首页

> 期刊论文知识库

首页 期刊论文知识库 问题

广义逆矩阵论文答辩问题

发布时间:

广义逆矩阵论文答辩问题

论文答辩的时候问的问题都比较专业,而且肯定是围绕你的论文的内容和主题进行提问。所以在答辩之前一定要非常熟悉自己的论文内容。主要问题有以下这些:

1、论文中的核心概念是什么

在答辩的时候,导师最常问的一个问题就是:论文中的核心概念是什么。当老师问到这个问题的时候,同学们千万不要慌,要有条不紊地将论文中的核心概念说出来。

2、论文采用的研究方法

论文采用的研究方法什么?这也是导师常问的问题之一。主要考查学生对自己的论文熟不熟悉,对自己论文中所用的研究方法了不了解。

3、其他问题

此外,以下这些问题也是导师比较常问的:

(1)为什么选择这个题目?这个选题有什么意义?

(2)论文的基本框架、结构都是怎么安排的?

(3)论文的核心概念主要体现在哪里?

(4)论文的理论基础是什么?

(5)论文中的结论是否具有可行性

(6)论文各部分的逻辑关系是怎么样的?

(7)在研究本课题时,有没有发现不同的见解?

通常提问会依据先浅后深、先易后难的顺序,答辩人的答题时间会限制在一定的时间内,除非答辩教师特别强调要求展开论述,都不必要展开过细,直接回答主要内容和中心思想,去掉旁枝细节,简单干脆,切中要害。

常见问题

1、自己为什么选择这个课题。

2、研究这个课题的意义和目的是什么。

3、全文的基本框架、基本结构是如何安排的。

4、全文的各部分之间逻辑关系如何。

5、在研究本课题的过程中,发现了哪些不同见解。对这些不同的意见,自己是怎样逐步认识的?又是如何处理的。

6、论文虽未论及,但与其较密切相关的问题还有哪些。

7、还有哪些问题自己还没有搞清楚,在论文中论述得不够透彻。

8、写作论文时立论的主要依据是什么。

扩展资料

作为将要参加论文答辩同学,首先而且必须对自己所著的毕业论文内容有比较深刻理解和比较全面的熟悉。这是为回答毕业论文答辩委员会成员就有关毕业论文的深度及相关知识面而可能提出的论文答辩问题所做的准备。所谓“深刻的理解”是对毕业论文有横向的把握。

例如题为《创建名牌产品发展民族产业》的论文,毕业论文答辩委员会可能会问“民族品牌”与“名牌”有何关系。尽管毕业论文中未必涉及“民族品牌”,但参加论文答辩的学生必须对自己的毕业论文有“比较全面的熟悉”和“比较深刻的理解”,否则,就会出现尴尬局面。

线性方程组:A(mxn)X = b ------ (1)A是m行n列(m>n)的行列式:A'是A的转置矩阵,将(1)变成(A'A)X = A'b - - - - (2)(A'A)是nxn阶方阵,它的逆矩阵称为广义逆矩阵。(A'A)行列式不为零,方程组(2)有唯一解,且与(1)的最小二乘解相对应!此结论的证明也不复杂。

数学专业毕业论文答辩问题范文

大学生活在不经意间即将结束,毕业生都要通过最后的毕业论文,毕业论文是一种的检验学生学习成果的形式,快来参考毕业论文是怎么写的吧!以下是我帮大家整理的数学专业毕业论文答辩问题范文,希望能够帮助到大家。

一、答辩自述

数学解题是数学教学与数学学习的重要组成部分

通过数学解题

可以深化对数学基础知识、基本技能的认识

逐渐体会数学知识的精髓--数学思想方法

培养严谨的逻辑思维能力、运算能力、空间想象能力、实践能力和创新意识

提高灵活运用数学知识去分析问题、解决问题的能力

研究中学数学解题的教与学

使学生认识中学数学解题在中学数学教学中的地位与作用

认识数学解题在培养思维与能力方面的意义

提高学生分析与解决数学问题的能力

充分发挥数学解题在数学教学中的积极作用

二、毕业论文答辩的一些问题

1、自己为什么选择这个课题?

由于自己对数学解题思想方面比较感兴趣也因为将来最有可能的工作是教师。所以希望在毕业论文的研究中能对今后有所帮助

加之数学解题技巧是初等数学中的一个非常重要的组成部分。所以选择了这个论问题

2、研究这个课题的意义和目的是什么?

