首页

> 期刊论文知识库

首页 期刊论文知识库 问题

矩阵可对角化论文答辩ppt

发布时间:

矩阵可对角化论文答辩ppt

矩阵对角化有三种方法

1、利用特征值和特征向量将矩阵对角化

由于这种方法相对来说比较基础、简单、机械,一般教材都有详细介绍,这里用图示加以总结。

2、利用矩阵的初等变换将矩阵对角化

矩阵的初等变换

矩阵的初等行变换和初等列变换,统称矩阵的初等变换。下面的三种变换称为矩阵的初等行变换:

1 对调两行;

2 以数k≠0乘某一行的所有元素;

3 把某一行所有元素的k倍加到另一行对应的元素上去。

把上面定义中的“行”换成“列”,既得矩阵的初等列变换的定义。

如果矩阵A经过有限次初等变换变成矩阵B,就称矩阵A与B等价。

另外:分块矩阵也可以定义初等变换。

3、利用矩阵的乘法运算将矩阵对角化

矩阵乘法是一种高效的算法可以把一些一维递推优化到log( n ),还可以求路径方案等,所以更是一种应用性极强的算法。矩阵,是线性代数中的基本概念之一。一个m×n的矩阵就是m×n个数排成m行n列的一个数阵。由于它把许多数据紧凑的集中到了一起,所以有时候可以简便地表示一些复杂的模型。矩阵乘法看起来很奇怪,但实际上非常有用,应用也十分的广泛。

矩阵对角化的条件和步骤是A2=A 可以x2-x=0看作A的一个零化多项式,再由无重根就可得到该矩阵可对角化。幂等矩阵的运算方法:

(1)设 A,A都是幂等矩阵,则(A+A) 为幂等矩阵的充分必要条件为:A·A =A·A=0,且有:R(A+A) =R (A) ⊕R (A);N(A+A) =N(A)∩N(A);

(2)设 A, A都是幂等矩阵,则(A-A) 为幂等矩阵的充分必要条件为:A·A=A·A=A,且有:R(A-A) =R(A)∩N (A);N (A- A) =N (A)⊕R (A);

(3)设 A,A都是幂等矩阵,若A·A=A·A,则A·A为幂等矩阵,且有:R (A·A) =R(A) ∩R (A);N (A·A) =N (A) +N (A)。幂等矩阵的其他性质:1.幂等矩阵的特征值只可能是0,1;2.幂等矩阵可对角化;3.幂等矩阵的迹等于幂等矩阵的秩,即tr(A)=rank(A);4.可逆的幂等矩阵为E;5.方阵零矩阵和单位矩阵都是幂等矩阵;6.幂等矩阵A满足:A(E-A)=(E-A)A=0;7.幂等矩阵A:Ax=x的充要条件是x∈R(A);的核N(A)等于(E-A)的列空间R(E-A),且N(E-A)=R(A)。

假设矩阵为A,则充要条件为: 1)A有n个线性无关的特征向量. 2),A的极小多项式没有重根. 充分非必要条件: 1)。A没有重特征值 2)A*A^H=A^H*A 必要非充分条件: f(A)可对角化,其中f是收敛半径大于A的谱半径的任何解析函数 。

我觉得应该是相似对角化吧,具体的步骤是:1,求出一个矩阵的全部互异的特征值a1,a2……2,对每个特征值,求特征矩阵a1I-A的秩,判断每个特征值的几何重数q=n-r(a1I-A),是否等于它的代数重数p,只要有一个不相等,A就不可 以相似对角化,否则, 就可以相似对角化3,当可以相似对角化时,对每个特征值,求方程组,(aiI-A)X=0的一个基础解系4,令P=这些基础解系,则P-1AP=diag(a1,a2,a3……),其中有qi个特征值你看行不?这就是我知道的,呵呵

对角化是广义的,只是把矩阵化为对角形的矩阵而已,对对角元的取值不作要求(不要求其全不为零)。从这个意义上讲对称矩阵一定能相似对角化这是没错的。具体地怎么实现相似对角化呢?实际上相似对角化就是找一个正交阵T使得T'AT=T^(-1)AT=diag{λ1,..,.λ1;...;λr,...,λr}(每个λi有其几何重数个)做法如下:找出A的全部值并求全布特征值对应的特征向量αi1,...,αisi(si为λi的几何重数)对每组αi1,...,αisi分别进行施密特正交化,而后将施密特正交化后的这r组向量按次序按列排成矩阵,记为T,T即为所求。对角化这个概念是针对矩阵而言的,并且矩阵的对角化源自于线性变换的化简,所以最好先知道线性变换和线性变换与矩阵的对应关系。设一线性变换a,在基m下的矩阵为A,在基n下的矩阵为B,m到n的过渡矩阵为X,那么可以证明:B=X-1AX那么定义:A,B是2个矩阵。如果存在可逆矩阵X,满足B=X-1AX ,那么说A与B是相似的(是一种等价关系)。如果存在可逆矩阵X使A与一个对角矩阵B相似,那么说A可对角化。相应的,如果线性变换a在基m下的矩阵为A,并且A相似于对角矩阵B,那么令X为过渡矩阵即可求出基n,并且在n下线性变换a的矩阵为对角矩阵,从而达到了化简。

