结构。有些蛋白质分子是由相同的或不同的亚单位组装成的,亚单位间的相互关系叫四级结构。 蛋白质的特殊性质和生理功能与其分子的特定结构有着密切的关系,这是形形色色的蛋白质所以能表现出丰富多彩的生命活动的分子基础。研究蛋白质的结构与功能的关系是分子生物学研究的一个重要内容。 随着结构分析技术的发展,现在已有几千个蛋白质的化学结构和几百个蛋白质的立体结构得到了阐明。70年代末以来,采用测定互补DNA顺序反推蛋白质化学结构的方法,不仅提高了分析效率,而且使一些氨基酸序列分析条件不易得到满足的蛋白质化学结构分析得以实现。 发现和鉴定具有新功能的蛋白质,仍是蛋白质研究的内容。例如与基因调控和高级神经活动有关的蛋白质的研究现在很受重视。 蛋白质-核酸体系 生物体的遗传特征主要由核酸决定。绝大多数生物的基因都由 DNA构成。简单的病毒,如λ噬菌体的基因组是由 46000个核苷酸按一定顺序组成的一条双股DNA(由于是双股DNA,通常以碱基对计算其长度)。细菌,如大肠杆菌的基因组,含4×106碱基对。人体细胞染色体上所含DNA为3×109碱基对。 遗传信息要在子代的生命活动中表现出来,需要通过复制、转录和转译。复制是以亲代 DNA为模板合成子代 DNA分子。转录是根据DNA的核苷酸序列决定一类RNA分子中的核苷酸序列;后者又进一步决定蛋白质分子中氨基酸的序列,就是转译。因为这一类RNA起着信息传递作用,故称信使核糖核酸(mRNA)。由于构成RNA的核苷酸是4种,而蛋白质中却有20种氨基酸,它们的对应关系是由mRNA分子中以一定顺序相连的 3个核苷酸来决定一种氨基酸,这就是三联体遗传密码。 基因在表达其性状的过程中贯串着核酸与核酸、核酸与蛋白质的相互作用。DNA复制时,双股螺旋在解旋酶的作用下被拆开,然后DNA聚合酶以亲代DNA链为模板,复制出子代 DNA链。转录是在 RNA聚合酶的催化下完成的。转译的场所核糖核蛋白体是核酸和蛋白质的复合体,根据mRNA的编码,在酶的催化下,把氨基酸连接成完整的肽链。基因表达的调节控制也是通过生物大分子的相互作用而实现的。如大肠杆菌乳糖操纵子上的操纵基因通过与阻遏蛋白的相互作用控制基因的开关。真核细胞染色质所含的非组蛋白在转录的调控中具有特殊作用。正常情况下,真核细胞中仅2~15%基因被表达。这种选择性的转录与转译是细胞分化的基础。 蛋白质-脂质体系 生物体内普遍存在的膜结构,统称为生物膜。它包括细胞外周膜和细胞内具有各种特定功能的细胞器膜。从化学组成看,生物膜是由脂质和蛋白质通过非共价键构成的体系。很多膜还含少量糖类,以糖蛋白或糖脂形式存在。 1972年提出的流动镶嵌模型概括了生物膜的基本特征:其基本骨架是脂双层结构。膜蛋白分为表在蛋白质和嵌入蛋白质。膜脂和膜蛋白均处于不停的运动状态。 生物膜在结构与功能上都具有两侧不对称性。以物质传送为例,某些物质能以很高速度通过膜,另一些则不能。象海带能从海水中把碘浓缩 3万倍。生物膜的选择性通透使细胞内pH和离子组成相对稳定,保持了产生神经、肌肉兴奋所必需的离子梯度,保证了细胞浓缩营养物和排除废物的功能。 生物体的能量转换主要在膜上进行。生物体取得能量的方式,或是像植物那样利用太阳能在叶绿体膜上进行光合磷酸化反应;或是像动物那样利用食物在线粒体膜上进行氧化磷酸化反应。这二者能量来源虽不同,但基本过程非常相似,最后都合成腺苷三磷酸。对于这两种能量转换的机制,P.米切尔提出的化学渗透学说得到了越来越多的证据。生物体利用食物氧化所释放能量的效率可达70%左右,而从煤或石油的燃烧获取能量的效率通常为20~40%,所以生物力能学的研究很受重视。对生物膜能量转换的深入了解和模拟将会对人类更有效地利用能量作出贡献。 生物膜的另一重要功能是细胞间或细胞膜内外的信息传递。在细胞表面,广泛地存在着一类称为受体的蛋白质。激素和药物的作用都需通过与受体分子的特异性结合而实现。癌变细胞表面受体物质的分布有明显变化。细胞膜的表面性质还对细胞分裂繁殖有重要的调节作用。 对细胞表面性质的研究带动了糖类的研究。糖蛋白、蛋白聚糖和糖脂等生物大分子结构与功能的研究越来越受到重视。从发展趋势看,寡糖与蛋白质或脂质形成的体系将成为分子生物学研究的一个新的重要的领域。 理论意义和应用 分子生物学的成就说明:生命活动的根本规律在形形色色的生物体中都是统一的。例如,不论在何种生物体中,都由同样的氨基酸和核苷酸分别组成其蛋白质和核酸。遗传物质,除某些病毒外,都是DNA,并且在所有的细胞中都以同样的生化机制进行复制。分子遗传学的中心法则和遗传密码,除个别例外,在绝大多数情况下也都是通用的。 物理学的成就证明,一切物质的原子都由为数不多的基本粒子根据相同的规律所组成,说明了物质世界结构上的高度一致,揭示了物质世界的本质,从而带动了整个物理学科的发展。分子生物学则在分子水平上揭示了生命世界的基本结构和生命活动的根本规律的高度一致,揭示了生命现象的本质。和过去基本粒子的研究带动物理学的发展一样,分子生物学的概念和观点也已经渗入到基础和应用生物学的每一个分支领域,带动了整个生物学的发展,使之提高到一个崭新的水平。 过去生物进化的研究,主要依靠对不同种属间形态和解剖方面的比较来决定亲缘关系。随着蛋白质和核酸结构测定方法的进展,比较不同种属的蛋白质或核酸的化学结构,即可根据差异的程度,来断定它们的亲缘关系。由此得出的系统进化树,与用经典方法得到的是基本符合的。采用分子生物学的方法研究分类与进化有特别的优越性。首先,构成生物体的基本生物大分子的结构反映了生命活动中更为本质的方面。其次,根据结构上的差异程度可以对亲缘关系给出一个定量的,因而也是更准确的概念。第三,对于形态结构非常简单的微生物的进化,则只有用这种方法才能得到可靠结果。 高等动物的高级神经活动是极其复杂的生命现象,过去多是在细胞乃至整体水平上研究,近年来深入到分子水平研究的结果充分说明高级神经活动也同样是以生物大分子的活动为基础的。例如,在高等动物学习与记忆的过程中,大脑中RNA和蛋白质的组成发生明显的变化,并且一些影响生物体合成蛋白质的药物也显著地影响学习与记忆的能力。又如,“生物钟”是一种熟知的生物现象。用鸡进行的实验发现,有一种重要的神经传递介质(5-羟色胺)和一种激素(褪黑激素)以及控制它们变化的一种酶,在鸡脑中的含量呈24小时的周期性变化。正是这种变化构成了鸡的“生物钟”的物质基础。 在应用方面,生物膜能量转换原理的阐明,将有助于解决全球性的能源问题。了解酶的催化原理就能更有针对性地进行酶的人工模拟,设计出化学工业上广泛使用的新催化剂,从而给化学工业带来一场革命。 分子生物学在生物工程技术中也起了巨大的作用,1973年重组DNA技术的成功,为基因工程的发展铺平了道路。80年代以来,已经采用基因工程技术,把高等动物的一些基因引入单细胞生物,用发酵方法生产干扰素、多种多肽激素和疫苗等。基因工程的进一步发展将为定向培育动、植物和微生物良种以及有效地控制和治疗一些人类遗传性疾病提供根本性的解决途径。 从基因调控的角度研究细胞癌变也已经取得不少进展。分子生物学将为人类最终征服癌症做出重要的贡献。 [编辑本段]分子生物学的应用 1,亲子鉴定 近几年来,人类基因组研究的进展日新月异,而分子生物学技术也不断完善,随着基因组研究向各学科的不断渗透,这些学科的进展达到了前所未有的高度。在法医学上,STR位点和单核苷酸(SNP)位点检测分别是第二代、第三代DNA分析技术的核心,是继RFLPs(限制性片段长度多态性)VNTRs(可变数量串联重复序列多态性)研究而发展起来的检测技术。作为最前沿的刑事生物技术,DNA分析为法医物证检验提供了科学、可靠和快捷的手段,使物证鉴定从个体排除过渡到了可以作同一认定的水平,DNA检验能直接认定犯罪、为凶杀案、强奸杀人案、碎尸案、强奸致孕案等重大疑难案件的侦破提供准确可靠的依据。随着DNA技术的发展和应用,DNA标志系统的检测将成为破案的重要手段和途径。此方法作为亲子鉴定已经是非常成熟的,也是国际上公认的最好的一种方法。参考资料:蛋白质质谱分析研究进展 摘 要: 随着科学的不断发展,运用质谱法进行蛋白质的分析日益增多,本文简要综述了肽和蛋白质等生物大分子质谱分析的特点、方法及蛋白质质谱分析的原理、方式和应用,并对其发展前景作出展望。 关键词: 蛋白质,质谱分析,应用 前言: 蛋白质是生物体中含量最高,功能最重要的生物大分子,存在于所有生物细胞,约占细胞干质量的50%以上, 作为生命的物质基础之一,蛋白质在催化生命体内各种反应进行、调节代谢、抵御外来物质入侵及控制遗传信息等方面都起着至关重要的作用,因此蛋白质也是生命科学中极为重要的研究对象。关于蛋白质的分析研究,一直是化学家及生物学家极为关注的问题,其研究的内容主要包括分子量测定,氨基酸鉴定,蛋白质序列分析及立体化学分析等。随着生命科学的发展,仪器分析手段的更新,尤其是质谱分析技术的不断成熟,使这一领域的研究发展迅速。 自约翰.芬恩()和田中耕一()发明了对生物大分子进行确认和结构分析的方法及发明了对生物大分子的质谱分析法以来,随着生命科学及生物技术的迅速发展,生物质谱目前已成为有机质谱中最活跃、最富生命力的前沿研究领域之一[1]。它的发展强有力地推动了人类基因组计划及其后基因组计划的提前完成和有力实施。质谱法已成为研究生物大分子特别是蛋白质研究的主要支撑技术之一,在对蛋白质结构分析的研究中占据了重要地位[2]。 1.质谱分析的特点 质谱分析用于蛋白质等生物活性分子的研究具有如下优点:很高的灵敏度能为亚微克级试样提供信息,能最有效地与色谱联用,适用于复杂体系中痕量物质的鉴定或结构测定,同时具有准确性、易操作性、快速性及很好的普适性。 2.质谱分析的方法 近年来涌现出较成功地用于生物大分子质谱分析的软电离技术主要有下列几种:1)电喷雾电离质谱;2)基质辅助激光解吸电离质谱;3)快原子轰击质谱;4)离子喷雾电离质谱;5)大气压电离质谱。在这些软电离技术中,以前面三种近年来研究得最多,应用得也最广泛[3]。 3.蛋白质的质谱分析 蛋自质是一条或多条肽链以特殊方式组合的生物大分子,复杂结构主要包括以肽链为基础的肽链线型序列[称为一级结构]及由肽链卷曲折叠而形成三维[称为二级,三级或四级]结构。目前质谱主要测定蛋自质一级结构包括分子量、肽链氨基酸排序及多肽或二硫键数目和位置。 蛋白质的质谱分析原理 以往质谱(MS)仅用于小分子挥发物质的分析,由于新的离子化技术的出现,如介质辅助的激光解析/离子化、电喷雾离子化,各种新的质谱技术开始用于生物大分子的分析。其原理是:通过电离源将蛋白质分子转化为气相离子,然后利用质谱分析仪的电场、磁场将具有特定质量与电荷比值(M/Z值)的蛋白质离子分离开来,经过离子检测器收集分离的离子,确定离子的M/Z值,分析鉴定未知蛋白质。 蛋白质和肽的序列分析 现代研究结果发现越来越多的小肽同蛋白质一样具有生物功能,建立具有特殊、高效的生物功能肽的肽库是现在的研究热点之一。因此需要高效率、高灵敏度的肽和蛋白质序列测定方法支持这些研究的进行。现有的肽和蛋白质测序方法包括N末端序列测定的化学方法Edman法、C末端酶解方法、C末端化学降解法等,这些方法都存在一些缺陷。例如作为肽和蛋白质序列测定标准方法的N末端氨基酸苯异硫氰酸酯(phenylisothiocyanate)PITC分析法(即Edman法,又称PTH法),测序速度较慢(50个氨基酸残基/天);样品用量较大(nmol级或几十pmol级);对样品纯度要求很高;对于修饰氨基酸残基往往会错误识别,而对N末端保护的肽链则无法测序[4]。C末端化学降解测序法则由于无法找到PITC这样理想的化学探针,其发展仍面临着很大的困难。在这种背景下,质谱由于很高的灵敏度、准确性、易操作性、快速性及很好的普适性而倍受科学家的广泛注意。在质谱测序中,灵敏度及准确性随分子量增大有明显降低,所以肽的序列分析比蛋白容易许多,许多研究也都是以肽作为分析对象进行的。近年来随着电喷雾电离质谱(electrospray ionisation,ESI)及基质辅助激光解吸质谱(matrix assisted laser desorption/ionization,MALDI)等质谱软电离技术的发展与完善,极性肽分子的分析成为可能,检测限下降到fmol级别,可测定分子量范围则高达100000Da,目前基质辅助的激光解吸电离飞行时间质谱法(MALDI TOF MS)已成为测定生物大分子尤其是蛋白质、多肽分子量和一级结构的有效工具,也是当今生命科学领域中重大课题——蛋白质组研究所必不可缺的关键技术之一 [5] 。目前在欧洲分子生物实验室(EMBL)及美国、瑞士等国的一些高校已建立了MALDI TOF MS蛋白质一级结构(序列)谱库,能为解析FAST谱图提供极大的帮助,并为确证分析结果提供可靠的依据[6]。 蛋白质质谱分析研究进展 来自: 免费论文网 蛋白质的质谱分析方式 质谱用于肽和蛋白质的序列测定主要可以分为三种方法:一种方法叫蛋白图谱(proteinmapping),即用特异性的酶解或化学水解的方法将蛋白切成小的片段,然后用质谱检测各产物肽分子量,将所得到的肽谱数据输入数据库,搜索与之相对应的已知蛋白,从而获取待测蛋白序列。将蛋白质绘制“肽图”是一重要测列方法。第二种方法是利用待测分子在电离及飞行过程中产生的亚稳离子,通过分析相邻同组类型峰的质量差,识别相应的氨基酸残基,其中亚稳离子碎裂包括“自身”碎裂及外界作用诱导碎裂.第三种方法与Edman法有相似之处,即用化学探针或酶解使蛋白或肽从N端或C端逐一降解下氨基酸残基,形成相互间差一个氨基酸残基的系列肽,名为梯状测序(laddersequencing),经质谱检测,由相邻峰的质量差知道相应氨基酸残基。 蛋白消化 蛋白的基团越大,质谱检测的准确率越低。因此,在质谱检测之前,须将蛋白消化成小分子的多肽,以提高质谱检测的准确率。一般而言,6-20个氨基酸的多肽最适合质谱仪的检测。现今最常用的酶为胰蛋白酶(trypsin),它于蛋白的赖氨酸(lysine)和精氨酸(arginine)处将其切断。因此,同一蛋白经胰蛋白酶消化后,会产生相同的多肽。 基质辅助激光解吸电离/飞行时间质谱测量法(MALDI-TOF MS) [7] 简而言之,基质辅助激光解吸电离/飞行时间质谱测量仪是将多肽成分转换成离子信号,并依据质量/电荷之比(mass/charge,m/z)来对该多肽进行分析,以判断该多肽源自哪一个蛋白。待检样品与含有在特定波长下吸光的发光团的化学基质(matrix)混合,此样品混合物随即滴于一平板或载玻片上进行挥发,样品混合物残余水份和溶剂的挥发使样品整合于格状晶体中,样品然后置于激光离子发生器(lasersource)。激光作用于样品混合物,使化学基质吸收光子而被激活。此激活产生的能量作用于多肽,使之由固态样品混合物变成气态。由于多肽分子倾向于吸收单一光子,故多肽离子带单一电荷.这些形成的多肽离子直接进入飞行时间质量分析仪(TOFmassanalyzer)。飞行时间质量分析仪用于测量多肽离子由分析仪的一端飞抵另一端探测器所需要的时间。而此飞行时间同多肽离子的质量/电荷的比值成反比,即质量/电荷之比越高,飞行时间越短。最后,由电脑软件将探测器录得的多肽质量/电荷比值同数据库中不同蛋白经蛋白酶消化后所形成的特定多肽的质量/电荷比值进行比较,以鉴定该多肽源自何种蛋白.此法称为多肽质量指纹分析(peptidemassfin-gerprinting)。基质辅助激光解吸电离/飞行时间质谱测量法操作简便,敏感度高,同许多蛋白分离方法相匹配,而且,现有数据库中有充足的关于多肽质量/电荷比值的数据,因此成为许多实验室的首选蛋白质谱鉴定方法。 电子喷雾电离质谱测量法(electrosprayion-izationmassspectrometry,ESI-MS)[8 ] 同基质辅助激光解吸电离/飞行时间质谱测量法在固态下完成不同,电子喷雾电离质谱测量法是在液态下完成,而且多肽离子带有多个电荷,由高效液相层析等方法分离的液体多肽混合物,在高压下经过一细针孔。当样本由针孔射出时,喷射成雾状的细小液滴,这些细小液滴包含多肽离子及水份等其他杂质成分。去除这些杂质成分后,多肽离子进入连续质量分析仪(tan- demmassanalyzer),连续质量分析仪选取某一特定质量/电荷比值的多肽离子,并以碰撞解离的方式将多肽离子碎裂成不同电离或非电离片段。随后,依质量/电荷比值对电离片段进行分析并汇集成离子谱(ionspectrum),通过数据库检索,由这些离子谱得到该多肽的氨基酸序列。依据氨基酸序列进行的蛋白鉴定较依据多肽质量指纹进行的蛋白鉴定更准确、可靠。而且,氨基酸序列信息即可通过蛋白氨基酸序列数据库检索,也可通过核糖核酸数据库检索来进行蛋白鉴定。 蛋白质质谱分析研究进展 来自: 免费论文网 4.蛋白质质谱分析的应用 1981年首先采用FAB双聚焦质谱测定肽分子量,分析十一肽(Mr=1318),质谱中出现准分子离子[M+1]+=1319强峰。分子量小于6kDa肽或小蛋白质合适用FAB质谱分析,更大分子量的多肽和蛋自质可用MALDI质谱或ESI质谱分析。用MALDI-TOF质谱分析蛋自质最早一例是Hillen Kramp等[9]于1988年提出用紫外激光以烟酸为基质在TOF谱仪上测出质量数高达60kDa蛋白质,精确度开始只有,后改进到。质谱技术主要用于检测双向凝胶电泳或“双向”高效柱层析分离所得的蛋白质及酶解所得的多肽的质量,也可用于蛋白质高级结构及蛋白质间相互作用等方面的研究[10,11],三条肽段的精确质量数便可鉴定蛋白质。近年来,串联质谱分析仪发展迅猛,其数据采集方面的自动化程度、检测的敏感性及效率都大大提高,大规模数据库和一些分析软件(如:SEQUEST)的应用使得串联质谱分析仪可以进行更大规模的测序工作。目前,利用2D电泳及MS技术对整个酵母细胞裂解产物进行分析,已经鉴定出1484种蛋白质,包括完整的膜蛋白和低丰度的蛋白质[12];分析肝细胞癌患者血清蛋白质组成分[13],并利用质谱进行鉴定磷酸化蛋白研究工作[14]及采用质谱技术研究许旺细胞源神经营养蛋白(SDNP)的分子结构[15]等。 结束语: 在蛋白质的质谱分析中,质谱的准确性(accuracy)对测定结果有很大影响,因此质谱测序现在仍很难被应用于未知蛋白的序列测定。肽和蛋白的质谱序列测定方法具有快速、用量少、易操作等优点,这些都非常适合于现在科学研究的需要。我们相信,随着各种衍生化方法和酶解方法的不断改进,蛋白双向电泳的应用[16]以及质谱技术的不断完善,质谱将会成为多肽和蛋白质分析最有威力的工具之一。