答:数学解题是数学教学与学习的重要组成部分。通过数学解题,可以深化对数学基础知识、基本技能的认识,逐渐体会数学知识的精髓--数学思想方法。培养严谨的逻辑思维能力、运算能力、空间想象能力、实践能力和创新意识。提高灵活运用数学知识去分析问题、解决问题的能力。为了学生以后走上工作岗位不出现瘸腿现象。加强数学教育中的文化素质显得比较重要和具有现实意义。

3、全文的基本框架、基本结构是如何安排的?

答:第一部分:几种常见的数学解题思想;

第二部分:数学解题技巧的培养;

第三部分:如何将数学解题思想贯穿于解题技巧中;第四部分:解题技巧的误区;

第五部分:解题思想与解题技巧的体会;

第六部分:结束语

4、你这篇论文的侧重点在哪方面?为什么?

答:我这篇论文的侧重点在如何将数学解题思想融入到数学解题技巧当中。因为我觉得在所有掌握了各种解题思想后最重要的是懂得何用将这些思想运用到实际问题当中。只有这些才算真正理解了解题思想它的应用。

5、你觉得数学解题技巧在解决数学问题有什么优势?

答:数学问题的解决方法有很多种。但是万变不离其中,这就要求我们掌握一些常用的数学解题技巧,在解题中不用为了用哪种方式合适而浪费时间,在解数学题时可以做到条件反身,从而为你整个解题过程节省很多时间。

6、论文虽未论及

但与其较密切相关的问题还有哪些?

答:本文在撰写有关解题技巧的误区这一方面只是列举了两个技巧的误区,但我觉得这方面很重要。这一点与如何培养学生的解题能力密切相关,应该罗列出哪些问题最容易产生惯性思维。避免走入技巧的误区。

7、哪些问题自己还没搞清楚

在论文中论述得不够透彻?

答:有些数学题看起来哪种方法都可以用,但是实际上我们并不能直接反应出哪种方法最合适。这篇论文在有关哪些题型用哪些方法方面没有去罗列出来。

8、写作论文时立论的主要依据是什么? 答:主要依据是数学解题思想的技巧

根据你所掌握的各种数学解题思想 然后将这些思想融入到实际问题当中 也即将这些思想融入到解题技巧当中。

拓展:

毕业论文答辩问题归纳

1、你的毕业论文采用了哪些与本专业相关的研究方法?

本文通过学术论文的方式进行,主要是通过对书籍、报刊的阅览与浏览网站寻找大量相关材料及信息,综合整理,系统分析,并运用所学经济学原理以及分析手段,对如何结合自身优势,借鉴国内外先进模式以及经验,对平度市旅游产业发展进行了深入的探索分析,对其成功经验进行提炼,并结合所学知识对不足之处提出改进建议和提升方法。

2、论文中的核心概念是什么?用你自己的话高度概括。

旅游产业已成为平度地区新的经济增长点,其发展速度惊人,收益率高。但是在平度市旅游产业飞速发展的背后,我们需要看到在发展过程中的种种不足和限制因素。研究平度市旅游产业发展的思路和对策,能帮助我们认清平度市旅游产业发展的未来发展方向与发展对策,有利于我们充分发挥平度市的综合优势,更好的发展旅游产业。

3、你选题的缘由是什么?研究具有何种现实指导意义?

近年来,旅游产业成为平度地区新的经济增长点,其发展速度惊人,收益率高。但是在平度市旅游产业飞速发展的背后,我们需要看到在发展过程中的种种不足和限制因素。研究平度市旅游产业发展的思路和对策,能帮助我们认清平度市旅游产业发展的未来发展方向与发展对策,有利于我们充分发挥平度市的综合优势,更好的发展旅游产业。

4、论文中的'核心概念怎样在你的文中体现?

现状分析、提出问题并进行针对性的解决。

5、从反面的角度去思考:如果不按照你说的那样去做,结果又会怎样?

阻碍旅游产业的科学、健康、可持续发展,进而放缓地区的经济发展速度。

6、论文的理论基础与主体框架存在何种关联?最主要的理论基础是什么?

