首页

> 期刊论文知识库

首页 期刊论文知识库 问题

一次函数研究性课题论文

发布时间:

一次函数研究性课题论文

1.一次函数只是自变量与因变量成线性比,在平面坐标系下的图像一般是一条直线.2.一元一次方程是一个等式,即自变量或因变量等于0的情形.一般其解为(平面坐标系下的)直线与x,y轴的交点.3.一元一次不等式,自变量与因变量之间是以不等号连接的.其解一般是一个面域(即在平面坐标系下,其解一般是图像为直线的上半部分或者是其下半部分)

3000自只有5分么?呵呵呵~~~

物理中的很都是研究都可以呀。。。弹簧测力计;s-t图像;密度等等。。。。不过貌似弹簧测力计的东西。。。你们组的陈心仪已经开始做了

数学研究性课题二次函数论文

在初中教材中,对二次函数作了较详细的研究,由于初中学生基础薄弱,又受其接受能力的限制,这部份内容的学习多是机械的,很难从本质上加以理解。进入高中以后,尤其是高三复习阶段,要对他们的基本概念和基本性质(图象以及单调性、奇偶性、有界性)灵活应用,对二次函数还需再深入学习。一、进一步深入理解函数概念初中阶段已经讲述了函数的定义,进入高中后在学习集合的基础上又学习了映射,接着重新学习函数概念,主要是用映射观点来阐明函数,这时就可以用学生已经有一定了解的函数,特别是二次函数为例来加以更深认识函数的概念。二次函数是从一个集合A(定义域)到集合B(值域)上的映射�0�6:A→B,使得集合B中的元素y=ax2+bx+c(a≠0)与集合A的元素X对应,记为�0�6(x)= ax2+ bx+c(a≠0)这里ax2+bx+c表示对应法则,又表示定义域中的元素X在值域中的象,从而使学生对函数的概念有一个较明确的认识,在学生掌握函数值的记号后,可以让学生进一步处理如下问题:类型I:已知�0�6(x)= 2x2+x+2,求�0�6(x+1)这里不能把�0�6(x+1)理解为x=x+1时的函数值,只能理解为自变量为x+1的函数值。类型Ⅱ:设�0�6(x+1)=x2-4x+1,求�0�6(x)这个问题理解为,已知对应法则�0�6下,定义域中的元素x+1的象是x2-4x+1,求定义域中元素X的象,其本质是求对应法则。一般有两种方法:(1)把所给表达式表示成x+1的多项式。�0�6(x+1)=x2-4x+1=(x+1)2-6(x+1)+6,再用x代x+1得�0�6(x)=x2-6x+6(2) 变量代换:它的适应性强,对一般函数都可适用。 令t=x+1,则x=t-1 ∴(t)=(t-1)2-4(t-1)+1=t2-6t+6从而�0�6(x)= x2-6x+6二、二次函数的单调性,最值与图象。在高中阶阶段学习单调性时,必须让学生对二次函数y=ax2+bx+c在区间(-∞,-]及[-,+∞) 上的单调性的结论用定义进行严格的论证,使它建立在严密理论的基础上,与此同时,进一步充分利用函数图象的直观性,给学生配以适当的练习,使学生逐步自觉地利用图象学习二次函数有关的一些函数单调性。类型Ⅲ:画出下列函数的图象,并通过图象研究其单调性。(1)y=x2+2|x-1|-1 (2)y=|x2-1| (3)= x2+2|x|-1这里要使学生注意这些函数与二次函数的差异和联系。掌握把含有绝对值记号的函数用分段函数去表示,然后画出其图象。类型Ⅳ设�0�6(x)=x2-2x-1在区间[t,t+1]上的最小值是g(t)。求:g(t)并画出 y=g(t)的图象解:�0�6(x)=x2-2x-1=(x-1)2-2,在x=1时取最小值-2当1∈[t,t+1]即0≤t≤1,g(t)=-2当t>1时,g(t)=�0�6(t)=t2-2t-1当t<0时,g(t)=�0�6(t+1)=t2-2 t2-2, (t<0) g(t)= -2,(0≤t≤1) t2-2t-1, (t>1)首先要使学生弄清楚题意,一般地,一个二次函数在实数集合R上或是只有最小值或是只有最大值,但当定义域发生变化时,取最大或最小值的情况也随之变化,为了巩固和熟悉这方面知识,可以再给学生补充一些练习。如:y=3x2-5x+6(-3≤x≤-1),求该函数的值域。三、二次函数的知识,可以准确反映学生的数学思维:类型Ⅴ:设二次函数�0�6(x)=ax2+bx+c(a>0)方程�0�6(x)-x=0的两个根x1,x2满足00,又a>0,因此�0�6(x) >0,即�0�6(x)-x>0.至此,证得x<�0�6(x)根据韦达定理,有 x1x2= ∵ 0<x1<x2<,c=ax1x2�0�6(0),所以当x∈(0,x1)时�0�6(x)<�0�6(x1)=x1,即x<�0�6(x)0)函数�0�6(x)的图象的对称轴为直线x=- ,且是唯一的一条对称轴,因此,依题意,得x0=-,因为x1,x2是二次方程ax2+(b-1)x+c=0的根,根据违达定理得,x1+x2=-,∵x2-<0,∴x0=-=(x1+x2-)<,即x0=。二次函数,它有丰富的内涵和外延。作为最基本的幂函数,可以以它为代表来研究函数的性质,可以建立起函数、方程、不等式之间的联系,可以偏拟出层出不穷、灵活多变的数学问题,考查学生的数学基础知识和综合数学素质,特别是能从解答的深入程度中,区分出学生运用数学知识和思想方法解决数学问题的能力。二次函数的内容涉及很广,本文只讨论至此,希望各位同仁在高中数学教学中也多关注这方面知识,使我们对它的研究更深入。