笨蛋,自己写嘛!!!!!!

植物细胞工程技术以及应用论文

1 植物细胞工程基础研究

植物细胞工程是建立在工程技术与现代生物科学基础上的科学技术。它的发展依赖于植物学、分子生物学、植物生理学、遗传学、环境工程学、植物营养学等学科共同的发展和进步的,可为研究生物科学提供非常重要的技术。植物发育的生物学是当代植物科学研究的主要内容。离体培养的器官与培养体细胞胚及调控这种步骤已经建立了良好的实验体系,极大地将植物生物学的内容丰富了,而且还加速了发展。植物的薄层细胞培养已经成为了在离体条件下研究生理生化、植株再生、遗传转化的关键技术。并且应用离体培养的技术来探究花器官的发育,已经在多种植物上实现了开花和结实。原生质体培养为研究单细胞提供了较为良好的技术体系,已应用在植物激素的作用机理、植物细胞的分裂、细胞壁生物学、基因表达、物质跨膜运输等多个研究领域。

2 植物细胞工程技术及其应用

2. 1 加倍单倍体技术及应用

利用植物的组织来培养单倍体的植物材料从而获得单倍体植物,然后再通过自然方法或者人工加倍的方法从而获得双倍体植株的技术,被称为加倍单倍体技术。在这种技术中以使用花药和花粉来进行培养的应用最为广泛。利用这种技术来进行花药和花粉培养获得植株,目前已经在 250 多种植物上实验成功。目前,我国在培养花药和单倍体育种这两方面总体已经处于世界的前列,由多名研究者研制的 N6 培养基已经被大量应用在禾本科植物的花药和花粉培养上,现已被当做是国内外花培使用的通用培养基。而且利用花培技术,我国在多种农作物上都培养出了许多新的品种,例如水稻的中花系列的品种、小麦中的京花系列的品种、油菜中的华油一号等这些已经培育成功的品种的'推广,现已在社会和经济方面都取得了很好的效益。

在遗传上面,我们采用花培技术已获得染色体代的换系和附加系的方法,现在也被大量应用在小麦、大麦和一些茄科植物的身上,这种方法对远缘杂交育种的效率有着极大的提高。

植物存在的一种自然现象就是雌核发育。雌核发育就在离体的条件下通过培养一些没有受精过的子房和胚珠以产生单倍体植株,或者是在活体的条件下用不同种类的花粉或者是被物理方法处理过花粉授予其中,以诱导雌核的发育。目前这种培育方法已经在不下 10 种的植物上获得了成功。在离体条件下,诱导孤雌生殖来获得加倍单倍体的这一技术发展的时间很短,不过现在已经开始使用在构建遗传分析、作物的改良与转基因的受体材料。

2. 2 原生质体培养和体细胞杂交

植物细胞工程的核心技术是原生质体培养和体细胞杂交。

为了不出现植物远缘杂交不亲和性,新的种质资源不断创新,为了实现植物遗传转化和进行细胞学的基础研究提供了重要的科学研究基础。粮食作物、蔬菜、果树、花卉、林木等是获得的原生质体再生植株。农作物和经济作物主要是以原生质体培养,从一年生向多年生、从草本向木本、从高等向低等是近年来的植物发展趋势。原生质体培养、体细胞杂交、体细胞杂质种子评价和利用等是我国大量研究方面。世界前列的是第一次获得的原生质体植株种类数量,先进的成果适用主要是在原生质体培养体系的建立和完善、体细胞杂质种子鉴定、新种质的创制等方面。在植物细胞生理和遗传学、基因组学、蛋白质组学研究中的应用主要是以原生质体培养的技术。

2. 3 加强植物细胞工程基础研究

基础科学的进步与发展是植物细胞工程的发展主要平台。转基因植物、植物生物反应器的研究和应用的推进方面是加强研究基础植物代谢工程、植物细胞工程与植物基因工程的快速有机整合,结合分子标记辅助育种技术等。

3 结语

现代生物技术的发展是需要植物细胞工程的研究与应用来推动的。植物细胞工程作为一个很独立的学科和技术研究,为现代农业化高效率、优质性、可持续发展性做出了重大贡献。生命科学技术和工程技术的进步有力推动了植物细胞技术的发展,也大大有效地推进了现代生命科学技术的进一步发展。