为论文的主体框架提供理论依据。框架直接反应理论的理论概念。

主要理论基础:现代旅游产业发展规律、区域旅游规划原理、第三产业经济学。

7、质性研究与访谈法、定性研究、定量研究、调查研究、实证研究的区别?

质性研究方法的基本问题,包括什么是质性数据,质性方法与量化方法的联系与区别,质性方法对研究现实问题和理论建构的作用与意义。

8、经过你的研究,你认为结果会是怎样?有何正面或负面效果?

首先我必须正面诠释我的论文性质,作为一篇本科学士毕业论文,我确实用心完成了我的学习任务,但如果一旦将论文的框架与概论进行实际运用,它还是浅显、不成熟的。其结果也就有可能成为理论性上的成功或实际运用上的短板,但也为相关理论研究提供了一份微薄的补充。

正面:通过社会调查和资料查阅,分析现状,针对性的提出问题并解决问题。

负面:理论性过强,实际运用性有待于商榷,实际操作需根据不同地点不同旅游产业点的实际情况循序渐进。

9、你的论文基础何种研究视角?是管理学、教育学、心理学还是社会学视角?

社会角度。社会素材与产业数据的收集来源社会。

10、论文研究的对象是个体还是群体?是点的研究还是面的研究?

在社会大产业面前属于旅游产业的个体研究,但在这个点的集合上又是面的研究,涉及旅游产业的各个方面,综合因素及利弊端。

11、论文中的结论、建议或策略是否具有可行性和操作性?

具有。虽然相对于专家性的研究、指导具有一定的不足,但根据资料查阅和社会调研,所得结论和提出的建议及策略在配合当地实际情况及各界力量努力的基础上还有具有一定的可行性和操作性。

矩阵对角及应用论文答辩问题

一、答辩陈述:

在答辩的陈述中,我从四个方面介绍了我的论文:

1、文章中需要用到的有关二次型、正定二次型等概念;

2、正定二次型的性质及判定方法;

3、半正定二次型的性质及判定方法;

二、答辩分析:

第一部分主要介绍了论文中需要用到的有关二次型、正定二次型等概念。

第二部分介绍了正定二次型的4中判定方法。

第三部分是文章的重点部分,我通过查找资料以及与正定二次型性质判定方法作对比,从而总结了4中主要的判定方法。

最后一部分根据正定二次型的性质判定方法归纳了其9方面的应用。

三、答辩中提出的问题及回答要点:

1、正定二次型的矩阵的行列式值有什么特点?

答:正定二次型的矩阵为正定矩阵,它的行列式值大于零。

四、判断方法:

主要介绍了4种判定方法,分别为:

1、二次型半正定的充分必要条件是它的标准型的所有系数都是非负的;

2、二次型半正定的充分必要条件是它的正惯性指数与秩相等;

3、二次型半正定的充分必要条件是它的矩阵的特征值均为非负数;

4、二次型半正定的充分必要条件是它的矩阵的各阶主子式均为非负数。其次,还可以用半正定二次型的定义进行判定。

五、论文虽未论及,较密切相关的问题:

1、本文主要介绍了正定、半正定二次型的性质及判定方法,然而在实际应用中,更多的会用到正定矩阵相关概念。

2、如(正定二次型在线性最小二乘法问题的解中的应用),对于此部分知识文中没有论及。因此,需要进一步归纳总结正定矩阵的性质,并将其与本文内容相结合,使本部分内容系统化。

1.第x章的博弈结果分析中,列举了一些xx的数据关系,是否可以以此为基础讨论舞弊对策?2.文中列举了xx现状,哪些比较具有代表性,你认为相对xx来说,你的论文的优势在哪里。3.文中多次提到xx,对于xx你是如何理解的4.文中的对策部分主要是针对谁提出的,由谁执行5.如果想针对这篇论文进行实证研究,你认为应该从哪些方面入手6.你认为论文的实用性如何,7.如果将xx等引入模型,对博弈结果会产生何种影响

交给我处理。

时下最时髦的就是:创新点与别人不一样的地方

矩阵求逆方法研究论文

一般有2种方法。 1、伴随矩阵法。A的逆矩阵=A的伴随矩阵/A的行列式。 2、初等变换法。A和单位矩阵同时进行初等行(或列)变换,当A变成单位矩阵的时候,单位矩阵就变成了A的逆矩阵。 第2种方法比较简单,而且变换过程还可以发现矩阵A是否可逆(即A的行列式是否等于0)。 伴随矩阵的求法参见教材。矩阵可逆的充要条件是系数行列式不等于零。

1.公式法:A^(-1)=1/|A|*(A*),这就是一楼的伴随矩阵法..2.利用初等变换,行列都可以的,只有在解线性方程组时不能列变换...3.分块求逆;4.运用推论:只要找出一个B,使AB=E,A就是可逆的... 设A^2=2E,则(A+E)(A-E)=E, 所以(A+E)和(A-E)都可逆..