1、知识与技能:掌握二次函数的图象与性质,能够借助于具体的二次函数应用所学知识解决简单的函数问题,理解和掌握从不同的角度研究函数的性质与图象的方法。2、过程与方法:通过老师的引导、点拨,让学生在分组合作、积极探索的氛围中,通过回顾归纳,类比分析的方法掌握从函数图象出发研究函数性质和从函数解析式性质去研究函数图象这两种从不同角度研究函数的数学方法,加深对函数概念的理解和研究函数的方法的认识。3、情感、态度、价值观:让学生在数学活动中感受数学思想方法之美、体会数学思想方法之重要;同时通过本节课的学习,使学生获得研究函数的规律和方法;培养学生主动学习、合作交流的意识。重点使学生掌握二次函数的概念、图象和性质;熟悉从不同的角度研究函数的性质与图象的方法。难点借助于二次函数的解析式通过配方对函数性质的研究来分析推断二次函数的图象。

可以与物理相结合,利用S=*gt2(乘以重力加速度乘以时间的平方)计算物体下落路程。 在企业其利润随投资的变化关系一般可用二次函数表示。 例题如下 一汽车出租公司拥有汽车100辆,当每辆车的月租金为3000元时,可全租出。当每辆车月租金增加50元时,未出租的车将会增加一辆,租出的车每辆每月需维修费150元,未出租的车每辆每月需维修费50元。当每辆车的月租金为多少元时出租公司月收益最大? 设每辆车的月租金为X。则月收益为Y=[100-(X-3000)/50][X-150]-(X-3000)/50*50=162X-21000-X^2/50= -1/50(X-4050)^2+307050 所以当每辆车的月租金为4050元时出租公司月收益最大,最大收益为307050元 二次函数是数学中很重要的一部分,想必与物理有相当密切的关系,毕竟数学和物理都属理科。物理学的各种计算都要用数学知识,二次函数当然也要用。 一 直线等加速运动 我们知道,在匀速直线运动中,物体运动的距离等于速度与时间的乘积,用字母表示为S=vt,而在直线等加速运动(即通常所说的加速度)中,速度的数值是时刻在改变的,我们仍用S表示距离(米),用v0表示初始速度(米/秒),用t表示时间(秒),用a表示每秒增加的速度(米/秒)。那么直线等加速运动位移的公式是: S=v0t+ at2 就是说,再出是速度和每秒增加的速度一定时,距离是时间的函数,但不再是正比例函数,而是二次函数。 我们来看一个例子:v0=1米/秒,a=1米/秒,下面我们列表看一下S和t的关系。 注意,这里的时间必须从开始等加速时开始计时,停止等加速时停止计时。t的取值范围,很明显是t≥0,而S的取值范围,同样是S≥0。下面我们来看看它的图象: 下面我们再来看一个特殊情况。 二 自由落体位移 我们知道,自由落体位移是直线等加速运动的特殊情况,它的初始速度为0,而每秒增加的速度为米/秒,我们用g表示,但这个g不是牛顿/千克。 自由落体位移的公式为: S= gt2 我们再来看看这个函数的表格: 图象我们就不画了,它只是直线等加速运动的特殊情况,图象大同小异。 三 动能 现在我们来看另一方面的问题。我们知道,物体在运动中具有的能量叫做动能,动能与物体的质量和速度有关。比如说,以个人走过来不小心撞上你,或许没什么,但如果他是跑步时撞上你,说不定会倒退几步,而假如你站在百米终点线上,想不被撞倒都不容易。这是因为对方具有的动能随速度的增大而增大。 我们用E表示物体具有的动能(焦耳),m表示物体的质量(千克),用v表示物体的速度(米/秒),那么计算物体动能的公式就是: E= mv2 来看一个表格(m=1千克): v的取值范围显然是v≥0,E的取值范围也是E≥0,所以它的图象和前两个没什么区别。 总结 通过上面几个问题的研究,我们认为二次函数在物理方面的实际应用中的特点,在于物理学上对取值范围的要求大部分都是要求该数值大于等于0,所以图象大部分是二次函数图象的一半,除原点外,图象都在第一象限。还有,物理学上用到的公式,一般很少有常数项。 关于二次函数与物理的关系,我们就研究至此。