加大对植物细胞工程的基础研究创新 ,将为植物细胞工程的进步提供更为广阔的发展平台,为社会主义现代农业科学技术的发展做出更大的贡献。

我是复制的,希望对楼主能有所帮助※ Multiplexing:一种同时采用多种样品的测序方法,能够大大提高测序速度。 ※ 突变(Mutation):DNA序列上任一种可以被遗传的变易。 ※ 核苷酸(Nucleotide):DNA和RNA的基本组成部分,通常包含一分子核糖,一分子磷酸和一分子碱基。多个核苷酸通过磷酸二酯键连接成一条链状。 ※ 细胞核(Nucleos):真核细胞中的一种细胞器,内含遗传物质。 癌基因(Oncogene):一种能够导致癌症的基因。许多致癌基因都直接或间接地控制细胞的成长速度。 ※ 噬菌体(phage):一种以细菌为宿主细胞的病毒。 ※ 物理图谱(Physics Map):物理图谱描绘DNA上可以识别的标记的位置和相互之间的距离(以碱基对的数目为衡量单位),这些可以识别的标记包括限制性内切酶的酶切位点,基因等。物理图谱不考虑两个标记共同遗传的概率等信息。对于人类基因组来说,最粗的物理图谱是染色体的条带染色模式,最精细的图谱是测出DNA的完整碱基序列。 ※ 质粒(Plasmid):质粒是细菌的染色体外能够自我复制的环状DNA分子。它能够和细胞核中的染色体明显地区别开来,而且并不是细胞生存的必要物质。一些质粒适宜于引入到宿主细胞中去,并利用宿主细胞的DNA大量繁殖,因此我们常常采用质粒作为外源DNA的载体,外源DNA借助于质粒在宿主细胞中大量繁殖。 ※ 多基因病(Polygenic Disorder):有多个基因位点共同决定的遗传病(如心脏病、糖尿病、一些癌症等)。这类疾病的遗传由多个基因位点共同控制,因而比单基因病的遗传更为复杂。 ※ 多聚酶链式反应(PCR):一种体外扩增DNA的方法。PCR使用一种耐热的多聚酶,以及两个含有20个碱基的单链引物。经过高温变性将模板DNA分离成两条链,低温退火使得引物和一条模板单链结合,然后是中温延伸,反应液的游离核苷酸紧接着引物从5‘端到3’端合成一条互补的新链。而新合成的DNA又可以继续进行上述循环,因此DNA的数目不断倍增。 ※ 多聚酶(Polymerase):多聚酶具有催化作用,能够加快游离的核苷酸和DNA模板结合形成新链的反应速度。 ※ 多态性(Polymorphism):多个个体之间DNA的差异称为多态性。DNA变异概率超过1%的变异,比较适宜作为绘制连接图谱的证据。 ※ 引物(Primer):预先制备的比较短的核苷酸链,在新链合成过程中作为引物,游离的核苷酸在引物之后按顺序和模板上的碱基结合,形成新链。 ※ 原核生物(Prokaryote):原核生物没有细胞膜,结构清晰的核以及其他细胞器。细菌是原核生物。 ※ 探针(Probe):是一条DNA单链或者一条RNA链,具有特定的序列,并且使用放射性元素或者免疫特性物质进行标记。探针和克隆库中的某条互补片段结合成一条双链结构,我们可以借助于探针的检测来获知与其互补的链的位置。 ※ 启动子(Promoter):DNA上的一个特定位点,RNA聚合酶在此和DNA结合,并由此开始转录过程。 ※ 蛋白质(Protein):一种由一条或者多条肽链构成的大分子。每条肽链上核苷酸的顺序是由基因外显子部分的碱基序列决定的。蛋白质是细胞、组织和器官的重要组成部分,每种蛋白质都具有特定的功能。酶、抗体和激素等都是蛋白质。 ※ 嘌呤(Purine):一种含氮的单环结构物。是核苷酸的重要组成部分,有腺嘌呤A和鸟嘌呤G两种。 ※ 嘧啶(Pyrimidine):一种含氮的双环结构,是核苷酸的重要组成部分。分为胞嘧啶C,胸腺嘧啶T和尿嘧啶U三种。 ※ 重组克隆(Recombinant Clone):将不同来源的DNA片段合成在一个DNA分子中,这种技术称为重组,得到的分子为重组克隆。 ※ DNA重组技术(Recombinant DNA Technology):在细胞体外将两个DNA片段连接成一个DNA分子的技术。在适宜的条件下,一个重组DNA分子能够被引入到宿主细胞中并在宿主细胞中大量繁殖。 ※ 调控序列(regulatory regions and sequence):一段控制基因表达的DNA片段。 ※ 限制性内切酶(Restriction enzyme, endonuclease):这种酶能够识别出DNA上特定的碱基序列,并在这个位点将DNA酶切。细菌中有400中限制性内切酶,能够识别出100中DNA序列。 ※ 酶切位点(Restriction Enzyme cutting site):DNA上一段碱基的特定序列,限制性内切酶能够识别出这个序列并在此将DNA酶切成两段。 ※ 限制性长度多态性(Restriction fragment length polymorphsm):从不同个体制备的DNA,使用同一种限制性内切酶酶切,切得的片段长度各不相同。酶切片段的长度可以作为物理图谱或者连接图谱中的标记子。通常是在酶切位点处发生突变而引发的。 ※ 核糖核酸RNA(Ribonucleic acid):从细胞的细胞核和细胞质部分分离出来的化学物质。在蛋白质合成和其他生化反应中起着重要作用,RNA的结构和DNA的结构类似,都是有核苷酸按照一定顺序排列成的长链。RNA可以分为信使RNA、转运RNA、核糖体RNA以及其他类型的RNA。 ※ 核糖体RNA(Ribonsomal RNA rRNA):存在于核糖体中的RNA。 ※ 核糖体(Ribonsome):细胞质中含有rRNA和相关蛋白质的细胞器,是蛋白质的合成场所。 序列位置标签(Sequence Tagged Site, STS):一段短的DNA序列(200-500个碱基对),这种序列在染色体上只出现一次,其位置和碱基顺序都是已知的。在PCR反应中可以检测处STS来,STS适宜于作为人类基因组的一种地标,据此可以判定DNA的方向和特定序列的相对位置。ETS是cDNA上的STS。 ※ 性染色体(Sex Chromosome):在人类细胞中是X或者Y染色体,性染色体决定了个体的性别。雌性细胞中含有两个X染色体,而雄性细胞中含有1个X染色体和1个Y染色体。 ※ 鸟枪法(Shotgun method):使用基因组中的随机产生的片段作为模板进行克隆的方法。 ※ 单基因病(Single Gene Disorder):一个基因的等位基因之间发生了突变造成的疾病。 ※ 体细胞(Somatic Cells):个体中除了生殖细胞及其母细胞之外的细胞,都是体细胞。 ※ 串联重复序列(Tandem repeat sequences):在染色体上一段序列的多次重复,称为串联重复序列。常用来作为物理图谱中的标记子。 ※ 端粒(Telomere):是染色体的末端部分,这一特殊结构区域对于线型染色体的结构和稳定起重要作用。 ※ 转录(Transcription):以某一DNA链为模板,按照碱基互补原则形成一条新的RNA链的过程,是基因表达的第一步。 ※ 转运RNA(tRNA):转运RNA具有特殊的结构,其一端包含3个特定的核苷酸序列,能和信使RNA上的密码子按照碱基配对原则进行结合。另一端则带有一个氨基酸。因此转运RNA能够同细胞质中游离的氨基酸结合并运到核糖体上,核糖体按mRNA上的遗传信息将氨基酸装配成蛋白质。 ※ 转化(Transformation):将外源DNA整合到某一细胞基因组中的过程。。 ※ 翻译(Translation):mRNA上携带的遗传信息指导蛋白质的合成过程,称为翻译。 ※ 病毒(Virus):一种不具备细胞结构的生物体。只能寄生在宿主细胞中才能生存。病毒一般包含核酸以及外壳蛋白,有些动物的病毒的外面也偶尔覆盖一层细胞膜。病毒进入宿主细胞之后,利用宿主的合成机制复制出大量的后代。。 ※ 酵母菌人工合成染色体(Yeast Artificial Chromosome):一种能够克隆长达400Kb的DNA片段的载体,含有酵母细胞中必需的端粒、着丝点和复制起始序列。 (卜东波、伍树明翻译整理) 生物信息名词 §§§ BLAST (Basic Local Alignment Search Tool),基本的基于局部对准的搜索工具;一种快速查找与给定序列具有连续相同片断的序列的技术。 §§§ Entrez 美国国家生物技术信息中心所提供的在线资源检索器。该资源将GenBank序列与其原始文献出处链接在一起。 §§§ NCBI 美国国立生物技术信息中心(National Center for Biotechnology Information),1988年设立,为美国国家医学图书馆(NLM)和国家健康协会(NIH)下属部门之一。提供生物医学领域的信息学服务,如世界三大核酸数据库之一的GenBank数据库,PubMed医学文献检索数据库等。 §§§ Conserved sequence 保守序列。演化过程中基本上不变的DNA中的碱基序列或蛋白质中的氨基酸序列。 §§§ Domain 功能域。蛋白质中具有某种特定功能的部分,它在序列上未必是连续的。某蛋白质中所有功能域组合其起来决定着该蛋白质的全部功能。 §§§ EBI 欧洲生物信息学研究所(European Bioinformatics Institute)。 The National Center for Biotechnology Information (NCBI) at the NationalLibrary of Medicine (NLM), National Institutes of Health (NIH) §§§ EMBL 欧洲分子生物学实验室(uropean Molecular Biology Laboratory)。 §§§ GenBank 由美国国家生物技术信息中心提供的核酸序列数据库。 §§§ Gene 基因。遗传的基本的物理和功能单位。一个基因就是位于某条染色体的某个位置上的核苷酸序列,其中蕴含着某种特定功能产物(如蛋白质或RNA分子)的编码。 §§§ DUST A program for filtering low complexity regions from nucleic acid sequences. §§§ Gene expression 基因表达。基因中的编码信息被转换成行使特定功能的结构产物的过程。 §§§ Gene family 基因家族。一组密切相关的编码相似产物的基因。 §§§ Gene mapping 基因作图。对DNA分子(染色体或质粒)中基因的相对位置和距离进行确定的过程。 §§§ Genetic code 遗传密码。以三联体密码子的形式编码于mRNA中的核苷酸序列,决定着所合成蛋白质中的氨基酸序列。 Genome 基因组。某一物种的一套完整染色体组中的所有遗传物质。其大小一般以其碱基对总数表示。 §§§ Genomics 基因组学。从事基因组的序列测定和表征描述,以及基因活性与细胞功能关系的研究。 §§§ HGMP 英国剑桥的人类基因组绘图计划(Human Genome Mapping Project)。 §§§ Informatics 信息学。研究计算机和统计学技术在信息处理中的应用的学科。在基因组计划中,信息学的内容包括快速搜索数据库方法的开发、DNA序列信息分析方法的开发和从DNA序列数据中预测蛋白质序列和结构方法的开发。 §§§ Physical map 物理图谱。不考虑遗传,DNA中可识别的界标(如限制性酶切位点和基因等)的位置图。界标之间的距离用碱基对度量。对人类基因组而言,最低分辨率的物理图谱是染色体上的条带图谱;最高分辨率的物理图谱是染色体中完整的核苷酸序列。 §§§ Promoter 启动子。DNA中被RNA聚合酶结合并从此起始转录的位点。 §§§ Proteome 蛋白质组。一个基因组的全部蛋白产物及其表达情况。 §§§ Regulatory region or sequence 调控区或调控序列。控制基因表达的DNA碱基序列。 §§§ Ribosomal RNA 核糖体RNA。简写为rRNA。是一组存在于核糖体中的RNA分子。 §§§ Sequence tagged site 序列示踪位点,简写为STS。在人类基因组中只出现一次的位置和序列已知的长约200到500bp的短DNA序列片断。由于可以通过PCR检测到,STS在将来源于许多不同实验室的基因图谱和测序数据进行定位和定向时非常有用,并且STS在人类基因组的物理图谱中也具有界标的作用。表达的序列标签(ESTs)就是那些得自cDNAs的STSs。 §§§ Single-gene disorder 单基因病。由单个基因的等位基因的突变所导致的遗传病(如杜兴肌营养不良和成视网膜细胞瘤等)。 §§§ UniGene 美国国家生物技术信息中心提供的公用数据库,该数据库将GenBank中属于同一条基因的所有片断拼接成完整的基因进行收录。 §§§ 非蛋白质编码区(“Junk”DNA)占据了人类基因组的大部分,研究表明“Junk”是许多对生命过程富有活力的不同类型的DNA的复合体,它们至少包括以下类型的DNA成份或由其表达的RNA成分:内含子(intron)、卫星(Satellite)DNA、小卫星(minisatellite)DNA、微卫星(microsatellite)DNA、非均一核RNA(hmRNA)、短散置元(short interspersed elements)、长散置元(long interspersed elements)、伪基因(pseudogenes)等。除此之外,顺式调控元件,如启动子、增强子等也属于非编码序列。 双重序列对比 两序列间的对比分析。最常见的方法为Needle-Wunsch方法。能够利用的软件如BLAST、FASTA等。 §§§ Autosome 常染色体。与性别决定无关的染色体,人双倍体染色体组含有46条染色体,其中22对常染色体,一对与性别决定有关的性染色体(X和Y染色体)。 sex chromosome. 包括序列(核酸与蛋白)搜索,结构比较,结构预测,蛋白质域,模体(Motif ),测序,发育与进化分析,双向电泳成像分析,质谱蛋白质鉴定,三维蛋白结构模建与成像,基因组图谱比较,基因预测,非编码区功能位点识别,基因组重叠群集装,后基因组功能分析,结构基因组学以及药物基因组学等等。 在,新版中启用了gapped BLAST、PSI-BLAST 和PHI-BLAST。gapped BLAST是比原BLAST 更灵敏更快的局部相似联配(俗称局部同源)搜索法;PSI- BLAST用迭代型的剖面打分算法,每次迭代所费时间与前者相同,它可检索弱同源的目标;PHI-BLAST 98年刚出台,是模体(Motif )构造与搜索软件,是更灵敏的同源搜索软件。例如线虫§§§ 的CED4是apoptosis 的调控蛋白,含有涉及磷酸结合的P 环模体,在各种ATP 酶和GTP 酶中可发现。在用gapped BLAST搜索NR数据库时,CED4仅跟人凋亡调控蛋白Apaf-1显著同源或相似(其中含有P-loop保守区)。但PHI- BLAST搜索,另有一个显著同源(E= )目标,是植物抗病蛋白Arabidopsis thaliana ,证实此动物与植物蛋白确实在apoptosis 中有相似的功能。另有,按PHI- BLAST搜索在MutL DNA修复蛋白中的ATP 酶域,II型拓扑异构酶,组氨酸激酶和HS90家族蛋白,发现一个新的真核蛋白族,共有HS90型ATP 酶域。再有在古核tRNA核苷酸转移酶中发现核苷酸转移酶域,在细菌DNA 引物酶的古核同源体中发现螺旋酶超家族II的模体VI。用以往的搜索法这些是得不到的。 深层事项: 后基因组时期的主要任务:Data mining ,即从完全测序的基因组中预测功能。 1 、序列、结构和功能 自分子生物学产生以来,均相信序列决定结构,结构决定功能。随着基因组学的发展,对此理解已有长足的深化。同源序列(具有共同祖先)未必具有相同的功能;相同功能未必源自同源序列。相异序列可能有相似的结构;序列与结构不相似的蛋白可能会有相似的功能。现在发现存在不相似(在序列与结构水平上)酶催化相同的生化反应。当然亦存在甚至结构水平上很相似的酶催化不同的生化反应。例如人与鼠的3?- 羟甾类脱氢酶,1AHH和1RAL;前者是Rossmann折叠,而后者是TIM-桶。肯定,这些相似酶不是共同祖先趋异的结果,而是不同祖先趋同的结果。如结构决定功能还是合理的,那么至少在功能活性位点具有相似结构特征(即3D- 功能模体)。属于今后研究的课题,对了解酶催化机制与功能蛋白的小分子模拟具有很大价值。 何谓功能?功能有层次的:表型的,细胞的和分子的。 目前开始高层功能预测,分子相互作用、代谢途径和调控网络。目前,已从结构基因组学,功能基因组学和蛋白质组学多种角度研究基因组功能。 2 、结构基因组学中的生物信息学 希望大通量地测定和模建完全测序基因组的全部蛋白三维结构。生物信息学可以发挥作用,一方面规划好测定的对象,另一方面可靠地模建结构。 3 、功能基因组学中的生物信息学 美国HGP 已编制1998-2003 的新五年计划。提出八项目标:其中目标7 特指生物信息学和计算生物学,其实几乎每项目标都要生物信息学,例如目标4 功能基因组学中的非编码区功能位点预测,基因表达分析(如DNA Chip)以及蛋白质全局分析(如蛋白质组学)。 §§§ 蛋 白 质 组 学(Proteomics) 1.蛋白质组学研究的目的和任务 20世纪中期以来,随着DNA双螺旋结构的提出和蛋白质空间结构的X射线解析,开始了分子生物学时代,对遗传信息载体DNA和生命功能的主要体现者蛋白质的研究,成为生命科学研究的主要内容。90年代初期,美国生物学家提出并实施了人类基因组计划,预计用15年的时间,30亿美元的资助,对人类基因组的全部DNA序列进行测定,希望在分子水平上破译人类所有的遗传信息,即测定大约30亿碱基对的DNA序列和识别其中所有的基因(基因组中转录表达的功能单位)。经过各国科学家8年多的努力,人类基因组计划已经取得了巨大的成绩,一些低等生物的DNA全序列已被阐明,人类3%左右DNA的序列也已测定,迄今已测定的表达序列标志(EST)已大体涵盖人类的所有基因。在这样的形势下,科学家们认为,生命科学已经入了后基因组时代。在后基因组时代,生物学家们的研究重心已经从解释生命的所有遗传信息转移到在整体水平上对生物功能的研究。这种转向的第一个标志就是产生了一门成为功能基因组学(Functional Genomics)的新学科。它采用一些新的技术,如SAGE、DNA芯片,对成千上万的基因表达进行分析和比较,力图从基因组整体水平上对基因的活动规律进行阐述。但是,由于生物功能的主要体现者是蛋白质,而蛋白质有其自身特有的活动规律,仅仅从基因的角度来研究是远远不够的。例如蛋白质的修饰加工、转运定位、结构变化、蛋白质与蛋白质的相互作用、蛋白质与其它生物分子的相互作用等活动,均无法在基因组水平上获知。正是因为基因组学(Genomics)有这样的局限性,于90年代中期,在人类基因组计划研究发展及功能基因组学的基础上,国际上萌发产生了一门在整体水平上研究细胞内蛋白质的组成及其活动规律的新兴学科——蛋白质组学(Proteomics),它以蛋白质组(Proteome)为研究对象。蛋白质组是指“由一个细胞或一个组织的基因组所表达的全部相应的蛋白质”。测定一个有机体的基因组所表达的全部蛋白质的设想,萌发在1975年双向凝胶电泳发明之时。1994年Williams正式提出了这个问题,而“蛋白质组”的名词则是由Wilkins创造的,发表在1995年7月的Electrophoresis杂志上。蛋白质组与基因组相对应,但二者又有根本不同之处:一个有机体只有一个确定的基因组,组成该有机体的所有不同细胞斗拱享用一个确定的基因组;而蛋白质组则是一个动态的概念,她不仅在同一个机体的不同组织和细胞中不同,在同一机体的不同发育阶段,在不同的生理状态下,乃至在不同的外界环境下都是不同的。正是这种复杂的基因表达模式,表现了各种复杂的生命活动,每一种生命运动形式,都是特定蛋白质群体在不同时间和空间出现,并发挥功能的不同组合的结果。基因DNA的序列并不能提供这些信息,再加上由于基因剪接,蛋白质翻译后修饰和蛋白质剪接,基因遗传信息的表现规律就更加复杂,不再是经典的一个基因一个蛋白的对应关系,一个基因可以表达的蛋白质数目可能远大于一。对细菌,可能为~;对酵母则为3;而对人,可高达10。后基因组和蛋白质组研究,是为阐明生命活动本质所不可缺少的基因组研究的远为复杂的后续部分,无疑将成为21世纪生命科学研究的主要任务。