矩阵是工程技术以及经济管理等领域的不可缺少的数学工具,凡是用到矩阵的地方,基本上都要涉及广义逆矩阵,尤其数值分析与数理统计有着重要作用.广义逆矩阵共15类,但最常用有5类,包括A{1},A{1,2},A{1,3},A{1,4},A{1,2,3,4}.主要讨论这5类广义逆矩阵的计算及其应用.作 者: 马秀珍 韩静华 MA Xiu-zhen HAN Jing-hua 作者单位: 沈阳航空工业学院理学系,辽宁,沈阳,110034 刊 名: 沈阳航空工业学院学报 英文刊名: JOURNAL OF SHENYANG INSTITUTE OF AERONAUTICAL ENGINEERING 年,卷(期): 2005 22(2) 分类号: 关键词: 广义逆矩阵 矩阵方程 自反广义逆 最小范数广义逆 通解 机标分类号: 机标关键词: 广义逆矩阵应用数值分析数学工具数理统计经济管理工程技术计算 基金项目:

一般使用初等行变换或者伴随矩阵方法,来求逆矩阵。

逆矩阵的求法毕业论文

逆矩阵的求法:

1、利用定义求逆矩阵

设A、B都是n阶方阵, 如果存在n阶方阵B 使得AB=BA=E, 则称A为可逆矩阵, 而称B为A的逆矩阵。

2、运用初等行变换法

将一n阶可逆矩阵A和n阶单位矩阵I写成一个nX2n的矩阵B=(A,I])对B施行初等行变换,即对A与I进行完全相同的若干初等行变换,目标是把A化为单位矩阵。当A化为单位矩阵I的同时,B的右一半矩阵同时化为了A的逆矩阵。

3、增广矩阵法

如果要求逆的矩阵是A,则对增广矩阵(A E)进行初等行变换,E是单位矩阵,将A化到E,此时此矩阵的逆就是原来E的位置上的那个矩阵,原理是 A逆乘以(A E)= (E A逆)初等行变换就是在矩阵的左边乘以A的逆矩阵得到的。

4、待定系数法

待定系数法顾名思义就是对未知数进行求解。用一个新的包含未定因子的多项式来表达多项式,从而获得一个恒等式。接着,利用恒等式的特性,推导出一类系数必须满足的方程或方程,再由方程组或方程组得到待确定的系数,或确定各系数之间的对应关系,称为待定系数法。

逆矩阵的求法主要有以下两种:

1、利用定义求逆矩阵。

定义:设A、B都是n阶方阵,如果存在n阶层方阵B使得AB=BA=E。则称A为可逆矩阵,而称B为A的逆矩阵。

2、是初等变换法

求元素为具体数字的矩阵的逆矩阵,常用初等变换法。如果A可逆,则A通过初等变换,化为单位矩阵I,即存在矩阵P1、P2、......Ps使得:

(1)P1P2.......PsA=I,用A的负一次方右乘上式两端。

(2)P1P2.....PsI=A的负一次方。

比较(1)(2)两式,可以看到当A通过初等变换华为单位矩阵的同时,对单位矩阵I作同样的初等变换,就化为A的逆矩阵A的负一次方。这就是初等变换法在求逆矩阵中的应用。它是实际应用中比较简单的一种方法,需要注意的是,在作初等变换时只允许作行初等变换。同样,只作列初等变换也可以求逆矩阵。

一般用初等行变换,来求,对增广矩阵A|E,同时施行初等行变换,化成E|A^-1;

在原矩阵的右侧接写一个四阶单位矩阵,然后对扩展矩阵施行初等行变换,使前面的四阶矩阵化为单位矩阵,则右侧的单位矩阵就化为了原来前面的逆矩阵。

扩展资料:

逆矩阵求法:

