研究性学习:“数学在生活中的应用”结题报告一、课题研究背景:数学是一门很有用的学科。自从人类出现在地球上那天起,人们便在认识世界、改造世界的同时对数学有了逐渐深刻的了解。早在远古时代,就有原始人“涉猎计数”与“结绳记事”等种种传说。可见,在早期一些古代文明社会中已产生了数学的开端和萌芽。在bc3000年左右巴比伦和埃及数学出现以前,人类在数学上没有取得更多的进展,而在bc600—bc300年间古希腊学者登场后,数学便开始作为一名有组织的、独立的和理性的学科登上了人类发展史的大舞台。如今,数学知识和数学思想在工农业生产和人们日常生活中有极其广泛的应用。譬如,人们购物后须记账,以便年终统计查询;去银行办理储蓄业务;查收各住户水电费用等,这些便利用了算术及统计学知识。此外,社区和机关大院门口的“推拉式自动伸缩门”;运动场跑道直道与弯道的平滑连接;底部不能靠近的建筑物高度的计算;隧道双向作业起点的确定;折扇的设计以及黄金分割等,则是平面几何中直线图形的性质及解直角三角形有关知识的应用。由此可见,古往今来,人类社会都是在不断了解和探究数学的过程中得到发展进步的。数学对推动人类文明起了举足轻重的作用。二、课题研究目的和意义:1.感受数学,体会数学的价值。“数学在生活中的应用”的研究性学习让同学收集和开发自己生活中的素材,感受数学与我们现实生活的密切关系,让大家感受生活与数学同在,来体验数学自身价值。2.领悟数学,思想升华。“数学在生活中的应用”的研究性学习让学生经历知识的再创造,体验知识的形成过程,形成自身有效的知识,使自己的思想得到进一步的升华。3.会用数学。“数学在生活中的应用”的研究性学习让自己学会应用数学,达到直接为社会创造价值的最终目的。三、研究过程1.成立课题小组(第一学期第12周)。2.开题(第一学期第13周)。组织学生做好开题报告,介绍本课题的选题背景、立意、课题论证和实施计划。3.研究。(第一学期第14周至第二学期第15周)在老师的启发引导下,本课题小组同学积极参与,利用课余、课外时间,通过数学课本、化学资料等对“数学在生活中的应用”课题进行探索、研究和计算,还有部分同学对研究成果通过实验来验证,体现了大家严谨的科学态度。在老师的指导下,将有关“数学在生活中的应用”的研究成果和心得体会写成小论文。四、课题:“数学在生活中的应用”的研究成果小论文:不等式、数列、函数在生活中的应用(见附件1)五、心得体会通过这次研究性学习我们学会了很多东西,也懂得了很多。以前学数学一般是理论性的比较多,缺乏与实际的联系,学了不知道怎么用。这次研究性学习的最大所得,不在于取得什么成果,而是培养一种思维习惯,一种将现实生活中的现象转化为问题并进行研究的习惯。当我们在黑板上写字,用力过大而将粉笔折断时,是否想到了粉笔多长才是最优化长度;又当我们去打电话时,是否能够联想到这类似于“函数模型”,从而求出电话费与时间的函数。甚至当我们玩游戏时,能否用离散和概率的思想。不禁一笑后,你会发现,其实这些问题都来自于我们的生活,但是它们的复合与延伸,就可能涉及到今日科学的前沿。 另外感觉自己的知识面还是不够宽,例如老师给了很多有价值的问题,由于我们知识浅薄,最终我们选择了“函数、不等式、数列在生活中的应用”等进行探索、研究。对问题数据计算还可以,但对计出的数据找规律时,就遇到了困难,老师给我们作了指导。在如果平时学习时,多注意理论与实践的结合,学以致用,做起研究性学习就更能得心手。 研究性学习毕竟是个集体项目,它不仅培养了我们的合作精神,而且也培养了大家的团结友爱,互助协作的精神。所以组成小组后,我们组就常常在一起讨论题目,等到讨论成熟后,就进行计算研究。俗话说,三个臭皮匠顶个诸葛亮。大家在一起如果做出一些东西来,就会有一种成就感,这也是 研究性学习带给我们的乐趣所在。研究性学习培养的是一种创新精神,以及快速解决问题的能力。参加研究性学习小组,也给了我们一次简单的科学研究工作的体验。科学工作所需要的严谨,大胆都在这样活动中有着完整的体现。使我们体会到了科研工作的艰辛,这些将对我们今后的学习与工作产生积极的作用和深远的影响。