朊蛋白病论文

病毒进入细胞会大量繁殖,而营养来源很简单,就是直接破坏细胞,时间一长全身很多地方就出现病变了,当然会有伤害

丧尸又称“活死人(Living Dead)”、“行尸走肉”,在好莱坞1968年上映的电影《活死人之夜》里这样描述丧尸:经过辐射之后,一群农民变成了步履蹒跚、呆痴、会吃人的尸体,在好莱坞的后续丧尸作品里这些怪物是人类受到某些变异影响而变成可以直立行走的尸体,如科学药物、生化因素、病毒感染等;行动之间有快有慢,行为疯狂怪异且丧失理智,会吞食活人或其他动物的血肉,且会接连不断的传染,一旦异变就无法恢复,数量很多,成群结队地伤害人畜,除了同类。

在西非和海地的传说中,丧尸是抽掉灵魂的躯壳,并且被强大的巫师所控制。我们要讨论的则是,究竟是一种什么样的传染性病原体可以使受害者变得半死不活。

哈佛大学的一位精神病学助理教授施洛兹曼说:我们要找的丧尸大概是一种介乎于海地传说和好莱坞电影之间的东西,它被一种传染性病原体侵入,处于半死不活的状态,但是仍然生活在自己原来的躯壳里。他认为,一个有效的病原体将锁定并关闭大脑中的特定部分。

施洛兹曼出版了一本专门研究丧尸的书,名叫《丧尸解剖学》(The Zombie autopsies)。他说,那些行尸走肉虽然有一些基本行动技能(比如行走、撕咬并吞食人肉的行为),但负责道德、规划、自控的行为的额叶却不复存在了,而控制平衡的小脑恐怕也只能发挥它的一部分功能。这倒正好符合想象,因为电影里无思维能力的丧尸经常能够轻易逃脱,还会用棒球棍攻击人。

根据施洛兹曼所说,大脑部分退化最有可能的罪魁祸首是一种蛋白质。具体的说,是一种具有传染性的蛋白质颗粒——朊蛋白,又被称为朊病毒。

什么是朊蛋白?

朊蛋白其实算不上是病毒,甚至不能被称为生物,可是它近乎不可能被摧毁,而且对于它所引起的疾病到目前都没有有效的治疗方法。

已知最早的朊蛋白出现的地点是20世纪50年代早期的巴布亚新几内亚,它让当地的福尔部落族人患上了一种奇怪的颤抖病,患者偶尔会突然爆发出无法控制的笑声。部落里把这种病叫做库鲁(Kuru)。20世纪60年代早期,医生追查到其根源是始于部落中的食人葬礼(食用人脑)。

20世纪90年代出现的疯牛病(牛脑海绵状症)让朊蛋白变得更加阴森恐怖。但是这种畸形的蛋白进入人体系统后,人就会患上像疯牛病一样的克雅氏病,脑部会像海绵一样出现许多空洞。被朊蛋白感染的大脑扫描图从外观上看就像头部被乱枪击中了一样。

朊蛋白加病毒

现在,假如有一个邪恶的天才研究者想让世界毁灭,那么他需要做的就是将朊蛋白附加到一个真正的病毒上,因为想单单抑制住朊蛋白疾病还是相当容易的,所以为了让一切更像世界末日,邪恶天才需要的是一种传播速度很快的病毒,并且能携带上朊蛋白让它去感染额叶和小脑。

虽然这些区域很难被感染,但这是制造摇摇晃晃、步履蹒跚的丧尸所必需的,引起脑炎的病毒可以在感染后快速侵入人类脑部,疱疹病毒和西尼罗河病毒也可以,但要让病毒附带上朊病毒却是件“相当不可能”的事,而且在感染后还要让朊蛋白停止继续发作,防止刚刚形成的丧尸陷入完全昏迷,只会睡觉毫无用处。要达到这个目的,可加入碳酸氢钠诱发代谢性碱中毒,提高人体的PH值使得朊蛋白难以增殖。而且,碱中毒后“还会引起癫痫发作,浑身抽搐,这样看起来真的可怕,更像一具丧尸了”。

不可能,因为我觉得丧尸这种东西根本不存在吧。

病毒(Virus)由一种核酸分子(DNA或RNA)与蛋白质(Protein)构成或仅由蛋白质构成(如朊病毒)。病毒个体微小,结构简单。病毒没有细胞结构,由于没有实现新陈代谢所必需的基本系统,所以病毒自身不能复制。但是当它接触到宿主细胞时,便脱去蛋白质外套,它的核酸(基因)侵入宿主细胞内,借助后者的复制系统,按照病毒基因的指令复制新的病毒。目前,科学界公认的对病毒的定义是只能在活着的宿主细胞内复制的感染源。有一些病毒能诱发良性肿瘤,如痘病毒科的兔纤维瘤病毒、人传染性软疣病毒和乳多泡病毒科的乳头瘤病毒;另有一些能诱发恶性肿瘤,按其核酸种类可分为DNA肿瘤病毒和RNA肿瘤病毒。DNA肿瘤病毒包括乳多泡病毒料的SV40和多瘤病毒,以及腺病毒科和疱疹病毒科的某些成员,从肿瘤细胞中可查出病毒核酸或其片段和病毒编码的蛋白,但一般没有完整的病毒粒。RNA肿瘤病毒均属反录病毒科,包括鸡和小鼠的白血病和肉瘤病毒,从肿瘤细胞中可查到病毒粒。这两类病毒均能在体外转化细胞。在人类肿瘤中,已证明EB病毒与伯基特淋巴瘤和鼻咽癌有密切关系;从一种T细胞白血病查到反录病毒。此外,Ⅱ型疱疹病毒可能与宫颈癌病因有关,乙型肝炎病毒可能与肝癌病因有关。但是,病毒大概不是唯一的病因,环境和遗传因素可能起协同作用。病毒感染常发生在感冒等上呼吸道感染后,病毒颗粒可由血循环直接进入内耳血循环中,引起耳蜗毛细胞、神经节细胞及微血管等结构的破坏。病毒亦可经圆窗侵入内耳,引起迷路炎等病损,引起耳聋。