矩阵可对角化的条件论文答辩

实对称阵的特征值都是实数,所以n阶阵在实数域中就有n个特征值(包括重数),并且实对称阵的每个特征值的重数和属于它的无关的特征向量的个数是一样的,从而n阶矩阵共有n个无关特征向量,所以可对角化。

判断方阵是否可相似对角化的条件:

(1)充要条件:An可相似对角化的充要条件是:An有n个线性无关的特征向量;

(2)充要条件的另一种形式:An可相似对角化的充要条件是:An的k重特征值满足n-r(λE-A)=k;

(3)充分条件:如果An的n个特征值两两不同,那么An一定可以相似对角化;

(4)充分条件:如果An是实对称矩阵,那么An一定可以相似对角化。

扩展资料

结论:

1、实对称矩阵的秩等于非零特征值的个数,这个结论只对实对称矩阵成立,不要错误地使用。

2、两个实对称矩阵,如果特征值相同,一定相似,同样地,对于一般矩阵,这个结论也是不成立的。

3、实对称矩阵在二次型中的应用

使用正交变换把二次型化为标准型使用的方法本质上就是实对称矩阵的正交相似对角化。

参考资料来源:百度百科-实对称矩阵

一个特征值只能有一个特征向量,(非重根)又一个重根,那么有可能有两个线性无关的特征向量,也有可能没有两个线性无关的特征向量(只有一个)。不可能多于两个。

如果有两个,则可对角化,如果只有一个,不能对角化;矩阵可对角化的条件:有n个线性无关的特征向量;这里不同的特征值,对应线性无关的特征向量。重点分析重根情况,n重根如果有n个线性无关的特征向量,则也可对角化。

特征值和特征向量数学概念

若σ是线性空间V的线性变换,σ对V中某非零向量x的作用是伸缩:σ(x)=aζ,则称x是σ的属于a的特征向量,a称为σ的特征值。位似变换σk(即对V中所有a,有σk(a)=kα)使V中非零向量均为特征向量,它们同属特征值k;而旋转角θ(0<θ<π)的变换没有特征向量。可以通过矩阵表示求线性变换的特征值、特征向量。

以上内容参考:百度百科-特征值和特征向量

矩阵可对角化的充分必要条件是:

1、n阶方阵存在n个线性无关的特征向量。

推论:如果这个n阶方阵有n个不同的特征值,那么矩阵必然存在相似矩阵。

2、如果阶n方阵存在重复的特征值,每个特征值的线性无关的特征向量的个数恰好等于该特征值的重。

实对称矩阵的主要性质如下:

1、实对称矩阵A的不同特征值对应的特征向量是正交的。

2、实对称矩阵A的特征值都是实数,特征向量都是实向量。

3、n阶实对称矩阵A必可对角化,且相似对角阵上的元素即为矩阵本身特征值。

4、λ0具有k重特征值必有k个线性无关的特征向量,或者说必有秩r(λ0E-A)=n-k,其中E为单位矩阵。

幂等矩阵可对角化毕业论文

你好!解答如图,需要借助两个定理才容易证明。经济数学团队帮你解答,请及时采纳。谢谢!

A2=A 可以x2-x=0看做A的一个零化多项式,再由无重根就可得到该矩阵可对角化。

幂等矩阵的运算方法:

1)设 A₁,A₂都是幂等矩阵,则(A₁+A₂) 为幂等矩阵的充分必要条件为:A₁·A₂ =A₂·A₁=0,且有:R(A₁+A₂) =R (A₁) ⊕R (A₂);N(A₁+A₂) =N(A₁)∩N(A₂);

2)设 A₁, A₂都是幂等矩阵,则(A₁-A₂) 为幂等矩阵的充分必要条件为:A₁·A₂=A₂·A₁=A₂,且有:R(A₁-A₂) =R(A₁)∩N (A₂);N (A₁- A₂) =N (A₁)⊕R (A₂);

3)设 A₁,A₂都是幂等矩阵,若A₁·A₂=A₂·A₁,则A₁·A₂为幂等矩阵,且有:R (A₁·A₂) =R(A₁) ∩R (A₂);N (A₁·A₂) =N (A₁) +N (A₂)。

扩展资料:

幂等矩阵的其他性质:

1.幂等矩阵的特征值只可能是0,1;

2.幂等矩阵可对角化;