数学研究性学习课题 1、银行存款利息和利税的调查 2、气象学中的数学应用问题 3、如何开发解题智慧 4、多面体欧拉定理的发现 5、购房贷款决策问题 6、有关房子粉刷的预算 7、日常生活中的悖论问题 8、关于数学知识在物理上的应用探索 9、投资人寿保险和投资银行的分析比较 10、黄金数的广泛应用 11、编程中的优化算法问题 12、余弦定理在日常生活中的应用 13、证券投资中的数学 14、环境规划与数学 15、如何计算一份试卷的难度与区分度 16、数学的发展历史 17、以“养老金”问题谈起 18、中国体育彩票中的数学问题 19、“开放型题”及其思维对策 20、解答应用题的思维方法 21、高中数学的学习活动——解题分析 A)从尝试到严谨、B)从一个到一类 22、高中数学的学习活动——解题后的反思——开发解题智慧 23、中国电脑福利彩票中的数学问题 24、各镇中学生生活情况 25、城镇/农村饮食构成及优化设计 26、如何安置军事侦察卫星 27、给人与人的关系(友情)评分 28、丈量成功大厦 29、寻找人的情绪变化规律 30、如何存款最合算 31、哪家超市最便宜 32、数学中的黄金分割 33、通讯网络收费调查统计 34、数学中的最优化问题 35、水库的来水量如何计算 36、计算器对运算能力影响 37、数学灵感的培养 38、如何提高数学课堂效率 39、二次函数图象特点应用 40、统计月降水量 41、如何合理抽税 42、市区车辆构成 43、出租车车费的合理定价 44、衣服的价格、质地、品牌,左右消费者观念多少? 45、购房贷款决策问题 研究性学习的问题与课题 (来自《数学百草园》,作者叶挺彪) 《 立几部分 》 问题1 平几中证点共线、线共点往往较难,通常出现在竞赛中。而立几中的这类问题却是非简单,主要的依据仅仅是平面的基本性质:两个平面的公共点共线。可否将平几问题的这类问题进行升维处理。即把它转化为立几问世题加以解答。 问题2 用运变化的观点对待数学问题,将会发现问题的实质及问题之间的联系,但对于立几中的这方面还显得不够,可以通过整理、收集这方面的材料加以综合研究。 问题3 作为降维处理的一个例子:可考虑异面直线距离的几种转化,如转化为线面距、点线距、面面距等。 问题4 异面直线的距离是:异面直线上两动点的连线中最短的线段长度。所以可以用函数的观点来解决。即建立一个两动点的距离函数,利用求函数的最小值达到目的。 问题5 立几中的许多问题可化归为确定点在平面内的射影位置。如点面距、点线距、体积等。于是确定点在平面内的射影显得非常重要,试给出一种通用方法进行确定。 问题6 作二面角的平面角是立几中的难点,常用方法有:定义法、三垂线法、垂面法。其实质是以点定位,即当点在二面角的棱上时用定义法、当点在一个半平面内时用三垂线法、当点在空间时时用垂面法。问题似乎已解决。但对于较复杂的图形,由于点的个数较多,以哪个点作为定位点就难以决定。试给出以线定位来作二面角的平面角的方法及步骤。 问题7 等积变换在立几中大显上内身手,而非等积变换是它的一般情形,作用更大,却被人们所忽视。