求逆矩阵的初等变换法

将一n阶可逆矩阵A和n阶单位矩阵I写成一个nX2n的矩阵

对B施行初等行变换,即对A与I进行完全相同的若干初等行变换,目标是把A化为单位矩阵。当A化为单位矩阵I的同时,B的右一半矩阵同时化为了A。

如求

的逆矩阵A-1。

故A可逆并且,由右一半可得逆矩阵A-1=

初等变换法计算原理

若n阶方阵A可逆,即A行等价I,即存在初等矩阵P1,P2,...,Pk使得

,在此式子两端同时右乘A-1得:

比较两式可知:对A和I施行完全相同的若干初等行变换,在这些初等行变化把A变成单位矩阵的同时,这些初等行变换也将单位矩阵化为A-1。

如果矩阵A和B互逆,则AB=BA=I。由条件AB=BA以及矩阵乘法的定义可知,矩阵A和B都是方阵。再由条件AB=I以及定理“两个矩阵的乘积的行列式等于这两个矩阵的行列式的乘积”可知,这两个矩阵的行列式都不为0。也就是说,这两个矩阵的秩等于它们的级数(或称为阶,也就是说,A与B都是方阵,且rank(A) = rank(B) = n)。

换句话说,这两个矩阵可以只经由初等行变换,或者只经由初等列变换,变为单位矩阵[2] 。

伴随矩阵法

如果矩阵可逆,则

注意:

中元素的排列特点是的第k列元素是A的第k行元素的代数余子式。

要求得

即为求解的余因子矩阵的转置矩阵。

A的伴随矩阵为,其中Aij=(-1)i+jMij称为aij的代数余子式。

参考资料:百度百科-逆矩阵

求逆矩阵例题

分块矩阵的应用论文答辩的问题

分块矩阵,求解!授人予鱼不如授人予渔,在《线性代数》的学习中,方法尤为重要。下面就让我们一起解决《线性代数》中令人头痛的——矩阵分块法吧!如果您对——矩阵分块法的学习比较吃力,建议您先学习——矩阵乘法,传送门开启,嘛咪嘛咪哄!工具原料线性代数课本纸,笔(任何)方法/步骤分步阅读1/12前言:想要学会《线性代数》中的——矩阵分块法,我们这次的学习将按照下面的步骤进行:(1) 了解什么是矩阵分块法;(2) 矩阵分块的例子;(3) 分块矩阵的运算规则;(4) 利用矩阵相乘求解复杂运算;(5) 分块矩阵之间的运算规则;2/12让我们首先了解矩阵分块的定义,如下图:3/12矩阵分块示例,如下图:4/12分块矩阵的运算规则一,如下图:5/12分块矩阵的运算规则二,如下图:6/12分块矩阵的运算规则三,如下图:7/12分块矩阵的运算规则四,如下图:8/12分块矩阵的运算规则五,如下图:9/12分块矩阵运算示例一,如下图:10/12分块矩阵运算示例二,如下图:11/12分块矩阵运算总结,如下图:12/12关于分块矩阵已经讲解完了,祝贺您今天又学习了新知识。注意事项今天讲解了矩阵分块,更多精彩内容,敬请关注!如果您觉得这篇经验有所帮助,别忘了投上您宝贵的一票哦!内容仅供参考并受版权保护