3.幂等矩阵的迹等于幂等矩阵的秩,即tr(A)=rank(A);

4.可逆的幂等矩阵为E;

5.方阵零矩阵和单位矩阵都是幂等矩阵;

6.幂等矩阵A满足:A(E-A)=(E-A)A=0;

7.幂等矩阵A:Ax=x的充要条件是x∈R(A);

的核N(A)等于(E-A)的列空间R(E-A),且N(E-A)=R(A)。

参考资料来源:百度百科-幂等矩阵

一种吧!设所求矩阵为A,求出它的全部特征值,求(A-£E)x=0的基础解系,再两两正交单位化,得正交矩阵P,再求P-1AP=PTAP=^

我觉得应该是相似对角化吧,具体的步骤是:1,求出一个矩阵的全部互异的特征值a1,a2……2,对每个特征值,求特征矩阵a1I-A的秩,判断每个特征值的几何重数q=n-r(a1I-A),是否等于它的代数重数p,只要有一个不相等,A就不可 以相似对角化,否则, 就可以相似对角化3,当可以相似对角化时,对每个特征值,求方程组,(aiI-A)X=0的一个基础解系4,令P=这些基础解系,则P-1AP=diag(a1,a2,a3……),其中有qi个特征值你看行不?这就是我知道的,呵呵

矩阵对角化论文开题报告

1,求出一个矩阵的全部互异的特征值a1,a2……2,对每个特征值,求特征矩阵a1I-A的秩,判断每个特征值的几何重数q=n-r(a1I-A),是否等于它的代数重数p,只要有一个不相等,A就不可 以相似对角化,否则, 就可以相似对角化3,当可以相似对角化时,对每个特征值,求方程组,(aiI-A)X=0的一个基础解系4,令P=这些基础解系,则P-1AP=diag(a1,a2,a3……),其中有qi个特征值

这种老掉牙的课题写了干什么?前人已经研究的透彻不能再透彻了。既然写文章,搞研究就要真的做了点实质性的东西出来,否则只是浪费时间。

1,求出一个矩阵的全部互异的特征值a1,a2……

2,对每个特征值,求特征矩阵a1I-A的秩,判断每个特征值的几何重数q=n-r(a1I-A),是否等于它的代数重数p,只要有一个不相等,A就不可 以相似对角化,否则, 就可以相似对角化

3,当可以相似对角化时,对每个特征值,求方程组,(aiI-A)X=0的一个基础解系

4,令P=这些基础解系,则P-1AP=diag(a1,a2,a3……),其中有qi个特征值

扩展资料:

判断方阵是否可相似对角化的条件:

(1)充要条件:An可相似对角化的充要条件是:An有n个线性无关的特征向量;

(2)充要条件的另一种形式:An可相似对角化的充要条件是:An的k重特征值满足n-r(λE-A)=k

(3)充分条件:如果An的n个特征值两两不同,那么An一定可以相似对角化;

(4)充分条件:如果An是实对称矩阵,那么An一定可以相似对角化。

【注】分析方阵是否可以相似对角化,关键是看线性无关的特征向量的个数,而求特征向量之前,必须先求出特征值。

掌握实对称矩阵的特征值和特征向量的性质

(1)不同特征值的特征向量一定正交

(2)k重特征值一定满足满足n-r(λE-A)=k

【注】由性质(2)可知,实对称矩阵一定可以相似对角化;且有(1)可知,实对称矩阵一定可以正交相似对角化。

会求把对称矩阵正交相似化的正交矩阵

【注】熟练掌握施密特正交化的公式;特别注意的是:只需要对同一个特征值求出的基础解系进行正交化,不同特征值对应的特征向量一定正交(当然除非你计算出错了会发现不正交)。

3、实对称矩阵的特殊考点:

实对称矩阵一定可以相似对角化,利用这个性质可以得到很多结论,比如:

(1)实对称矩阵的秩等于非零特征值的个数

这个结论只对实对称矩阵成立,不要错误地使用。

(2)两个实对称矩阵,如果特征值相同,一定相似,同样地,对于一般矩阵,这个结论也是不成立的。

实对称矩阵在二次型中的应用

使用正交变换把二次型化为标准型使用的方法本质上就是实对称矩阵的正交相似对角化。

一种吧!设所求矩阵为A,求出它的全部特征值,求(A-£E)x=0的基础解系,再两两正交单位化,得正交矩阵P,再求P-1AP=PTAP=^

实对称矩阵对角化的研究论文

1、实对称矩阵A的不同特征值对应的特征向量是正交的。

2、实对称矩阵A的特征值都是实数,特征向量都是实向量。

3、n阶实对称矩阵A必可相似对角化,且相似对角阵上的元素即为矩阵本身特征值。

4、若A具有k重特征值λ0必有k个线性无关的特征向量,或者说秩r(λ0E-A)必为n-k,其中E为单位矩阵。

5、实对称矩阵A一定可正交相似对角化。

扩展资料

代数图论研究用到的无号拉普拉斯矩阵就是实对称矩阵。实对称矩阵一定能对角化这个问题不是那么明显就能得到答案的。

A是否可以对角化,存在一个可逆矩阵P使得P^(-1)AP成为对角矩阵。一个自然的推论,如果A有n个不同的特征值,那么A一定可以对角化。然而实对称矩阵却不一定拥有n个不同的特征值。证明需要用到不变子空间。