一次函数数学研究论文

例析一次函数的常见问题一次函数是初中数学的重要内容之一,在历年的中考中,不仅一些基础题出现,而且一些联系实际的应用题也频频“亮相”。因此,现就有关一次函数的一些常见问题举例分析如下:一、有关字母的取值(取值范围)例1已知y=(k2-1)x2+(k+1)x+k是一次函数,求k的值。简析掌握一次函数的定义“形如y=kx+b(k、b为常数k≠0)的函数,叫做一次函数”是解决这类问题的关键,一定不要忽视了k≠0的隐含条件,否则就会出错。解由题意,得k2-1=0,k+1≠0。∴k=1。二、确定一次函数的表达式例2已知一次函数的图象经过点(3,0)和点(2,5),求这个一次函数的表达式。简析这是一道最常见最基础的确定一次函数关系式的问题,在一次函数y=kx+b(k、b为常数k≠0)中有两个待定系数k和b,需要两个独立的条件,常见的求函数关系式的题型主要有利用定义求表达式,利用一次函数的性质求表达式等。确定一次函数表达式的一般步骤:(1)设出含有待定系数的一次函数关系式;(2)把已知条件(自变量与函数的对应值)代入关系式,得到关于待定系数的方程(方程组);(3)解方程(方程组),求出待定系数;(4)把求出的待定系数的值代入所设的关系式。解设一次函数的表达式为y=kx+b(k≠0)由题意,得3k+b=0,2k+b=5,解之得k=-5,b=15。∴这个一次函数的表达式为y=-5x+15。三、一次函数的图象所在象限例3一次函数在同一坐标系下的图象是图1中的()。简析一次函数y=kx+b(k≠0)的图象是一条直线,它所经过的象限是由k、b的符号决定的,理解掌握它们的关系,才可以轻松熟练的解答此类问题。解选(A)。四、有关一次函数图象的交点(一)与坐标轴的交点问题。(略)。(二)两个一次函数的图象交点问题。例4已知两条直线y=2x-3和y=6-x。①求它们的交点坐标;②利用函数图象解不等式:2x-3>6-x;③求这两条直线与轴围成的三角形的面积。简析①二元一次方程组都对应两个一次函数,于是也对应两条直线。从“数”的角度看,解方程组相当于求自变量的取值,使两个函数的值相等;从“形”的角度看,解方程组相当于确定两条直线的交点坐标。②一次函数与二元一次方程组之间的关系是解决一次函数与一元一次不等式的基础,正确理解交点坐标与自变量、函数值之间的关系,是解决这类问题的关键。③直线与坐标轴围成的三角形的面积是常见的一次函数综合性较强的题目,它涉及了许多关于坐标、函数的基础内容。这里,正确求出两条直线的交点坐标,是解决直线与坐标轴围成三角形的面积的前提。解①解方程组y=2x-3,y=6-x得x=3,y=3。∴直线y=2x-3和y=6-x的交点为(3,3)。②在同一平面直角坐标系中分别画出直线y=2x-3和y=6-x,(如图2),可以看出,两直线的交点为(3,3)。又由图所示,当x>3时,对于同一个x,直线y=2x-3上的点在直线y=6-x上相应点的上方,这时,2x-3>6-x,所以不等式的解集为x>3。③设直线y=2x-3与x轴的交点为A点,直线y=6-x与x轴的交点为B点。令y=0,分别代入两直线表达式得A(3/2,0)、B(6,0),∴AB=6-3/2=9/2,又由①知两直线的交点为(3,3)∴这两条直线与轴围成的三角形的面积为:S=12×92×3=274。五由函数图象提供信息的问题例5《邹城日报》2007年9月12日报道了“养老保险执行新标准”的消息。尚河中学课外活动小组根据消息中提供的数据,绘制出邹城企业职工养老保险个人月缴费y(元)随个人月工资x(元)变化的图象,如图3,请你根据图象提供的信息解答下面的问题:(1)赵工程师5月份的工资是3500元,这月他个人应缴养老保险元;(2)小王5月份的工资是550元,这月他个人应缴养老保险元;(3)李师傅5月份个人养老保险56元,求他5月份的工资是多少。简析这是以图象提供信息为特征,考查一次函数的综合应用题。解决这类问题首先应具备阅读图象的能力,然后要有分类的数学思想,要注意“分段”地观察图象,即自变量分成若干“段”,观察各“段”中图象的变化情况,逐一加以分析。解从图象易得(1)填元;(2)填元;(3)设中间线段所在直线的解析式为y=kx+b(k≠0),由图象,知该直线过点(557,)和(2786,)∴2786k+b=。解之得k=7/100,b=0∴y=7x/100。∴当y=56时,x=800,即李师傅5月份的工资为800元。(A)(B)(C)(D)y=2x-3y=6-x118

1.一次函数只是自变量与因变量成线性比,在平面坐标系下的图像一般是一条直线.2.一元一次方程是一个等式,即自变量或因变量等于0的情形.一般其解为(平面坐标系下的)直线与x,y轴的交点.3.一元一次不等式,自变量与因变量之间是以不等号连接的.其解一般是一个面域(即在平面坐标系下,其解一般是图像为直线的上半部分或者是其下半部分)

3000自只有5分么?呵呵呵~~~

我也不会写......

数学研究性二次函数论文

摘要: 在历届高考试题解析与应注意的问题中,一元二次函数占有重要的地位,不管在代数中,解析几何中,利用此函数的机会特别多,同时各种数学思想如函数的 ...

浅谈初中函数教学方法论文

【摘要】 在初中数学中,二次函数占据了很大的比重.二次函数对学生来说既是难点又是重点.教学过程中的难点是学生对二次函数的很多概念并不理解,另外解题过程中出现的各种问题也会影响学生学习的积极性.针对教学中的这些问题,本文对二次函数的定义重新做了系统的注释,同时对教学过程中比较适合初中学生学习的教学方法进行讨论.

【关键词】 初中数学;二次函数;教学策略

初中数学在中考中占据了很大的比重,也是学生学习过程中的很重要的基础学科,在日常生活中,数学的运用也会带来很多的好处.二次函数的学习,不仅可以提升学生对数字的敏感度,也可以提升学生的逻辑思维,改善学生对于学习的态度以及方法,进而提高学习成绩.所以,要切实改进二次函数的教学方法.

一、二次函数的概念

二次函数的概念是一个“形式化”概念,在教学时教师不能直接给出概念,而是把教学重点放在二次函数概念的形成过程上.因此,我采用了几个问题情境将学生一步步引入到概念中来.

情境一:一粒石子投入到水中,激起的波纹不断向外扩展,扩大后的圆面积y与半径x有何关系?

情境二:用16米长的篱笆围成长方形的生物园饲养小兔.(1)如果长方形的长为y米、宽为x米,那么y和x之间有何关系?(2)如果长方形的面积为y平方米、宽为x米,那么y和x之间有何关系?