蛋白质药学论文

自己去中国知网找找,需要账号的

【关键词】 靶向给药;药剂学;药物载体0引言常规剂型的药物经静脉、口服或局部注射后,药物分布于全身,真正到达治疗靶区的药物量仅为给药量的小部分,而大部分药物在非靶区的分布不仅无治疗作用,还会带来毒副作用. 因此,药物新剂型的开发已成为现代药剂学发展的一个方向,其中靶向给药系统(Targeted drug delivery system, TDDS)的研究已经成为药剂学研究热点〔1〕. TDDS指一类能使药物浓集定位于病变组织、器官、细胞或细胞内的新型给药系统. 靶向制剂具有疗效高、药物用量少. 毒副作用小等优点. 理想的TDDS应在靶器官或作用部位释药,同时全身摄取很少,这样,既可提高疗效,又可降低药物的毒副作用. TDDS要求药物能到达靶器官、靶细胞,甚至细胞内的结构,并要求有一定浓度的药物停留相当长的时间,以便发挥药效. 成功的TDDS应具备3个要素:定位蓄积、控制释药、无毒可生物降解. 靶向制剂包括被动靶向制剂、主动靶向制剂和物理化学靶向制剂3大类. 目前,实现靶向给药的主要方法有载体介导、受体介导、前药、化学传递系统等. 现就靶向给药方法研究进展作一介绍.1载体介导的靶向给药常用的靶向给药载体是各种微粒. 微粒给药系统具有被动靶向的性能. 有机药物经微粒化可提高其生物利用度及制剂的均匀性、分散性和吸收性,改变其体内分布. 微粒给药系统包括脂质体(LS),纳米粒(NP)或纳米囊(NC),微球(MS)或微囊(MC),细胞和乳剂等. 微粒靶向于各器官的机制在于网状内皮系统(RES)具有丰富的吞噬细胞,可将一定大小的微粒( μm)作为异物摄取于肝、脾;较大的微粒(7~30 μm)不能滤过毛细血管床,被机械截留于肺部;而小于50 nm的微粒可通过毛细血管末梢进入骨髓.肝癌、肝炎等肝脏疾病是常见病和多发病,但目前药物治疗效果很不理想,其原因除药物本身药理作用尚不够理想外,不能将药物有效地输送至肝脏的病变部位也是一重要原因. 将一些抗肿瘤、抗肝炎药物制备成微粒,给药后可增加药物的肝靶向性. 米托蒽醌白蛋白微球(DHAQ BSA MS)的体内分布研究发现,给药20 min时,DHAQ BSA MS和米托蒽醌(DHAQ)在小鼠体内分布有显著差异,DHAQ BSA MS约有80%的药物集中在肝脏,而以上的DHAQ存在于血液中〔2〕. 张莉等〔3〕考察去甲斑蝥素(NCTD)微乳的形态、粒径分布及生物安全性,研究NCTD微乳及其注射液在小鼠体内的组织分布,结果表明,NCTD微乳较NCTD注射液增强了药物的肝靶向性,降低了肾脏分布,在一定程度上延长药物在小鼠体内的循环时间. 纳米粒和纳米囊肝靶向制剂的研究报道较多,如氟尿嘧啶、阿霉素、羟基喜树碱、狼毒乙素、环孢素等抗癌药物都被制成了纳米靶向制剂〔4〕. 王剑红等〔5〕采用二步法制备米托蒽醌明胶微球,粒径在 μm范围的占总数,体外释药与原药相比延长了4倍. 经小鼠体内分布试验表明具有明显的肺靶向性,靶向效率增加了3~35倍,肺中药代动力学行为可用一室开放模型描述,平均滞留时间延长10 h. 在纳米粒表面上包封亲水性表面活性剂,或通过化学方法连接上聚乙二醇或其衍生物,可以减少与网状内皮细胞膜的亲和性,从而避免网状内皮细胞的吞噬,提高毫微粒对脑组织的靶向性. Gulyaev等〔6〕以生物降解材料聚氰基丙烯酸丁酯为载体,以吐温80为包封材料制备了阿霉素毫微粒,研究结果表明脑中阿霉素浓度是对照组的60倍. 一些易于分解的多肽或不能通过血脑屏障的药物(如达拉根、洛哌丁胺、筒箭毒碱)通过制成包有吐温80的生物降解毫微粒在动物身上已取得一定的靶向治疗效果〔7〕. 研究表明粒径是影响微粒进入骨髓的关键因素,粒径越小越容易进入骨髓. 彭应旭等〔8〕制得不同粒径的柔红霉素聚氰基丙烯酸正丁酯毫微粒,小鼠尾静脉给药,小粒径组(70±24) nm骨髓内柔红霉素浓度是大粒径组(425±75) nm的倍. 骨髓会因肿瘤浸润、化疗药物或严重感染受到抑制. 研究表明,多种生长因子,如人粒细胞集落刺激因子(GCSF),粒细胞巨噬细胞集落刺激因子(GMCSF)可促使骨髓细胞自我更新、分裂增殖,并提高其活性. 利用骨髓靶向载体可提高药物在骨髓内分布,并避免血象中的不良反应. Gibaud等〔9〕以聚氰基丙烯酸异丁酯、异己酯毫微粒为载体携带GCSF,提高了其在骨髓内的分布.基因治疗是一种专一性的靶向治疗. 基因治疗就是利用基因转移技术将外源重组基因或核酸导入人体靶细胞内,以纠正基因缺陷或其表达异常. 纳米颗粒作为基因载体具有一些显著的优点. 纳米颗粒能包裹、浓缩、保护核苷酸,使其免遭核酸酶的降解;比表面积大,具有生物亲和性,易于在其表面耦联特异性的靶向分子,实现基因治疗的特异性;在循环系统中的循环时间较普通颗粒明显延长,在一定时间内不会像普通颗粒那样迅速地被吞噬细胞清除;让核苷酸缓慢释放,有效地延长作用时间,并维持有效的产物浓度,提高转染效率和转染产物的生物利用度;代谢产物少,副作用小,无免疫排斥反应等.2受体介导的靶向给药利用细胞表面的受体设计靶向给药系统是最常见的主动靶向给药系统. 去唾液酸糖蛋白受体(ASGPR)是一种跨膜糖蛋白,它存在于哺乳动物的肝实质细胞上. 其主要功能是去除唾液酸糖蛋白和凋亡细胞、清除脂蛋白. 研究发现,ASGPR能特异性地识别N乙酰氨基半乳糖、半乳糖和乳糖,利用这些特性可以将一些外源的功能性物质经过半乳糖等修饰后,定向地转入到肝细胞中发挥作用. Lee等合成了三分枝N乙酰氨基半乳糖糖簇YEE,它与肝细胞的结合能力为乙酰氨基半乳糖单糖的1万倍. 我们考察了半乳糖苷修饰的十六酸拉米夫定酯固体脂质纳米粒(LAPGSLN)的肝靶向性,其靶向效率为,比未修饰纳米粒的靶向效率高倍〔10〕. 药物通过与大分子载体连接,再对载体进行半乳糖化,可以产生较好的肝靶向效果. 若能使药物直接半乳糖化,则可以简化耦联环节,提高靶向效率. 这一思路对蛋白类药物而言,较易实现. 蛋白质或多肽(分子质量在一定范围)在连接上半乳糖后,都有可能成为受体结合的肝靶向性物质. 小分子物质经类似途径能否靶向于肝,取决于糖和药物密度、分子质量、摄取屏障等多方面因素. 小分子药物共价连接乳糖或半乳糖,初步揭示其靶向性并不好,有关机制和可行性尚待进一步探讨.半乳糖基化壳聚糖(GC)与质粒pEGFPN1混和制备成纳米微囊复合物,体外转染SMMC7721细胞. 将含1 mg质粒的纳米微囊经肝动脉和门静脉注射入犬体内,实验结果表明半乳糖基化壳聚糖在体外有较高的转染率,在犬体内有肝靶向性,可用作肝靶向基因治疗的载体〔11〕. 大多数肿瘤细胞表面的叶酸受体数目和活性明显高于正常细胞. 以叶酸作为导向淋巴系统或肿瘤细胞的放射性核素的载体,同时将叶酸作为靶向肿瘤细胞的抗肿瘤药物的载体已做了广泛的研究〔12〕.表皮生长因子受体(EGFR)是一种跨膜糖蛋白,由原癌基因cerbB1所编码,是erbB受体家族之一,在多种肿瘤中观察到EGFR高水平的表达,如神经胶质细胞瘤、前列腺癌、乳腺癌、胃癌、结直肠癌、卵巢癌和胸腺上皮癌等. 针对富集EGFR的恶性肿瘤,方华圣等〔13〕成功地建立了EGFR富集的恶性肿瘤的靶向基因治疗方法.3抗体介导的靶向给药mAb是药物良好的靶向性载体, 将其通过共价交联或吸附到药物载体(如脂质体、毫微粒、微球、磁性载体等)或药物具有自身抗体(如红细胞)或抗体与细胞毒分子形成结合物,避免其对正常组织毒性,选择性发挥抗肿瘤作用. 徐凤华等〔14〕利用己二酰肼制备腙键连接的聚谷氨酸表阿霉素,然后使其与单抗交联制得偶合物. 偶合物较好地保留了抗体活性,体外细胞毒性较游离药物略有下降,但表现出单抗介导的靶细胞选择性杀伤作用,为其进一步制备细胞靶向的肿瘤化疗药物奠定了基础.用于治疗白血病的CMA676是由一种人源化的mAb hp 与新型的抗肿瘤抗生素calicheamicin的N乙酰γ衍生物偶联而成的〔15〕,当CMA676与CD33抗原相结合,抗原抗体复合物迅速内在化,进入胞内后,calicheamicin衍生物被水解释放,通过序列特异性方式与DNA双螺旋的小沟结合,使脱氧核糖环中的氢原子发生转移,从而使DNA双链断裂,诱导细胞死亡〔16〕. EGFR mAb可直接作用于EGFR的细胞外配体结合区,阻滞配体的结合,如IMCC225, ABXEGFR和EMD55900等,能抑制细胞生长和存活率,诱导细胞凋亡和抑制血管生成,曲妥珠单抗(Trasruzumab)作用于erbB2的细胞外区域,该药已获美国FDA批准用于转移性的乳腺癌的治疗〔17〕. IMCC225具有增强细胞毒性药物和放射治疗效应的作用,IMCC225与拓扑特肯(TPT)的联合用于荷有人类结肠癌移植体的裸鼠,能提高其生存率〔18〕. 由第四军医大学和成都华神集团股份有限公司联合研制的治疗肝癌新药碘〔13lI〕美妥昔单抗注射液,日前获得国家食品药品监督管理局颁发的生产文号,即将上市. 这是全球第一个专门用于治疗原发性肝癌的单抗导向同位素药物.4制成前体药物一些药物与适当的载体反应制备成前体药物,给药后药物就会在特定部位释放,达到靶向给药的目的. 脑是人高级神经活动的指挥中枢,也是神经系统最复杂的部分. 但由于血脑屏障(bloodbrain barrier, BBB)的存在,使得大部分治疗药物不能有效透过BBB. 含OH, NH2, COOH结构的脂溶性差的药物可通过酯化、酰胺化、氨甲基化、醚化、环化等化学反应制成脂溶性大的前体药物,进入CNS后,其亲脂性基团通过生物转化而释放出活性药物. 张志荣等〔19〕合成了3′, 5′二辛酰基氟苷,并制备了其药质体,给小鼠静脉注射后用HPLC法测定药物在体内各组织的分布,结果表明,氟苷酯化后的前体药物的药质体有良好的脑靶向性.结肠内有大量的细菌,能产生许多独特的酶系,许多高分子材料在结肠被这些酶所降解,而这些高分子材料作为药物载体在胃、小肠由于相应酶的缺乏不能被降解,这就保证药物在胃和小肠不释放. 如多糖、果胶、瓜耳胶、偶氮类聚合物和α, β, γ环糊精均可成为结肠给药体系的载体材料. 常利用结肠内厌氧环境,使偶氮键还原的特点制成偶氮前体药物. 柳氮磺胺吡啶是由5氨基水杨酸(5ASA)与磺胺吡啶用偶氮键连接而成. 口服后在结肠释药,发挥5ASA治疗溃疡性结肠炎的作用,减少其胃肠吸收产生的全身不良反应. 5ASA也与非生理活性的高分子聚合物通过偶氮双键制成前体药物〔20〕. 糖皮质激素共价连接于多糖〔21〕,环糊精〔22〕制成的前药,口服后在结肠部位可释放出药物,可用于结肠炎的治疗. 我们〔23,24〕合成了果胶酮洛芬(PTKP)前药,进行了体内外评价. 结果表明,此前药在不同pH环境下结构稳定,只能被结肠果胶酶特异性降解,释放出KP,发挥治疗作用. 也可以利用结肠pH差异和时滞效应设计结肠靶向给药系统〔25〕.5化学传递系统化学传递系统(chemical delivery system, CDS)是一种输送药物透过生理屏障到达靶部位,再经生物转化释放药物的药物传递系统. CDS通常是将含OH, NH2, COOH结构的药物共价连接于二氢吡啶载体(Q),药物(D)与靶向剂二氢吡啶结合为DQ结合物,建立了二氢吡啶―二氢吡啶钅翁盐氧化还原脑内定向转释递药系统. Chen等〔26〕设计了Tyr Lys的脑靶向CDS,并评价它的药效. Lys的C末端接亲脂性胆甾烯酯,N末端通过一种L氨基酸桥接靶向剂1,4二氢葫芦巴碱(含吡啶结构)制成Tyr Lys CDS,全身给药后,通过被动扩散机制透过BBB,且经酶催化1,4二氢葫芦巴碱变为季铵盐型使其存留于脑内. 通过小鼠甩尾间隔期实验证明,Tyr Lys CDS作用时间明显延长. Mahmoud等〔27〕将吸电子羧甲基连接到氮原子构建了一种新的二氢吡啶载体介导的脑定向转释系统(N羧甲基1,4二氢吡啶3,5二酰胺),该载体稳定,具有良好的脑定向转释能力.靶向给药的研究还面临许多实质性的挑战. 提高药物在靶组织的生物利用度;提高TDDS对靶组织、靶细胞作用的特异性;使生物大分子更有效地在作用靶点释放,并进入靶细胞内;体内代谢动力学模型;质量评价项目和标准,体内生理作用等问题都是研究的重点. 随着靶向给药系统研究的深入,新的靶向给药途径、新的载药方法将会不断出现,遇到的问题会逐步解决. 靶向给药的研究不仅具有理论意义,而且会产生明显的经济和社会效益.【参考文献】〔1〕 Theresa MA, Pieter RC. Drug delivery systems: Entering the mainstream 〔J〕. Science, 2004;303(5665):1818-1822.〔2〕 张志荣,钱文. 肝靶向米托蒽醌白蛋白微球的研究〔J〕. 药学学报,1997;32(1): ZR, Qian WJ. Study on mitoxantrone albumin microspheres for liver targeting 〔J〕. Acta Pharm Sin, 1997;32(1):72-78.〔3〕 张莉,向东,洪诤,等. 肝靶向去甲斑蝥素微乳的研究〔J〕. 药学学报,2004;39(8): L, Xiang D, Hong Z, et al. Studies on the liver targeting of norcantharindin microemulsion 〔J〕. Acta Pharm Sin, 2004;39(8):650-655.〔4〕 韩勇,易以木. 纳米粒肝靶向作用机制的研究进展〔J〕. 中国药师,2002;5(12): Y, Yi YM. Studies on the liver targeting mechanism of nanoparticles 〔J〕. Chin Pharm, 2002;5(12):751-752.〔5〕 王剑红,陆彬,胥佩菱,等. 肺靶向米托蒽醌明胶微球的研究〔J〕. 药学学报,1995;30(7): JH, Lu B, Xu PL, et al. Studies on lung targeting gelatin microspheres of mitoxantrone 〔J〕. Acta Pharm Sin, 1995;30(7):549-555.〔6〕 Gulyaev AE, Gelperina SE, Skidan IN, et al. Significant transport of doxorubicin into the brain with polysorbate 8Ocoated nanoparticles 〔J〕. Pharm Res, 1999;16(10):1564-1569.〔7〕 Ramge P, Unger RE, Oltrogge JB, et al. Polysor bate 80coating enhances uptake of polybutylcyanoacrylate(PBCA)nanoparticles by human and bovine primary brain capillary endothelial cells 〔J〕. Eur J Neurosci,2000;12(6):1931-1940.