利用非等积变换能解决求体积、求距离、证明位置关系等问题。试利用类比平几的相应方法探索之。 问题8 将三垂线定理进行推广与引伸,即所谓三面角的正、余弦定理及其特例直三面角的正、余弦定理。以开阔眼界。 《解几部分 》 问题9 对于数学的公式,我们应当做到三会:即正用、变用和逆用。如解几中有许多公式如两点距离、点到直线距离公式,定比分点、斜率公式等,考虑其逆用,就可得到构造法证题,试研究解几中的各种公式逆用,以充实构造法证明。 问题10 我们对待任何问题(包括解决数学问题)往往用自己的审美意识去审视,以调节自己的行动计划。在解几中探索与搜集以美的启迪思维的题材,加以整理与综合研究。 问题11 整理解几中常常被人忽视和特例而使问题的解决不完整的有素材,如用点斜式而忽视斜率存在,截距式而忽视截距为零等。 问题12 利用角参数与距离参数的相互转化以实现命题的演变,达到以点带面,触类旁通的目的。 问题13 将与中点有关的问题及解决方法进行推广,使之适用于定比分点的相应问题与方法。 问题14 研究求轨迹问题中的坐标转移法与参数法的相互联系。 问题15 关于斜率为 1的特殊直线的对称问题的简捷解法中,概括出适用范围更加广阔的解题策略。 问题16 解决椭圆问题不如圆容易,能否使问题化归,即椭圆问题的圆化处理,进而研究圆锥曲线(包括其退化情形如两条相交线,平行线等)的圆化处理。 问题17 整理与焦半径有关的问题,并将之“纯代数化”,进而研究其“纯代数解法”,从中探索新方法。 问题18 把点差法解中点弦问题进行推广,使之能解决“定比分点弦”问题。 问题19 求轨迹问题中,纯粹性的简捷判别。 问题20 在定比分点公式、弦长公式、点到直线的距离公式的推导过程中隐含着“射影思想”,扩大这思想在解几中的地位或功能。 问题21 对平移变换的解题功能进行综述。 问题22 与中点弦有关的圆锥曲线中的参数范围确定问题,往往需要建立不等式进行求解,各种方法中以点在曲线内部条件为隹。试将这方法推广到定比分点弦的情形。 《函数部分 》 问题23 空集是一切集合的子集,但在解决关集合问题时,常常忽略这一事实。试整理这方面的各类问题。 问题24 整理求定义域的规则及类型(特别是复合函数的类型)。 问题25 求函数的值域、单调区间、最小正周期等有关问题时,往往希望将自变量在一个地方出现,所以变量集中的原则就提供了解题的方向,试研究所有与变量集中原则有关的类型(如配方法、带余除法等)。 问题26 总结求函数值域的有关方法,探索判别式法的一般情形——实根分布的条件用于求值域。 问题27 利用条件最值的几何背景进行命题演变,与命题分类。 问题28 回顾解指数、对数方程(不等式)的化归实质(利用外层函数的单调性去掉两边的外层函数的符号),我们称之为“给函数更衣”,于是我们可以随心所欲地将方程(不等式)进行演变。你能利用这一点编拟一些好题吗。 问题29 探求“反函数是它本身”的所有函数。从而可解决一类含抽象函数的方程,概括所有这种方程的类型。 问题30 在原点有定义的奇函数,其隐含条件是f(0)=0,试以这一事实编拟、演变命题。 问题31 把两面镜子相对而立,若你处于其中,将看到许多肖像位置呈现出周期性,你能把这一事实数学化吗?若把轴对称改为中心对称又怎么结论? 问题32 对于含参数的方程(不等式),若已知解的情况确定参数的取值范围,我们通常用函数思想及数形结合思想进行分离参数,试概括问题的类型,总结分离参数法。 问题33 改变含参数的方程(不等式)的主元与参数的地位进行命题的演变。探索换主元的功能。 