情境三:运动员进行5千米的比赛,甲每小时走x千米,乙比甲每小时多走1千米,比赛结束甲比乙多用y小时,则y和x之间的关系式是什么?

情境四:要给边长为x米的正方形房间铺设地板,已知某种地板的价格为每平方米240元,踢脚线的价格为每米30元,如果其他费用为1000元,门宽米,那么总费用y为多少元?

以上的问题情境,都是函数的浓缩问题,尤其是最后两个问题就是从实际问题中找到两个变量,确定函数解析式,为形成二次函数概念做准备.所以,在二次函数的教学中,教师应该就二次函数的基础概念向学生进行详尽的阐述,使得学生对二次函数概念的理解达到较为深刻的层次.

二、二次函数的教学活动讨论

(一)课堂教学多样化

在实际教学中,单一的课堂会令学生的学习活动显露疲态,而多样化的课堂教学会提升学生的学习兴趣,同时加强学生对于知识点的掌握程度,尤其是对二次函数进行的教学活动,本来就需要学生有着很大的兴趣,不断地提出心中的疑惑,并且在教师的指导下展开验证并进行发散性的思考.所以,教师更应该在实际教学中不断地进行改进.比如,在学习二次函数的通式和其他变形形式时,可以就顶点式y=a(x+m)2+n与通式y=mx2+nx+c间的异同点展开教学.两种形式除了外在上的不同,在解题思路上也有着很大的差异.可以就二者的恒等变形进行推演,帮助学生更好地学习二次函数.

(二)数形结合,在图像中发现函数的规律

相比普通函数,二次函数的图像变化更为复杂.这里用顶点式作为例子,不同参数的变化都会对二次函数的图像产生很大的影响.而随着教学活动的日益繁重,初中数学教师现在很难有时间以及精力有机会领学生绘制二次函数的图像.这就使得学生很难对二次函数进行认真的学习,很难理解二次函数和其坐标之间的对应关系.所以,初中数学教学中二次函数图像的绘制是很有用的.同时,由于课时有限,为了保障教学质量,教师应使用坐标纸来带领学生进行图像的绘制,充分保障教学质量,并保障学生也可以熟练地画出相应二次函数的图像.比如,在教学活动中,教师可以先针对y=3x2,y=3x2+5,y=3x2-5,这三个二次函数的图像进行绘制,引导学生观察三个图像之间的位置变化,思考变化的原因.而后,带领学生绘制y=-x2,y=-(x-5)2,y=-(x+5)2的图像,然后让学生观察图像的变化,并找出规律.最后,引导学生对找到的规律进行归纳总结,使得学生做到数形结合,增强这方面的`意识,加强学生对于二次函数图像的认识,进而增加对二次函数性质的理解.

(三)激发学生兴趣,提高学习效率

相比其他学科的学习,数学学科的学习,尤其是二次函数的学习,是十分枯燥、抽象的.即使在进行图像绘制时,也需要大量的计算,这些机械性的学习都使得学生对数学学习、二次函数的学习提不起兴趣.为提高学生的学习兴趣,教师要主动进行趣味性的教学,如,利用现在日益普及的网络系统,借助多媒体设备进行教学,通过视频、图片进行趣味性教学.比如,通过FLASH动画技术来展现参数不同时图像的变化情况,使得学生对于二次函数的内在含义的掌握更加熟练.这些活动会使学生对二次函数的兴趣有着极大的改善.若教师在进行教学活动中发现学生已经有了厌学心理,要根据学生的实际情况,适当放宽对于学生的要求,以改善学生的厌学心理,避免进一步打击学生学习数学的积极性.初中阶段,学生正处于青春期,针对这一时期学生的特点,不要因为二次函数的学习受阻,进而影响学生对整个数学学科的学习热情.要充分引导学生进行学习,关注学生的心理变化,提升学生学习数学的积极性.

三、总结

因为二次函数在整个初中数学教学中扮演着很重要的角色,所以教师要充分重视在教学活动中加强学生对二次函数的理解.为了保障教学质量,教师要对教学活动进行详细的思考,根据所带学生的实际情况、二次函数的特性来进行有针对性的教学活动.通过数形结合的方法,加深学生对二次函数的图像的认知,减少学生因学习不到位而引发的厌学心理,充分保护好学生的求知欲,同时对学生不容易理解的部分以及容易混淆的部分加强教学.有效地改善教学质量,帮助学生在初中学习过程中可以开心有效地进行学习.

【参考文献】

[1]王正美.初中数学中“二次函数”的教学策略研究[J].学周刊,2014(22):47.

[2]贾靖林.信息化环境下初中数学函数教学的策略研究[J].中国教育技术装备,2011(5):85-86.