参考资料来源:百度百科-实对称矩阵

我觉得应该是相似对角化吧,具体的步骤是:1,求出一个矩阵的全部互异的特征值a1,a2……2,对每个特征值,求特征矩阵a1I-A的秩,判断每个特征值的几何重数q=n-r(a1I-A),是否等于它的代数重数p,只要有一个不相等,A就不可 以相似对角化,否则, 就可以相似对角化3,当可以相似对角化时,对每个特征值,求方程组,(aiI-A)X=0的一个基础解系4,令P=这些基础解系,则P-1AP=diag(a1,a2,a3……),其中有qi个特征值你看行不?这就是我知道的,呵呵

矩阵对角化有三种方法

1、利用特征值和特征向量将矩阵对角化

由于这种方法相对来说比较基础、简单、机械,一般教材都有详细介绍,这里用图示加以总结。

2、利用矩阵的初等变换将矩阵对角化

矩阵的初等变换

矩阵的初等行变换和初等列变换,统称矩阵的初等变换。下面的三种变换称为矩阵的初等行变换:

1 对调两行;

2 以数k≠0乘某一行的所有元素;

3 把某一行所有元素的k倍加到另一行对应的元素上去。

把上面定义中的“行”换成“列”,既得矩阵的初等列变换的定义。

如果矩阵A经过有限次初等变换变成矩阵B,就称矩阵A与B等价。

另外:分块矩阵也可以定义初等变换。

3、利用矩阵的乘法运算将矩阵对角化

矩阵乘法是一种高效的算法可以把一些一维递推优化到log( n ),还可以求路径方案等,所以更是一种应用性极强的算法。矩阵,是线性代数中的基本概念之一。一个m×n的矩阵就是m×n个数排成m行n列的一个数阵。由于它把许多数据紧凑的集中到了一起,所以有时候可以简便地表示一些复杂的模型。矩阵乘法看起来很奇怪,但实际上非常有用,应用也十分的广泛。

1,求出一个矩阵的全部互异的特征值a1,a2……

2,对每个特征值,求特征矩阵a1I-A的秩,判断每个特征值的几何重数q=n-r(a1I-A),是否等于它的代数重数p,只要有一个不相等,A就不可 以相似对角化,否则, 就可以相似对角化

3,当可以相似对角化时,对每个特征值,求方程组,(aiI-A)X=0的一个基础解系

4,令P=这些基础解系,则P-1AP=diag(a1,a2,a3……),其中有qi个特征值

扩展资料:

判断方阵是否可相似对角化的条件:

(1)充要条件:An可相似对角化的充要条件是:An有n个线性无关的特征向量;

(2)充要条件的另一种形式:An可相似对角化的充要条件是:An的k重特征值满足n-r(λE-A)=k

(3)充分条件:如果An的n个特征值两两不同,那么An一定可以相似对角化;

(4)充分条件:如果An是实对称矩阵,那么An一定可以相似对角化。

【注】分析方阵是否可以相似对角化,关键是看线性无关的特征向量的个数,而求特征向量之前,必须先求出特征值。

掌握实对称矩阵的特征值和特征向量的性质

(1)不同特征值的特征向量一定正交

(2)k重特征值一定满足满足n-r(λE-A)=k

【注】由性质(2)可知,实对称矩阵一定可以相似对角化;且有(1)可知,实对称矩阵一定可以正交相似对角化。

会求把对称矩阵正交相似化的正交矩阵

【注】熟练掌握施密特正交化的公式;特别注意的是:只需要对同一个特征值求出的基础解系进行正交化,不同特征值对应的特征向量一定正交(当然除非你计算出错了会发现不正交)。

3、实对称矩阵的特殊考点:

实对称矩阵一定可以相似对角化,利用这个性质可以得到很多结论,比如:

(1)实对称矩阵的秩等于非零特征值的个数

这个结论只对实对称矩阵成立,不要错误地使用。

(2)两个实对称矩阵,如果特征值相同,一定相似,同样地,对于一般矩阵,这个结论也是不成立的。

实对称矩阵在二次型中的应用

使用正交变换把二次型化为标准型使用的方法本质上就是实对称矩阵的正交相似对角化。

相关百科

热门百科

首页
发表服务