还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考! 1、导数在不等式证明中的应用 2、导数在不等式证明中的应用 3、导数在不等式证明中的应用 4、等价无穷小在求函数极限中的应用及推广 5、迪克斯特拉(Dijkstra)算法及其改进 6、第二积分中值定理“中间点”的性态 7、对均值不等式的探讨 8、对数学教学中开放题的探讨 9、对数学教学中开放题使用的几点思考 10、对现行较普遍的彩票发行方案的讨论 11、对一定理证明过程的感想 12、对一类递推数列收敛性的讨论 13、多扇图和多轮图的生成树计数 14、多维背包问题的扰动修复 15、多项式不可约的判别方法及应用 16、多元函数的极值 17、多元函数的极值及其应用 18、多元函数的极值及其应用 19、多元函数的极值问题 20、多元函数极值问题 21、二次曲线方程的化简 22、二元函数的单调性及其应用 23、二元函数的极值存在的判别方法 24、二元函数极限不存在性之研究 25、反对称矩阵与正交矩阵、对角形矩阵的关系 26、反循环矩阵和分块对称反循环矩阵 27、范德蒙行列式的一些应用 28、方阵A的伴随矩阵 29、放缩法及其应用 30、分块矩阵的应用 31、分块矩阵行列式计算的若干方法 32、辅助函数在数学分析中的应用 33、复合函数的可测性 34、概率方法在其他数学问题中的应用 35、概率论的发展简介及其在生活中的若干应用 36、概率论在彩票中的应用 37、概率统计在彩票中的应用 38、概率统计在实际生活中的应用 39、概率在点名机制中的应用 40、高阶等差数列的通项,前n项和公式的探讨及应用 41、给定点集最小覆盖快速近似算法的进一步研究及其应用 42、关联矩阵的一些性质及其应用 43、关于Gauss整数环及其推广 44、关于g-循环矩阵的逆矩阵 45、关于二重极限的若干计算方法 46、关于反函数问题的讨论 47、关于非线性方程问题的求解 48、关于函数一致连续性的几点注记 49、关于矩阵的秩的讨论 _ 50、关于两个特殊不等式的推广及应用 51、关于幂指函数的极限求法 52、关于扫雪问题的数学模型 53、关于实数完备性及其应用 54、关于数列通项公式问题探讨 55、关于椭圆性质及其应用地探究、推广 56、关于线性方程组的迭代法求解 57、关于一类非开非闭的商映射的构造 58、关于一类生态数学模型的几点思考 59、关于圆锥曲线中若干定值问题的求解初探 60、关于置信区间与假设检验的研究 61、关于周期函数的探讨 62、函数的一致连续性及其应用 63、函数定义的发展 64、函数级数在复分析中与在实分析中的关系 65、函数极值的求法 66、函数幂级数的展开和应用 67、函数项级数的收敛判别法的推广和应用 68、函数项级数一致收敛的判别 69、函数最值问题解法的探讨 70、蝴蝶定理的推广及应用 71、化归中的矛盾分析法研究 72、环上矩阵广义逆的若干性质 73、积分中值定理的再讨论 74、积分中值定理正反问题‘中间点’的渐近性 75、基于高中新教材的概率学习 76、基于最优生成树的'海底油气集输管网策略分析 77、级数求和的常用方法与几个特殊级数和 78、级数求和问题的几个转化 79、级数在求极限中的应用 80、极限的求法与技巧 81、极值的分析和运用 82、极值思想在图论中的应用 83、几个广义正定矩阵的内在联系及其区别 84、几个特殊不等式的巧妙证法及其推广应用 85、几个重要不等式的证明及应用 86、几个重要不等式在数学竞赛中的应用 87、几种特殊矩阵的逆矩阵求法

分块矩阵是高等代数中的一个重要内容,是处理阶数较高的矩阵时常采用的技巧,也是数学在多领域的研究工具。对矩阵进行适当分块,可使高阶矩阵的运算可以转化为低阶矩阵的运算,同时也使原矩阵的结构显得简单而清晰,从而能够大大简化运算步骤,或给矩阵的理论推导带来方便。有不少数学问题利用分块矩阵来处理或证明,将显得简洁、明快。 分块矩阵是一个矩阵, 它是把矩阵分别按照横竖分割成一些小的子矩阵 。 然后把每个小矩阵看成一个元素。将一个矩阵用若干条横线和竖线分成许多个小矩阵,将每个小矩阵称为这个矩阵的子块,以子块为元素的形式上的矩阵称为分块矩阵。同一个矩阵可以有多种不同的分块方法,从而形成不同的分块矩阵。例如矩阵也可分成也可分成特殊分块矩阵分块对角矩阵设A为n阶方阵,若A的分块矩阵在非主对角线上的子块皆为零矩阵,且在主对角线上的子块都是方阵性质:①同结构的分块上(下)三角形矩阵的和(差)、积(若乘法运算能进行)仍是同结构的分块矩阵。② 数乘分块上(下)三角形矩阵也是分块上(下)三角形矩阵。③ 分块上(下)三角形矩阵可逆的充分必要条件是的主对角线子块都可逆;若可逆,则的逆阵也是分块上(下)三角形矩阵。

时下最时髦的就是:创新点与别人不一样的地方

相关百科

热门百科

首页
发表服务