在初中教材中,对二次函数作了较详细的研究,由于初中学生基础薄弱,又受其接受能力的限制,这部份内容的学习多是机械的,很难从本质上加以理解。进入高中以后,尤其是高三复习阶段,要对他们的基本概念和基本性质(图象以及单调性、奇偶性、有界性)灵活应用,对二次函数还需再深入学习。一、进一步深入理解函数概念初中阶段已经讲述了函数的定义,进入高中后在学习集合的基础上又学习了映射,接着重新学习函数概念,主要是用映射观点来阐明函数,这时就可以用学生已经有一定了解的函数,特别是二次函数为例来加以更深认识函数的概念。二次函数是从一个集合A(定义域)到集合B(值域)上的映射�0�6:A→B,使得集合B中的元素y=ax2+bx+c(a≠0)与集合A的元素X对应,记为�0�6(x)= ax2+ bx+c(a≠0)这里ax2+bx+c表示对应法则,又表示定义域中的元素X在值域中的象,从而使学生对函数的概念有一个较明确的认识,在学生掌握函数值的记号后,可以让学生进一步处理如下问题:类型I:已知�0�6(x)= 2x2+x+2,求�0�6(x+1)这里不能把�0�6(x+1)理解为x=x+1时的函数值,只能理解为自变量为x+1的函数值。类型Ⅱ:设�0�6(x+1)=x2-4x+1,求�0�6(x)这个问题理解为,已知对应法则�0�6下,定义域中的元素x+1的象是x2-4x+1,求定义域中元素X的象,其本质是求对应法则。一般有两种方法:(1)把所给表达式表示成x+1的多项式。�0�6(x+1)=x2-4x+1=(x+1)2-6(x+1)+6,再用x代x+1得�0�6(x)=x2-6x+6(2) 变量代换:它的适应性强,对一般函数都可适用。 令t=x+1,则x=t-1 ∴(t)=(t-1)2-4(t-1)+1=t2-6t+6从而�0�6(x)= x2-6x+6二、二次函数的单调性,最值与图象。在高中阶阶段学习单调性时,必须让学生对二次函数y=ax2+bx+c在区间(-∞,-]及[-,+∞) 上的单调性的结论用定义进行严格的论证,使它建立在严密理论的基础上,与此同时,进一步充分利用函数图象的直观性,给学生配以适当的练习,使学生逐步自觉地利用图象学习二次函数有关的一些函数单调性。类型Ⅲ:画出下列函数的图象,并通过图象研究其单调性。(1)y=x2+2|x-1|-1 (2)y=|x2-1| (3)= x2+2|x|-1这里要使学生注意这些函数与二次函数的差异和联系。掌握把含有绝对值记号的函数用分段函数去表示,然后画出其图象。类型Ⅳ设�0�6(x)=x2-2x-1在区间[t,t+1]上的最小值是g(t)。求:g(t)并画出 y=g(t)的图象解:�0�6(x)=x2-2x-1=(x-1)2-2,在x=1时取最小值-2当1∈[t,t+1]即0≤t≤1,g(t)=-2当t>1时,g(t)=�0�6(t)=t2-2t-1当t<0时,g(t)=�0�6(t+1)=t2-2 t2-2, (t<0) g(t)= -2,(0≤t≤1) t2-2t-1, (t>1)首先要使学生弄清楚题意,一般地,一个二次函数在实数集合R上或是只有最小值或是只有最大值,但当定义域发生变化时,取最大或最小值的情况也随之变化,为了巩固和熟悉这方面知识,可以再给学生补充一些练习。如:y=3x2-5x+6(-3≤x≤-1),求该函数的值域。三、二次函数的知识,可以准确反映学生的数学思维:类型Ⅴ:设二次函数�0�6(x)=ax2+bx+c(a>0)方程�0�6(x)-x=0的两个根x1,x2满足00,又a>0,因此�0�6(x) >0,即�0�6(x)-x>0.至此,证得x<�0�6(x)根据韦达定理,有 x1x2= ∵ 0<x1<x2<,c=ax1x2�0�6(0),所以当x∈(0,x1)时�0�6(x)<�0�6(x1)=x1,即x<�0�6(x)0)函数�0�6(x)的图象的对称轴为直线x=- ,且是唯一的一条对称轴,因此,依题意,得x0=-,因为x1,x2是二次方程ax2+(b-1)x+c=0的根,根据违达定理得,x1+x2=-,∵x2-<0,∴x0=-=(x1+x2-)<,即x0=。二次函数,它有丰富的内涵和外延。作为最基本的幂函数,可以以它为代表来研究函数的性质,可以建立起函数、方程、不等式之间的联系,可以偏拟出层出不穷、灵活多变的数学问题,考查学生的数学基础知识和综合数学素质,特别是能从解答的深入程度中,区分出学生运用数学知识和思想方法解决数学问题的能力。二次函数的内容涉及很广,本文只讨论至此,希望各位同仁在高中数学教学中也多关注这方面知识,使我们对它的研究更深入。