随医学模式的飞速发展,人们对身体健康的预防和保健极其重视,药学在人们的生活中的地位也越来越高。下文是我为大家整理的关于药学3000字论文的内容,欢迎大家阅读参考!

试谈生物制药产业发展态势

摘 要:伴随着科学技术的快速发展和不断提高,传统化学制药的地位已被动摇,面临着严峻的挑战,生物技术制药逐渐发挥其建设性作用,在制药产业中占据重要地位。生物医药产业作为国家大力支持的战略性新兴产业之一,尽管处在成长的初级阶段,发展道路曲折,但是其发展速度快,面临着史无前例的大好机遇和广阔的发展前景。经过大量调查研究, 文章 集中论述我国生物制药产业发展的现状、面临的问题,分析其发展趋势,并 总结 几点建议促进生物制药产业的快速发展。作为我国的朝阳产业和钻石产业,需要集中力量提高制药产业的核心竞争力,实现生态效益、经济效益和社会效益的平衡发展。

关键词: 生物制药产业 发展态势 思考

伴随着生物技术的改进和提高,以抗体工程和细胞工程产品为主体的生物制药产业进入了快速发展的关键期,演变为当今社会最为活跃的领域行业,为经济发展做出了重大贡献。生物制药产业在应对器官移植、糖尿病、尿毒症、心肌梗死等重要病症方面有自己独到的技术,在蛋白质组实验研究逐步深入的基础上,获得了更大的突破性发展空间。

1 我国生物制药产业发展现状

我国生物制药产业起步较晚,技术不成熟、产业体系不完整、管理方式较为传统,与发达国家相比仍有一定的差距,但是经历了20多年的发展取得了重大成果:不断研发出新的生物制药产业研究成果,呈现出持续上升的趋势;生物制药作为生物技术产业结构的重点领域,其所带来的销售额不断突破新高,其中蛋白药物、生物疫苗等具备很好的发展前景,与人类疾病相连的切合点愈见明朗;应用生物技术研发的新药逐渐在药品研发市场中成为主流,所占比重越来越大。

2 我国生物制药产业发展面临的问题

科技创新不足

与国际上的西方发达国家拥有的大型生物制药企业相比,我国生物制药企业研发费用在整个企业支付费用中的比例偏低,使得生物制药产业发展缺乏后劲动力。同时由于长时间缺乏对于知识产权和专利权的保护意识,使得大量生物技术流失或者被同行非法利用,阻碍了生物技术的进一步发展。由于技术因素的制约和高端人才的缺乏,我国在治疗性生物药物、生物疫苗等领域仍然停留在试验阶段,真正可用于临床和实际治疗的技术可谓凤毛麟角。

产业体系不完善

由于缺乏统一的政策管理和约束,我国企业对于国外的医药产品进入壁垒偏低造成生产过剩,增加了市场风险。医药企业集中程度低,不足以提供充足的技术输出资金,而竞争力较弱。部分企业为了追求利益,会涉足其他领域的产业;部分 企业管理 者由于素质偏低,而在某个新概念上停滞不前,耗费人力、物力、财力。

3 我国生物制药产业的发展趋势

哺乳动物细胞表达的生物技术药物所占比重越来越大

在2000年后FDA批准生物技术创新药物中,销售额位于前10名的有多达8个为哺乳动物细胞表达的产品,其销售业绩也非常惊人。近年来在中国生物制药产业中国家对哺乳细胞表达的生物技术药物的市场准入条件放宽,借以促进此技术在生物制药工程中的应用。

4 促进生物制药产业发展的建议

加强技术上的创新

在研发技术上进行革新将是提升生物制药产业核心竞争力的和核心举措,拥有独一无二的竞争优势。综合运用计算机技术、纳米技术、生物技术等现代技术和设备,开发具备新效能、新品质的药物。同时软件技术、信息技术等对客户信息进行整理和维护,对药物程序进行全程控制和管理,确保安全、顺畅。

充分利用内外背景因素

生物制药产业要想获得持续性发展,需要时刻关注国家宏观政策的变动,进行适时调整,使企业保持与时俱进,体现时代特色;同时要加强对高科技人才的培养,注重对知识产权的保护,拓宽企业融资 渠道 ,进行合理的战略联盟;加之严格控制药品质量标准,提高药物原料的质量,旨在研发出有益于人类健康的药物,为人类造福。

5 结语

生物技术将成为21世纪活跃在科技领域最璀璨的明珠,生物技术制药行业前景非常广阔,全球的药物有一半是生物合成的,尤其是针对分子量大,结构较复杂的药物,其比化学合成法更为简单有效,并且节约成本。生物技术药物在治疗艾滋病、贫血、血友病、糖尿病、心力衰竭、癌症发育不良、囊性纤维变性和比较罕见的遗传性疾病上都展现了其优势。生物技术制药必将为解决人类的疑难杂症,减轻人类痛苦和压力,保护环境,弥补资源短缺做出自己的贡献。目前我国生物医药产业已获得长足发展,生物类的外包公司已成为一个非常具有潜力的行业。蛋白质工程等也为生物制药开辟了新的发展道路,将展现出新的发展姿态,为人类的健康保驾护航。

参考文献

[1] 胡显文,陈惠鹏,汤仲明,等.生物制药的现状和未来(二):发展趋势与希望[J].产业发展,2005,25(1):86-93.

[2] 张蕊,田澎.生物制药产业现状分析及我国企业的发展战略[J].工业工程与管理,2005(5).

[3] 文淑美.全球生物制药产业发展态势[J].产业发展,2006,26(1):92-96.

[4] 徐君,李贵芳,王育红.生物制药产业提升核心竞争力的驱动因素分析[J].现代管理科学,2014(7).

[5] 国家发展计划委员会高技术产业发展司、中国生物工程学会编.中国生物技术产业发展 报告 (2002)[R].北京:化学工业出版社,2003.

浅谈药学服务与全程化药学服务

摘要:一般来说,目前药学服务为药师所给出的以提升患者生活品质为目的的,以科学药物治疗为根本的一系列服务。全程化药学服务是为所有医疗卫生保健环节中在预防保健、药物治疗前、药物治疗中与愈后康复等阶段,依附于提升患者生活品质这一主要目标,直接为人民群众提供有效的及负责的服务。此服务不但有药师负责实施,同时更需要利用集体协调完成。文章将对药学服务的特点以及要求等予以了相关介绍。经国内药学服务基本状况与相关方面的研究,显示出药学服务的深层次意义,其引导国内临床药师的培养与药学服务的更大发展。

关键词:药学服务;全程化

1药学服务的特征

目前药学服务基本是以药师为给患者和公众健康方面进行专业服务的,其有以下几点特征。①和药物治疗存在一定联系的药学服务需由药师提供合格的药物,特别重要的还有注重观察疾病发展情况和合理治疗,并且对其疾病的整个治疗过程果断进行决定,还要对患者进行人文关怀,保证安全、有效、节省的药物治疗[1]。② 药学服务需多加注重对患者健康的关注,要细致的对待患者进行治疗,虽然不用为患者进行实际照顾,但应该对患者实施耐心负责的治疗。③必须对药学服务预期目标明确,其中含括对疾病的预防和对疾病的治愈、对其消除或者减轻其症状、缩短病程,提高广大人民群众的生活质量,这些都是广大人民群众所期望的,同时也是医务工作者的愿望和目标。④要更多的关注群众的生活健康质量, 注重治疗和改患者生存质量,深刻认识药物治疗本质,药物不只能是防治疾病,而且还可以改善患者生活品质。

2药学整体服务

伴随医学模式的飞速发展,人们对身体健康的预防和保健极其重视,这也是医学服务的主要方面。医疗服务现已扩大到整个社会公众,医药学服务不仅仅是患者住院和门诊患者,药学服务现在包括治疗过程及其大众整体保健,其中还应给大众提供终身健康服务。其服务场所不能只局于医疗单位和药店之内,应当扩大到整个社区。整体药学服务应在整个医疗和卫生保健过程之中,药师需要用药学方面的知识,并向医务人员及患者提供直接的、细致的、和药物应用相关的服务,用以提高药物使用的安全性和有效性及经济性,并改变和提高大众健康的生活质量[2]。医药学服务不仅是治疗当中的一次性服务,还是整个治疗疾病过程中不能间断的。医药学服务不只是医院里药师的专职,也是整个社会药师所共有的责任。

3药学服务的影响因素

药学所有相关部门里的配合及制度和观念的协调统一是药学服务实施的根本,合理的编制和相关的药学 教育 制度及专业知识通常是普及药学服务所必备的条件,合适的药学专业人员、认真负责的工作作风加上熟练的专业技术这是药学服务实施的关键[3]。另外,还有很多因素能影响到药学服务工作的进行。实施药学服务药师是主体,广大药师在药学服务方面的认知及接受能力对其药学服务的实施有着较大影响。

伴随药学服务的不断展开,其工作内容也在不断拓新,也急需药师的大力投入。有部分药师认为药学服务只是临床药师的工作,只是参与到临床药物治疗时才是药学服务,局限于专业知识,结果产生畏难思想。面对新机会,整体药师要战胜自我,走出固有的思维模式,在探索中进行实践,充实自身的能力与知识,不断提高医疗技术的整体水平。

结语

现在药学部传统编制已经制约了药师们更好的开拓新领域,这种传统的工作方式 方法 不但把药师们的大量时间耗费掉了,还耗费了药师们的大量精力,总是在重复机械性工作也降低了药师们在工作上的积极性,并间接影响到了药学服务的高效实施。缺少合格的药学人员是影响药学服务发展的重要因素[4],药学教育部门需应在教育形式和内容上不断进行改革发展,更加丰富教学知识范围,用以适应不断发展的药学服务新理念。在医疗整体合作中应得到广大医务工作者的支持和配合药师工作,这些都是实施药学服务的先决条件也是必要条件。药师在参与临床用药治疗并不是争角色,而是医疗团队合作的回归。药学服务和治疗护理、健康保健服务共同构成卫生保健服务,医务人员需要更好的团结协作,充分发挥出各自专业技能,共同把保障公众健康工作做的更出色。

参考文献:

[1]《医药导报》第八届编委会成立大会暨2012年度全国医药学术交流会与临床药学与药学服务研究进展培训班与会须知[A];《医药导报》第八届编委会成立大会暨2012年度全国医药学术交流会和临床药学与药学服务研究进展培训班资料汇编[C];2012,13(05):476-478.

[2]刘澍楠;基层医院临床药学工作的难点及对策[A];2011年临床药学学术年会暨第六届临床药师论坛论文集[C];2011,18(07):701-704.

[3]张贞良;廖晓玲;范积平;军队中心医院开展药学服务的实践与思考[A];20年中国药学大会暨第九届中国药师周论文集[C];2011,15(09):1042-1045.

[4]李玉春;论药学服务在改善药患关系中的作用[A];2013年中国药学会学术年会暨第八届中国药师周论文集[C];(03):294-299.

医学论文胶原蛋白

也不是所有的胶原蛋白都可以吃,我的不纯,里面掺有别的物质东西,那对身体是不好的。要找到那种纯胶原蛋白,里面除了胶原蛋白还是胶原蛋白,而不含其他物质的。我可以介绍你一种我吃过的胶原蛋白,我吃我感觉还可以,益生靓健100%深深海鱼胶原蛋白(肽)粉,你可以试一试。

注射用的胶原蛋白基本结构是由三条多肽链相互缠绕而成的超螺旋结构,每条多肽链约有1000个氨基酸,分子约为10万Dalton,每个胶原蛋白分子量约为30万Dalton(人类的毛孔大小为200)。

这些胶原蛋白分子再相互交联成网状结构,并和弹力蛋白及多糖类形成富有弹性的结缔组织,能有效抵抗胶原蛋白酶的降解,还能提供支撑、保护及其他机械功能,从而提高皮肤的弹性和强度。

胶原蛋白和玻尿酸一样属于人体组织,具有良好的生物相容性、可降解性和生物活性,比如低抗原性、在体内容易被人体吸收、能促进细胞成活和生长、促进血小板凝结等。而胶原蛋白填充在临床上的使用也是有几十年的历史了,所以具有一定的安全性。

一、胶原蛋白提取分类

1、动物源性胶原蛋白:牛胶原蛋白、猪胶原蛋白。

医疗美容注射用的牛胶原蛋白是从牛真皮层中提取的,而猪胶原蛋白则是从猪是身上提取的。而由于自身的胶原蛋白和其他动物的胶原蛋白在肽链的结构上是有所区别的,所以可能会出现超敏反应。据统计大概有3%~5%的患者会对牛胶原蛋白过敏,其中有70%~80%的患者会在48~72小时内出现超敏反应,因此在使用前4~6周需要进行皮试。

2、自源性胶原蛋白:自体脂肪离心提取分离的胶原蛋白、成纤维细胞培养生成的胶原蛋白。

第一种是在自体脂肪中提取的胶原蛋白,这种材料虽然是自源性的,且无排异反应,不过注射后,局部有可能会应为成纤维细胞的激活而出现炎症反应。其最主要的缺点还是效果维持时间不可确定,因为受到提取过程中可能出现的任何因素的影响,致使其在体内的维持时间有1个月到一年的差距。