研究性学习其本质是学生的教师的引导下进行有效的体验活动,从而利用推理、类比、分析等方法得出教学目标所要求的学习内容。本文根据研究性学习的含义,分别阐述了研究性学习在课堂开展的四个基本过程:准备阶段——体验阶段——探究阶段——分享总结阶段。能过多个教学中常见案例,把研究性学习方式与传统教学方式作对比,从而体现研究性学习的优势。关键词:研究性学习、体验、探究、分享、过程 新课程标准的提出到落实已有经过一段较长时间的实施期。在我市使用新教材进行教学已有四年之久了,而新课标的理念在教学中也真正的落到实处。这就为传统教学模式带来重大的冲击。从心理学的角度来看,不同的教学模式会导致不同的课堂气氛、师生关系、师生在课堂中的地位、学习模式等。在这个新时期,一种新的教学--学习方式产生了——研究性学习。研究性学习其本质是学生的教师的引导下进行有效的体验活动,从而利用推理、类比、分析等方法得出教学目标所要求的学习内容。以下是本人在教学过程中总结出来的一点经验,我认为开展研究性学习的课堂应该有以下几个步骤: 一、研究性学习以丰富的现实材料为基础(准备阶段) 数学是来源于生活,也用于生活的一种技能。在小学阶段,数学的生活性、实用性尤为突出。新课程标准明确提出,让学生学有用的数学。我们都知道任何的学习都要以生活经验、知识经验为基础,因此,教学的过程中,作为老师应该有意识地提出大量的现实材料,以为学生的学习打下基础。在教学时学生很多时候不能马上联想到与学习内容相关的内容,即使能列举出来,也未必是完整的,这时就要求老师要有这样的教学预设,并做好材料的准备。 如在教学一年级《找规律》一课中,课一开始的时候,我出示了大量的有规律的图片:如衣服或窗帘上的图案、路边花草的摆放、地砖的排列、节日的布置……,让学生感受到规律的美,在内心产生出想学规律、想创造规律的情感。如果没有这些准备,学生单纯根据课本的一张主题图来学习规律,相信后来的学习中学生是不会有研究规律的发生、发展的愿望了。 为教学提供丰富的现实材料不单单是为了引起研究的兴趣,它再是为了给研究性学习提供研究的材料。数学与物理有一个重大的区别,那就是物理只要证明某一现象存在就可以了成立了,而数学则需证明这一现在在任何情况、任何条件下都必须正确才成立,所以数学知识的研究是需要非常大的严紧性。在教学中,我让学生了解,别人说的不一定是正确的,即使是老师说的、书本说的需要经过自己的验证才能确定,这使学生有了研究的知识的精神。 如在教学一年级《0的认识》时,有一个知识点是任何数加0都是不变的。在传统的教学中,一般只会出示1到2条关于几加0的算式就可以告诉学生这一定律了。在研究性学习的指导下,我让学生看多幅关于几加0的图片,列出多条几加0的算式,学生在经历了这么多的算式对比后,再进行小组讨论,从而让任何数加0都是不变的规律由学生的口中说出。 知识由老师硬塞给学生,那么这些知识永远都还是老师的;而如果知识是自己研究出来的,好么这些知识永远都是自己的。 二、研究性学习以游戏、活动、实验等为主要形式(体验阶段) 研究性学习区别于传统教学的另一主要内容就是课堂的组织形式。研究性学习以游戏、活动、实验等方式为主,让学生在动手操作、体验活动中过程中把数学“做”出来。游戏、活动、实验都是一个体验的过程,有体验才能使思考更深入、更有根有据。体验的过程其实就是研究学习的过程,因此在教学中要有意识地开展有意义的体验活动。 如二年级的《角的认识》,其中有一个知识点的让学生理解角的大小与边的长短无关。我让学生用三角尺画出一个角(45度角),由于三角尺有大有小,学生画出来的角边的长短也不一样。然后学生可以去找,有没有与自己的角不一样大小的。在这样的实验下,学生发现,角的大小与边的长短无关。 又如在一年级《平面图形的认识》教学中,我以学生已有的对立体图形认识的经验为基础,让学生找出立体图形上的面,并把面“搬”出来得出平面图形。学生通过观察、讨论、交流、汇报……在立体图形上找到了各种平面图形,也找到了把面“搬”出来的方法。学生通过撕、画、剪等活动,做出了平面图形。在这个“做”的过程中,学生了解到了面从体中来,了解到几种平面图形的特征。利用活动使学生掌握了本节课所要求达到的教学目标。这其实就是一个研究的过程,根据困难、问题,积极地思考解决的方法,经过尝试——再尝试——到成功,学生感受到学习的乐趣,体验到知识获取的过程。 三、研究性学习以推理、类比、分析为手段(探究阶段) 每一个数学知识都不会是独立存在的,而是相互联系、互相转化的。有了研究材料,有了体验过程,不代表知识就能被“创造”出来的,这些都只是条件,必须要经过推理、类比、分析等方法去伪存真,得出知识的精粹。分析,把研究材料有条理地进行整理,思考其含义。推理,可以使研究材料知识化。类比,根据知识相同、相似的部分进行分类,后比较其差异,从而更好地掌握知识。 在二年级《找规律》教学中,我出示一组有规律的图案,然后推测这组图案未出示部分。学生根据已有条件找出图案的规律,然后进行推理,有根有据地说出原因,思考的方法。又如学习《三角形的边的规律》时,根据两点间直线距离最短,可以推理出两边之和大于第三边的规律。…… 如果学生能保持这种分析问题的策略、研究的精神,那尽管以后可能会把某些定律忘记,但还是可以再推算出来。 四、研究性学习以分享为课堂总结(分享总结阶段) 学习的后期,我们需要把知道进行总结整理。在研究性学习中以分享为主要形式。传统教学中,我们往往只关注到对知识技能的总结,而忽略了对过程方法、情感态度价值观的总结。而这些恰恰是新课程标准中对教学目标的三个惟度的要求。一节成功的课,不单是在知识技能方面对学生有提升,而应该是在各个方面上都对学生有一定的作用。以分享的方式或以对三个惟度的教学目标都能体现。以下是我在教学《解决问题》后的分享活动,我以几个问题逐层深入地学生总结整节课的收获,并简单分析学习了这节课后的作用: “闭上眼睛回忆这节课的过程。你认为自己最成功是什么?”(关于情感态度价值观的分享,让学生体验到成功,提升自己的价值,感受到数学学习的乐趣。) “如果以后现学到类似的问题,你会怎样解决?”(这是学法、知识、技能的总结,让学生思考这节课是怎样学的,学到什么,以后遇到这类问题也将可以用同样的方法解决。) “你认为在生活中,这些知识会用得上吗?哪能里会用到?”(突出数学的有用性、有效性。并把数学回归到生活之中,使学生跳出书本的框框,了解数学的用处。) 有效的分享对于一节课来说虽然只是一小部分,但它是作用十分重要,它能给课堂画龙点睛,把学生原来不够清晰的思路理顺,突显学生的成功,体现知识的现实意义。 研究性学习是一个过程,重视过程是它的一大原则。学生的学习是一个过程,它包括学习的准备、体验、思维、总结。每一部分都重要,每一个环节都是密不可分的,没有前一个阶段作铺垫,后一个阶段将无法实施。在这个过程中,学生学到的是学习的方法、数学地思考。这正好比“授人以鱼,不如授人以渔”,让学生掌握学习方法才是学习最核心的内容。只有自己研究出来的结果才是永难忘记的知识。

函数一致连续性研究论文

还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考! 1、导数在不等式证明中的应用 2、导数在不等式证明中的应用 3、导数在不等式证明中的应用 4、等价无穷小在求函数极限中的应用及推广 5、迪克斯特拉(Dijkstra)算法及其改进 6、第二积分中值定理“中间点”的性态 7、对均值不等式的探讨 8、对数学教学中开放题的探讨 9、对数学教学中开放题使用的几点思考 10、对现行较普遍的彩票发行方案的讨论 11、对一定理证明过程的感想 12、对一类递推数列收敛性的讨论 13、多扇图和多轮图的生成树计数 14、多维背包问题的扰动修复 15、多项式不可约的判别方法及应用 16、多元函数的极值 17、多元函数的极值及其应用 18、多元函数的极值及其应用 19、多元函数的极值问题 20、多元函数极值问题 21、二次曲线方程的化简 22、二元函数的单调性及其应用 23、二元函数的极值存在的判别方法 24、二元函数极限不存在性之研究 25、反对称矩阵与正交矩阵、对角形矩阵的关系 26、反循环矩阵和分块对称反循环矩阵 27、范德蒙行列式的一些应用 28、方阵A的伴随矩阵 29、放缩法及其应用 30、分块矩阵的应用 31、分块矩阵行列式计算的若干方法 32、辅助函数在数学分析中的应用 33、复合函数的可测性 34、概率方法在其他数学问题中的应用 35、概率论的发展简介及其在生活中的若干应用 36、概率论在彩票中的应用 37、概率统计在彩票中的应用 38、概率统计在实际生活中的应用 39、概率在点名机制中的应用 40、高阶等差数列的通项,前n项和公式的探讨及应用 41、给定点集最小覆盖快速近似算法的进一步研究及其应用 42、关联矩阵的一些性质及其应用 43、关于Gauss整数环及其推广 44、关于g-循环矩阵的逆矩阵 45、关于二重极限的若干计算方法 46、关于反函数问题的讨论 47、关于非线性方程问题的求解 48、关于函数一致连续性的几点注记 49、关于矩阵的秩的讨论 _ 50、关于两个特殊不等式的推广及应用 51、关于幂指函数的极限求法 52、关于扫雪问题的数学模型 53、关于实数完备性及其应用 54、关于数列通项公式问题探讨 55、关于椭圆性质及其应用地探究、推广 56、关于线性方程组的迭代法求解 57、关于一类非开非闭的商映射的构造 58、关于一类生态数学模型的几点思考 59、关于圆锥曲线中若干定值问题的求解初探 60、关于置信区间与假设检验的研究 61、关于周期函数的探讨 62、函数的一致连续性及其应用 63、函数定义的发展 64、函数级数在复分析中与在实分析中的关系 65、函数极值的求法 66、函数幂级数的展开和应用 67、函数项级数的收敛判别法的推广和应用 68、函数项级数一致收敛的判别 69、函数最值问题解法的探讨 70、蝴蝶定理的推广及应用 71、化归中的矛盾分析法研究 72、环上矩阵广义逆的若干性质 73、积分中值定理的再讨论 74、积分中值定理正反问题‘中间点’的渐近性 75、基于高中新教材的概率学习 76、基于最优生成树的'海底油气集输管网策略分析 77、级数求和的常用方法与几个特殊级数和 78、级数求和问题的几个转化 79、级数在求极限中的应用 80、极限的求法与技巧 81、极值的分析和运用 82、极值思想在图论中的应用 83、几个广义正定矩阵的内在联系及其区别 84、几个特殊不等式的巧妙证法及其推广应用 85、几个重要不等式的证明及应用 86、几个重要不等式在数学竞赛中的应用 87、几种特殊矩阵的逆矩阵求法

讨论函数的一致连续性意义:所谓一致连续,就是要求当函数的自变量的改变很小时,其函数值的改变也很小,从而要求函数的导数值不能太大——当然只要有界即可。

函数f(x)在[a,b]上一致连续的充分必要条件是在[a,b]上连续。

函数f(x)在[a,b)上一致连续的充分必要条件是f(x)在(a,b)上连续且f(b-)存在。

意义

从上述定义中可以看出,当函数在区间I上一致连续时,无论在区间I上的任何部分,只要自变量的两个数值接近到一定程度,总可以使相应的函数值达到预先指定的接近程度。

某一函数f在区间I上有定义,如果对于任意的ε>0,总有δ>0 ,使得在区间I上的任意两点x'和x",当满足|x'-x"|<δ时,|f(x')-f(x")|<ε恒成立,则该函数在区间I上一致连续。对于在闭区间上的连续函数,其在该区间上必一致连续。一致连续的函数必定是连续函数。