另一种是搜集自身组织进行培养,培养成纤维细胞的过程一般长达两个月,注射治疗的时间为2~3周。因此制作费用较高,操作也比较复杂,因此不长使用,由此经验的医生也比较少。不过有论文报道说,这种方法矫正的效果维持时间能长达7年之久。

3、同种异源性胶原蛋白:尸源性成纤维细胞中提取的胶原蛋白、活体捐赠的成纤维细胞中提取的胶原蛋白。

这类技术,无需多说,你只需要仔细想想,也就知道不如以上两种技术。

二、认证产品

经过每个FDA认证的胶原蛋填充剂还是比较多,有牛胶原蛋白的Zyderm和Zyplast、人源性胶原的Dermalogen、自体皮肤培养的人胶原Autologen、异体皮肤培养的人胶原蛋白的Cosmoderm、猪胶原的Evolence。

而目前,我们国家认证的只有两款,一个是台湾的双美1号(SunMax),来源于SPF猪;还有是吉林的肤美达,来自于牛胶原蛋白。

「图 / 台湾产的双美1号胶原蛋白认证」

「图 / 长春产的肤美达胶原蛋白认证」

三、优点

1、胶原蛋白是细胞外间质的主要成分,是一种理想的生物支架,可提供成纤维细胞生长空间,也是细胞生长的良好培养基,注射入人体凹陷部位后,不仅可以起到占位性的填充作用,还能诱导宿主细胞和毛细血管向注射胶原内迁移。宿主的成纤维细胞在毛细血管输送氧气和营养物的情况下,可进行正常的细胞活动,合成宿主自身的胶原和其他细胞外间质成分。因此,在刚注射胶原蛋白后,往往触感较硬,注射后1~2周,胶原蛋白就和自身胶原开始融合,并逐渐吸收,手感便日趋自然,1~2个月后,表现出比其他类型的填充剂更为真实自然的手感,这也是胶原蛋白注射填充的一大优势。

2、美容注射标准下的胶原蛋白,能够自然的被皮肤组织完全吸收和降解。

3、胶原蛋白的吸水性若于玻尿酸,所以填充不容易导致如上玻尿酸吸水性强的情况。

4、有止血效果,不易远端扩散,所以较玻尿酸和自体脂肪更不容易导致栓塞。

5、反复注射胶原蛋白可以刺激真皮层成纤维细胞产生新的胶原蛋白,形成新的组织,产生修复和再生的作用。

四、缺点

1、胶原蛋白吸收速度较快,在组织中存留时间只有3~6个月,线性降解,持续性体积减小,要求过量注射,最佳形态满意时间区段较短。

2、胶原蛋白具有物种特异性和组织特异性,对某些特异性体质的人可能会产生过敏反应,因此在使用前最好进行皮试。

3、可能存在动物源性病原体的隐患,如风流病。

4、胶原蛋白须冷藏储存,运输不便。

五、并发症

胶原蛋白由于吸收速度较快,注射过量、不平整、硬结、效果不满意等常见的不良反应都不是太大的问题,因此严重的并发症并不多见。

不过超敏反应则需要重视,也是异于玻尿酸的并发症,其最为常见。而且注射入人体内的产品很难通过手术的方法取干净,他也不像玻尿酸那样有溶解酶能溶解,因为胶原蛋白是融合于细胞之间的,所以只有依靠抗过敏药物的持续治疗来控制,也因此皮试是极为重要的。

文:周小小 | 徒说整容微信公众号运营者

部分图片来自网络搜集,文章系原创,禁止转载。

欢迎关注本人公众号:徒说整容(TSPlastic)

微信ID:zxmrwx

营养与保健论文 饮食与健康论文 关键字:饮食,食物,营养,保健 内容摘要:饮食得当助美丽。食物满足身体的各种营养需求,有适当量的蛋白质供生长发育、身体组织的修复更新、维持正常的生理功能。要从食物中吃出美丽来,就要注意生活的饮食习惯。饮食的要点就是:合理偏食为健康充电,缺啥补啥;少食肉类食品和动物性脂肪,多吃植物性食物和新鲜蔬菜及水果,注意蛋白质摄取均衡,减少不良的饮食习惯。还应根据不同的年龄段选择不同的食物。 饮食满足身体的各种营养需求,有足够的热能维持体内外的活动;有适当量的蛋白质供生长发育、身体组织的修复更新、维持正常的生理功能;有充分的无机盐参与构成身体组织和调节生理机能;有丰富的维生素以保证身体的健康,维持身体的正常发育,并增强身体的抵抗力;有适量的食物纤维,用以维持正常的排泄及预防某些肠道疾病;有充足的水分以维持体内各种生理程序的正常进行。 饮食要遵循食物中热能和各种营养素含量充足,种类齐全,比例适当;饮食中供给的营养素与机体的需要两者之间保持平衡。饮食的结构要合理,既要满足机体的生理需要,又要避免饮食构成的比例失调和某些营养素过量而引起机体不必要的负担与代谢上的紊乱。人体需要42种以上的营养物质,包括各类蛋白质、脂肪、碳水化合物、各种维生素、各种矿物质、必须微量元素和水。能构成42种以上营养物质的饮食必须由多种多样的食物来源来实现。[1] 每天进食要保证三大营养素的合理比例,即碳水化合物占总摄入量的60%~70%,蛋白质占10%~15%,脂肪占20%~25%。 碳水化合物主要由谷类、薯类和淀粉食品构成,控制食糖及其制品。脂肪主要以植物油为主,减少动物脂肪。脂肪中的饱和酸、单不饱和脂肪酸和多不饱和脂肪酸之间的比例一般为1:1:1。蛋白质中应有1/3以上的优质蛋白质(动物蛋白和大豆蛋白)。维生素要按供给量标准配膳,有特殊需要者另外增加。一般维生素B1、维生素B2、烟酸三者之间的比例为1:1:10较为合理。食物中钙磷比例也要适当。食物中钙磷比例在2:1~1:2之间基本符合机体的吸收和发育,若维生素D营养状况正常时,不必严格控制钙磷比例。 俗话说:“吃在脸上”。这句话充分说明了“吃”是美容养颜过程中不可忽略的重要方面。所以,皮肤养护要遵循以下原则: 1.少食肉类食品和动物性脂肪。在一定条件下,肉类食品和动物性脂肪在体内分解过程中可产生诸多酸性物质,对皮肤和内脏均有强烈的刺激性,影响皮肤的正常代谢。皮肤粗糙,往往是血液中肌酸含量增高造成的。[2] 2.多吃植物性食物。植物性食物中富含防止皮肤粗糙的胱氨酸、色氨酸。可延缓皮肤衰老,改变皮肤粗糙现象。这类食物主要有:黑芝麻、小麦麸、油面筋、豆类及其制品、紫菜、西瓜子、葵花子、南瓜子和花生仁。 3.注意蛋白质摄取均衡。蛋白质是人类必不可少的营养物质,一旦长期缺乏蛋白质,皮肤将失去弹性,粗糙干燥,是面容苍老。但肉类及鱼、虾、蟹等蛋白质食物过食,可引起过敏。 4.多吃新鲜蔬菜和水果。肤色较深者,宜经常摄取萝卜、大白菜、竹笋、冬瓜及大豆制品等富含植物蛋白、叶酸和维生素C的食品;皮肤粗糙者,应多摄取富含维生素A、D的果蔬。如胡萝卜、藕、菠菜、黄豆芽等黄色,绿色蔬菜以及鸡蛋,牛奶,动物肝脏。同时还要摄取充足的维生素和足够的植物纤维素,以防止因便秘而带来的皮肤和脏器病变。 5.少饮烈性酒。长期过量饮用烈性酒,能使皮肤干燥、粗糙、老化。少量饮用含酒精的饮料,可促进血液循环,促进皮肤的新陈代谢,使皮肤产生弹性而更加滋润。 6.适当饮水。正常的成年人每日应饮水2000毫升左右。充足的水分供应,可延缓皮肤老化。 7.少摄入使人肥胖的事物。肥胖是导致皮肤老化和病变的危险因素。但不可过分节食,以免皮肤失去活力。 8.睡眠充足。充足的睡眠既可清除身体疲劳,也是使皮肤保持健美的一味良药。 适当药浴。凡含有柠檬酸和维生素的中草药或水果、蔬菜,均可做成药浴剂。适当的药浴会使皮肤白皙,光滑,柔软,滋润,细腻。 保证身体健美除坚持锻炼外,还要有均衡的营养。然而,许多人在健美饮食的安排和选择上往往走进了误区。主要表现在以下反面: 1.吃荤油易发胖,吃素油苗条。其实,无论荤油素油,人体吸收后每克均产生9千卡左右的热量,没有多大差别。由于素油吸收率高,若消耗不了,多食反而容易使人发胖。 吃瘦肉可长肌肉。许多人认为多吃瘦肉会长肌肉。其实未必如此,因为肌肉主要靠体育锻炼获得。 2.有人认为,肉、蛋等高蛋白食物是肌肉最好的能量来源,现在的健美运动员流行的食谱是增加复合碳水化合物,包括粮食、豆类、水果,认为这才是肌肉最好的能量来源。想要体形健美的女性,每日摄取蛋白质80-90克,适量的碳水化合物,再加上合理的锻炼就能达到目的,不必过多的吃肉[3]。记得多的吃水果,蔬菜等碱性食物,以防止因蛋白质摄取过多而造成酸血症。 3.多吃蛋白质不会长脂肪。每克蛋白质与碳水化合物氧化后均产生千卡的热量。无论蛋白质还是蛋白质碳水化合物,摄入过多,所产生的热量身体消耗不了,都会变成中性脂肪贮存与皮下,使人发胖。 4.用热油锅炒菜。过热的油锅中,容易产生一种硬脂化合物,人若常吃过热油锅炒出来的菜,易患低酸性胃炎和胃溃疡,如不及时治疗,还可以诱发胃癌。 5.用生水冷却蛋。将煮熟的蛋浸在冷水中,蛋壳随好剥,但病菌却仍有机可乘。如果要让蛋壳好剥,只需在煮蛋的时水中加如少量食盐。 6.饭后马上吃水果。水果中含有大量的单糖类物质,若被饭菜堵塞在胃中,就会因腐败而形成胀气,导致胃部不适。所以,吃水果宜在饭前一小时,饭后两小时。 7.多添佐料调味。胡椒、桂皮、五香等天然调味品具有一定的诱发性和毒性,多食用会给人带来口干、咽喉痛、精神不振、失眠等副作用,还会诱发高血压,胃肠炎等多种病变,甚至导致人体细胞畸变,形成癌症。 营养学家和临床医师认为,有目的的偏食对人体会起到保健作用。你可以根据自身的特点,合理地多提取一些可以补充有缺陷的一面的营养食物。身体瘦弱者,适当多吃瘦肉,鱼,蛋类,乳类,豆制品等含蛋白质多的食物,同时也应注意脂类,多糖类及维生素,矿物质食品的摄入量,以保持营养的平衡。脑力劳动者。每天应有足够的碳水化合物补充大脑对养分的需求,并适当增加含磷、铁、锌、硒等微量元素丰富的食物,如蛋黄、动物脑、禽肉、核桃、芝麻等。贫血患者。多吃动物肝脏和含氨基酸,蛋白质的水果和绿色蔬菜。皮肤干燥和粗糙者。多吃胡萝卜,番茄及茄子等蔬菜水果,避免摄入鱼、虾、蟹、酒等易导致过敏的食物。 女性在一生中如果能根据自己不同年龄阶段的生理变化,合理安排日常饮食,就能起到护肤美容的作用。 13~23岁。此阶段的女性正处在青春发育期,要使皮肤光洁、红润且富有弹性,就必须保证摄取足够的蛋白质,脂肪酸及多种维生素的食品。如白菜、韭菜、豆芽菜汤、瘦肉等,尤其是豆类食物,既能满足人体需要的优质蛋白质,又能供给多种维生素和无机盐。要少吃盐,多喝白开水。 25~30岁。此阶段为女性发育成熟的鼎盛时期,且情感丰富,多愁善感,致使面部表情过度松弛,逐渐使额及眼下出现皱纹,皮下的皮脂腺分泌也逐渐减少,皮肤光泽感减弱,粗糙感增强。这一阶段,除了每天坚持吃淡食和多饮水的良好习惯外,要特别多吃富含维生素C和维生素B族的食品,如荠菜、黄瓜等蔬菜水果,以及豌豆、木耳、牛奶等。 30~40岁。此阶段的女性皮脂腺分泌减少,皮肤易干燥,一般女性在眼尾开始出现鱼尾纹,下巴肌肉开始松弛,笑纹更明显,要坚持多喝水,特别是早晨起床后必须喝一杯凉开水;除坚持多吃新鲜蔬菜瓜果外,要特别补充富含胶原蛋白的动物蛋白质,如猪蹄、肉皮、鲜鱼、瘦肉等,使皮肤显得丰满、充实而有水分;还可以使皮肤增强弹性和韧性,变的滋润娇嫩。 40~45岁。此阶段的女性眼部易出现黑晕,皮肤干燥而缺少光泽。饮食上应多吃能促进胆固醇排泄、补气养血、延缓面部肌肉衰老的食品,如鲜玉米、红薯、蘑菇、柠檬、核桃和富含维生素E的卷心菜、菜心、花生油等。 注意饮食,使皮肤更加细腻。 1.适量饮水。当人体水分减少时,会出现皮肤干燥、皮脂腺分泌减少的现象,从而使皮肤失去弹性,甚至出现皱纹。为了确保水分的充分摄入,每日饮水量应为1200毫升左右。 2.常吃富含维生素的食物。维生素对于防止皮肤衰老,保持皮肤细腻滋润起着重要作用,维生素E对于皮肤抗衰老有着重要作用[3]。因为维生素E能够破坏自由基的化学活性,从而抑制衰老。维生素E还有防止脂褐素沉着与皮肤的作用,含维生素E多的食物有卷心菜,葵花子油,菜子油等。维生素A、B也是皮肤光滑细腻不可缺少的物质。当人体缺乏维生素A时,皮肤会变得干燥,粗糙有鳞屑;若缺乏维生素B时,会出现口唇皮肤开裂,脱屑及色素沉着。富含维生素A的食物有动物肝脏,鱼肝油,牛奶,奶油,禽蛋及橙红色的蔬菜和水果。富含维生素B的食物有肝,肾,心脏,奶等。 3.多吃富含铁质的食物。皮肤要光泽红润,就需要供给充足的血液。铁是构成血液中血红素的主要成分之一,故应多吃富含铁质的食物。如动物肝脏、蛋黄、海带、紫菜等。 多吃含胶原蛋白和弹性蛋白食物。胶原蛋白能使细胞变的丰满,从而使肌肤充盈,皱纹减少;弹性蛋白可使人的皮肤弹性增强,从而使皮肤光滑而富有弹性。富含胶原蛋白和弹性蛋白多的食物有猪蹄,动物筋键和猪皮等。 4.注意碱性食物的摄入[4]。日常生活中所吃的鱼,肉,禽,蛋,粮谷等均为生理酸性。酸性食物会使体液和血液中乳酸、尿酸含量增高。当有机酸不能及时排除体外时,就会侵蚀敏感的表皮细胞,使皮肤变得粗糙和缺乏弹性。为了中和体内酸性成分,故应多吃些富含生理碱性的食物,如苹果,梨,柑橘和蔬菜等。 此外,皮肤要避免外界的刺激,夏天的烈日,冬季的寒风,都会使皮肤变的粗糙,因而要根据季节的变化,适时采取防护措施。皮肤的清洗不要过于频繁,如果经常反复摩擦,会使被破坏的皮肤细胞来不及再生;避免接触过酸过碱性物质,应根据自己的皮肤状况,选择合适的化妆品,适当进行按摩。