由函数的连续性定义到一致连续性定义的理解思路(因为 数学语言 很严谨,但却不丰富,故不少朋友对这两个定义理解起来都比较吃力,其实这两个定义有很大的差别,现在以我的理解,用比较饱满的言语,来叙述一下连续性定义到一致连续性定义的理解思路以及二者的区别。其实将本文耐心读完后,你就知道这两个定义想讲什么了。) 一、由函数的连续性定义到一致连续性定义的理解思路: 函数连续性的定义是 :对于任意小的ε>0,和在区间I上所有的点x而言,存在δ>0,同时对于任意属于N(x,δ)的y而言,如果都存在|f(y)-f(x)|<ε的话,那么说明对于I上任意的点x而言极限都是存在的,从而点点都连续,故函数在I上连续。 某牛逼的数学家看到这个定义后,他画了一个函数图,比如说F=1/x这个函数图,显然这个函数F是连续的,也适用于函数连续性的定义。于是某牛逼开始根据这个图和连续的定义来胡思乱想了。。。。。。 这个牛逼的人,琢磨的是F在 第一象限 即x>0时的图像,他将连续的定义用于这个图中:他在图上取了任意的三个点,根据连续的定义,他先假设这三个点在Y轴上都对应同一个已经被确定下来的ε,这时他观察X轴发现,图上三个点也都可以找到与之对应的δ,但也惊奇的发现,三个点对应的δ区间却不一样。。。 (他开始回忆什么是δ区间?对于函数中一个固定的点而言,一个固定的ε肯定对应着许多δ,这些δ可以组成一个最大的区间,叫δ区间。即一个固定的点,一个确定的ε,对应一个确定的δ区间,而且只有当ε改变时,这个δ区间才会改变,从而也说明对于一个固定的点而言,δ区间的改变只受ε改变的影响。) 但他在三个点上看到的却不是这么一回事,从三个点的角度看,即使固定下来一个ε,δ区间也会随着三个点位置的不同而发生变化,所以他得出了一个结论——基于三个点,进而对于函数的全局上来说,δ区间除了受ε影响外,还会受到点位置的不同的影响。 基于连续性的定义,从一个点的角度看,δ区间的改变只受ε改变的影响;从全局看呢,δ区间还受点位置的影响。这时他在琢磨了:在连续性定义中,δ区间受到两个因素的影响,在这个定义下,δ区间受到的影响因素太多了,以后碰到事情不好分析,他希望创造出一个新的连续定义来规避其中点位变化的因素,在这个新的连续性定义下,让δ只受ε的影响。这该如何规避呢? 他发现,此前X1 X2  X3  三个点对应着三个不同的δ区间δ1,δ2,δ3,其中区间δ3最小,于是他选了其中最小的一个区间δ3,他将区间δ3放在X1,X2这两个点上试了一下他发现,如果X1、X2不用此前的δ1,δ2区间,而只用最小的这个δ3区间,其实函数也是连续的。进而他想,对于一个连续函数,在确定一个ε后,在区间I上那么多点X中,肯定也存在一个最小的δ区间,使得函数连续。那么如果把这个最小的δ区间构建到新的定义中,取代原来的那些大小不一变化的δ区间,结果会如何,会不会达成规避点位影响的目标呢? 于是他弄了一个新的连续定义,起名一致连续定义,同时他给最小的这个δ区间取了个新名字,叫δ(ε),该定义是: 如果函数是一致连续的,那么对于任意小的一个ε>0,对于在区间I上所有的点x而言,就对应着许多不同的δ区间,同时也会存在一个最小的δ区间,记为δ(ε)>0,然后,对于任意属于N(x,δ(δ))的y而言,也将存在|f(y)-f(x)|<ε。 某牛逼回想了一下发现,在这个新的连续概念中,虽然事实上ε不变,δ区间还是会随着点位置的不同而发生变化,但好在δ(ε)是变化的δ区间中被确定的最小的一个,所以在新概念中,δ(ε)不随点位的变化而变,只随ε的变化而变,从这个意义上,他规避了点位的影响。 函数的连续性 一致连续性的异同 一:δ的概念不一样: 函数连续性的定义是 :对于任意小的一个ε>0,和在区间I上所有的点x而言,存在δ>0,同时对于任意属于N(x,δ)的y而言,如果都存在|f(y)-f(x)|<ε的话,那么说明对于I上任意的点x而言极限都是存在的,从而点点都连续,故函数在I上连续。 (这里每个点对应的δ都可能会不同) 一致是: 对于任意小的一个ε>0,对于在区间I上所有的点x而言,就对应着许多不同的δ区间,同时也会存在一个最小的δ区间,记为δ(ε)>0,然后,对于任意属于N(x,δ(δ))的y而言,存在|f(y)-f(x)|<ε。 (这里的δ都是固定的最小的一个) 二:规避X的影响因素 连续的δ受X影响,一致的δ(ε)因为是被固定下来了,δ虽然受X影响,δ(ε)只受ε影响。 三:适用的连续图像不同 如对于1/x的图像,看 第一象限 , 函数连续性定义是适用的,但一致连续就不适用。因为在一致的概念中,需要首先找到一个最小的δ区间即δ(ε),把δ(ε)定下来后,使得整个区间I都适用,但在该图像 第一象限 中,X趋于0时,δ区间是不断变小的,在整个I上你都无法确定哪一个是最小的δ,即无法确定下来δ(ε),先天条件就不足,当然不适用一致性。换句话说,即使你选了一个点位,你认为该点的区间是最小的δ(ε),当你将这个δ(ε),向X趋于无穷大套用时,当然都连续,但当你将这个δ(ε),向X趋于0的方向套用时,你始终会碰到一个点,使得|f(y)-f(x)|》=ε。 四:一致性是指X变化一致(这点我觉得最关键,是逆向思维) 从一致性的定义中可以看出来,如果函数一致连续的,那么当所有的点在X上同时变化一个相等的范围δ(ε)时,其所有点对应函数值Y的变化最大范围,就是那个最小的δ区间即δ(ε)映射的范围,也就是说,对于一致连续函数,如果固定的一个δ(ε),当所有的点都同时变化时,函数值Y的变化有上限范围ε。 但是在连续的定义中就看不出以上类似结论,只能说,当所有的点其函数值同时变动一个相等的范围ε时,其在X上变动的范围对应着不同的δ。 综上,一致连续的定义更严格,条件更细致,也让我们看到了连续的一些新的特质。

相关百科

热门百科

首页
发表服务