胶原蛋白的功效与作用一:胶原蛋白与头发:头发的健康关键在于头发的基础头皮皮下组织的营养,位于真皮层胶原蛋白是表皮层及表皮附属物的营养供应站,表皮附属物主要是毛发与指甲。缺乏胶原蛋白,头发干燥分叉,指甲容易断裂、灰暗无光泽。胶原蛋白的功效与作用二:胶原蛋白与骨骼:骨骼中有机物的70%-80%是胶原蛋白,骨骼生成时,首先必须合成充足的胶原蛋白纤维来组成骨骼的框架。因此,有人称胶原蛋白为骨骼中的骨骼。胶原纤维具有强大的韧性和弹性,倘若把一根长骨比拟成一根水泥柱子,那么胶原纤维就是这根柱子的钢筋框架,而胶原蛋白的缺乏,就像建筑物中使用了劣质钢筋,折断的危险就在旦夕。胶原蛋白的功效与作用三:胶原蛋白与肌肉:胶原蛋白虽然不是肌肉组织的主要组成物质,但是胶原蛋白与肌肉生长有着密切关系。对于处于生长阶段的青少年来说,补充胶原蛋白能够促进生长激素分泌以及肌肉生长。而对于想保持体形的成年人,塑造结实健美的肌肉也需要补充胶原蛋白。胶原蛋白的功效与作用四:胶原蛋白与丰胸:胶原蛋白对丰胸的作用早已为人们所熟知。乳房主要由结缔组织和脂肪组织构成,而挺拔丰满的乳房很大程度上依靠结缔组织的承托,胶原蛋白是结缔组织的主要成分,"在结缔组织中胶原蛋白常与及多糖蛋白相互交织成网状结构,产生一定的机械强度,是承托人体曲线,体现挺拔体态的物质基础。"胶原蛋白的功效与作用五:胶原蛋白与减肥:减肥需要燃烧脂肪(分解代谢),而水解胶原蛋白能使这种分解代谢过程增加和延长,燃烧更多的脂肪从而达到减肥的目的。并且胶原蛋白对细胞的修补机能会消耗大量热能,这种机能会消耗大量热能,这种机能必须在睡眠状态下进行,因此服用水解胶原蛋白,睡觉就能减肥,轻松减肥的梦想变成了现实。胶原蛋白的功效与作用六:胶原蛋白与皮肤:胶原蛋白被称为“骨中之骨,肤中之肤,肉中之肉”,可以说是真皮层强有力的后盾,其对皮肤的作用不言而喻。保护、具适当弹性:表皮下层,占有大部分结构的是真皮层,厚度为2公厘左右,又可分为三层,即乳头层、乳头下层及网状层等,大部分由蛋白质所构成,此部分蛋白质是同胶原蛋白及弹性蛋白(elastin)组成,其他则是神经、毛细血管、汗腺及皮脂腺、淋巴管及毛根等。皮肤成分中有70%是由胶原蛋白组成,皮肤有如一个大套子紧紧包住身体各处,表面积相当大,人体四肢活动时,皮肤中胶原蛋白发挥功能,使皮肤具有保护功能,又有适当弹性及坚硬度。胶原蛋白的功效与作用七:骨骼坚硬具弹性,不致疏松脆弱:骨骼中含钙质成分,当牙齿中所含钙质流失时会造成牙齿病变,容易蛀牙及得牙周病等,骨骼钙流失时则导致骨质疏松。胶原蛋白能使得钙质与骨细胞能结合,不致流失。骨骼中的胶原蛋白流失时会使得骨中钙量也降低,此时只增加钙摄取量的话,也不易改善这种骨质疏松的现象,因为钙无法在骨中保住,多吃钙也会流失,主要由于胶原蛋白量已减少。所以要保住骨本,可由食物中摄取或是以胶原蛋白保健食品来补充。真皮中胶原蛋白与弹性蛋白含量比例为45:1左右,而骨骼中胶原蛋白含量约占20%,在皮肤与骨中胶原蛋白都是主要蛋白质成分,以骨中总蛋白质量来计算的话则有80%是胶原蛋白。因为含有胶原蛋白,所以骨骼与牙齿在坚硬中同时还带有弹性。胶原蛋白的功效与作用八:胶原蛋白能使眼睛能够透光,眼角膜保持透明: 眼角膜是眼睛中重要结构之一,其中所含胶原蛋白纤维呈现规则排列,此种结构不但可以让光线透过,也因为此种胶原蛋白纤维特殊的排列方式,眼角膜呈现透明。由于胶原蛋白是眼角膜主要成分蛋白质,所以以胶原蛋白为原料所制造的隐形眼镜很适合人体也就是身体合适性高,而且比其他材料为原料的隐形眼镜保水性还佳。胶原蛋白的功效与作用九:促使肌肉细胞连接并具弹性与光泽:肌肉主要是由肌纤蛋白及肌球蛋白所构成,而细胞与细胞之间是利用胶原蛋白进行粘合的,同时也是身体构成材料之一。胶原蛋白分子所形成的立体骨架可以使身体保持良好姿势,并呈现适当柔软度。 吃牛肉时,常会有较为坚硬的[牛筋],主要成分就是胶原蛋白。胶原蛋白的功效与作用十:保护及强化内脏功能:人体主要的内脏器官及组织都含有胶原蛋白,在这些脏器表皮结构的下方是胶原蛋白,最大功能在保护及强化脏器,例如胃或肠即是例子。吃猪脑或是猪肝时,常感到异常柔软,不像猪脚那么坚硬、具弹性,主要理由是这些脏器所含胶原蛋白较少。虽然如此,胶原蛋白仍是这些器官不可或缺的成分。胶原蛋白的功效与作用十一:保湿:胶原蛋白含亲水性的天然保湿因子,而且三螺旋结构能强劲锁住水分,让皮肤时刻保持湿润、水嫩的状态!滋养:活性胶原蛋白对皮肤的渗透性强,可透过角质层与皮肤上皮细胞结合,参与和改善皮肤细胞的代谢,使皮肤中的胶原蛋白活性加强。它能保持角质层水分及纤维结构的完整性,改善皮肤细胞生存环境和促进皮肤组织的新陈代谢,增强血液循环,达到滋润皮肤的目的。亮肤:皮肤的光泽取决于含水量,胶原蛋白良好的保水能力使皮肤水润亮泽,散发健康的光彩。胶原蛋白的功效与作用十二:紧肤:当胶原蛋白被皮肤吸收后,填充在皮肤真皮之间,增加皮肤紧密度,产生皮肤张力,缩小毛孔,使皮肤紧绷而富有弹性!防皱:真皮中丰满的胶原蛋白层,将皮肤细胞撑起,结合保湿和抑制皱纹的作用,共同达到舒展粗纹,淡化细纹的功效!修复:活性胶原蛋白能直接渗入肌肤底层,且与周围组织的亲和性好,可协助细胞制造成胶原蛋白,促使皮肤细胞正常成长。同时,活性胶原蛋白本身还具有消炎和更新肌肤的作用。营养:胶原蛋白对皮肤的渗透性强,可透过角质层与皮肤上皮细胞结合,参与和改善皮肤细胞的代谢,使皮肤中的胶原蛋白活性加强。它能保持角质层水分及纤维结构的完整性,改善皮肤细胞生存环境和促进皮肤组织的新陈代谢,增强血液循环,达到滋润皮肤的目的。 美乳:胶原蛋白中独有的羟脯氨酸具有收紧结缔组织的作用,能使松弛的组织紧实、承托起下垂的乳房,使乳房挺拔、丰满、富有弹性。胶原蛋白的功效与作用十三:提高免疫机能:人体的免疫力的高低是与一些称为免疫球蛋白的生体分子有关,如淋巴球与巨噬细胞,当外来异物入侵时免疫细胞有如军队一般,会对外来异物进行抵抗,将异物包围吞噬,甚至自我牺牲以保住身体健康所以免疫细胞愈强壮,且数目够多的话就能够将外来敌人完全杀减,否则就会使身体生病。增强免疫机能的方法很多,而其中一项有效方式是让免疫蛋白与胶原蛋白结合,当这项结合完成时,人体免疫系统可憎加至少一百倍以上的免疫力。当免疫细胞随血液流经身体各处时,会透过血管壁,接近外来的异物(如细菌、病毒等),若这一部位含有大量胶原蛋白,免疫细胞就与胶原蛋白及时结合,对抗异物。接着一连串免疫机能提升的作用就不断发生,由巨噬细胞、淋巴球、血浆细胞及免疫球蛋白等免疫机能总体性提升,会使得人体抵抗力增加。胶原蛋白的功效与作用十四:抑制癌细胞:胶原蛋白抑制癌细胞是透过两种方式进行的,一是提高人体免疫力达到压制癌细胞目的。一是防止癌细胞转移。当癌细胞要转移到别的脏器时,会先往器官深处移动,穿透该处的胶原蛋白组织而到达血管,进一步穿过血管的胶原蛋白组织,再随着血液循环,移动到其他部位。所以如果含有癌细胞脏器胶原蛋白量够多,且是新合成的话,胶原蛋白与此一器官深层会合成一道坚固的防卫墙,癌细胞就难以突破此一防线而转移。所以免疫球蛋白就可在此情况下进一步发挥作用,吞噬癌细胞,使得癌症逐渐好转、改善。胶原蛋白的功效与作用十五:活化细胞机能:人体中总共有六十兆个以上的细胞,当细胞在胚胎时期进行分化,最后会形成各种不同器官,如眼、鼻、心等细胞在分化时所分泌的胶原蛋白可以使分化的细胞充分发挥功能,例如胰脏会分泌胰岛素,肠、胃会分泌许多消化酵素,但必须有胶原蛋白存在才会有分泌的作用出现,若是缺乏胶原蛋白则细胞无法发挥机能,所以胶原蛋白与细胞机能活化有密切关联。胶原蛋白的功效与作用十六:止血作用:医院手术时为了抑制手术出血,常使用胶原蛋白撒在手术伤口上,在孕妇生产时常施行胶原蛋白以防止大量出血。所以当血小板接触到血管壁的胶原蛋白时才会产生止血作用,当人体胶原蛋白量太少时,血液就不易凝固。胶原蛋白的功效与作用十七:活化筋骨,治疗关节炎及酸痛:胶原蛋白广存于肌肉及筋骨,而且是人工皮肤、人工韧带、关节等主要生医材料,所以当人体筋骨、关节等发生酸痛,甚至发炎时,如果使用胶原蛋白就可以发挥其添补、更换的功效,对筋骨等病痛有缓和功效,此方面已有许多医学临床报告。胶原蛋白的功效与作用十八:防止皮肤老化、去皱纹:由于胶原蛋白是皮肤主要蛋白质,当皮肤老化产生皱纹时,利用胶原蛋白可以改善,甚至去除。以胶原蛋白用在美白化妆方面,主要作用如下:1.使皮肤保水能力增加,提高保湿效果。2.使皮肤微血管扩张,温度上升。3.调整皮肤表层油脂成适当量。4.使皮肤中组织结合更为紧密。5.使皮肤表层经常维持光滑。 皮肤之所以会产生皱纹是由于真皮层的胶原蛋白老化,所以补充的胶原蛋白不但可以去皱纹,并有保湿功效。

相关百科

热门百科

首页
发表服务