《三角部分 》 问题34 数形结合是数学中的重要的思想方法之一,而单位圆中的三角函数线却被人们所遗忘,试探它在解决三角问题中的数形结合功能。 问题35 概括sinx+cosx=a时相应x的取值范围,及问题条件中涉及这一条件时的所隐含的结论。 问题36 整理三角代换的的类型,及其能解决的哪几类问题。 问题37 三角最值的构造证法中,型如 ,可转化成:1)动点()与定点(-d,-b)连线的斜率;2)或先化为 从而转化为动点()与定点 连线斜率等,考虑各种构造法的背景的联系,能否以此联系用于解决几何问题。 问题38 一个三角公式不仅能正用,还需会逆用与变用,试将后者整理之。 问题39 概括三角恒等式证明中的一次弦式、高次弦式和切式证明的常用方法。 问题40 三角形的形状判定中,对于含边角混合关系的条件,利用正、余弦定理总有两种转化,即转化为角关系或边关系,探索其中一种对另一种解法的启示功能。 《不等式部分 》 问题41 一个数学命题若从正面入手分类情况较多,运算量较大,甚至无法求解,此时不妨考虑其反面进行求解得解集,然后再取其补集即得原命题的解。我们把它称为“补集法”,试整理常见的类型的补集法。 问题42 概括使用均值不等式求最值问题中的“凑”的技巧 ,及拆项、添项的技巧。 问题43 观察式子的结构特征,如分析式子中的指数、系数等启示证题的的方向。 问题44 探求一此著名不等式(如柯西不等式、排序不等式等)和多种证法,寻找其背景以加深对不等式的理解。 问题45 整理常用的一此代换(三角代换、均值代换等),探索它在命题转化中的功能。 问题46 考虑均值不等式的变用,及改变之后的不等式的背景意义。 问题47 分母为多项式的轮换对称不等式,由于难以参于通分,证明往往较难。探求一种代换,将分母为多项式的转化为单项式。 问题48 探索绝对值不等式和物理模拟法 如果还有什么相关的课题,请各位同行提出。参考资料:
同增异减法则,复合函数的话
“高中数学课程标准”正在积极、紧张的讨论和制订过程中,为了更广泛地了解社会各主要行业对高中数学课程和内容的需求,以便为“标准”的制订提供依据,我们在大学的理、工、文、农(含林医)、经济等专业和社会生活中理、工、文、农(含林医)、经济等行业中选择了有代表性的方向进行了调查、研究,现将有关结论综述如下,本次调查的其它结论见附录三、附录四、附录五、附录六、附录七。一、调查的对象、内容和调查方式。本次调查,我们选取了理科的物理、化学、计算机,工科的工程、机械、电工、无线电、文科的文学、艺术、历史、政治,农科的农业、林业、渔业、地理,以及经济学等专业作为主要调查对象。调查内容见附录一。调查方式采用问卷调查、走访提问、资料搜集等形式进行。二、调查结论。1.对数学的认识.调查结果显示,数学在现代社会生产、生活中各个方面的应用越来越广泛,数学已经渗透到各行各业,各个专业方向。从卫星到核电站,从天气预报到家居生活,高技术的高精度、高速度、高自动、高质量、高效率等特点,无不是通过数学模型和数学方法并借助计算机的控制来实现的。产品、工程的设计与制造,产品的质量控制,经济和科技中的预测和管理,信息处理,资源开发和环境保护,经济决策等,无不需要数学的应用。另外,数学文化、数学的思想方法,也处处影响人们的生产和生活。2.对现行高中数学教学内容使用情况的调查。本次调查把现行高中数学教材(必修本)和原二省一市,现十省市使用的高中数学教材的15个部分内容分为经常用到、有时用到、偶尔用到和不用等四个方面进行调查(见附录一)。调查结果如下(各个方面的意见不一致,大致统计)。经常用到:集合与简易逻辑,函数的解析式、图象,幂函数,指数函数,不等式的性质,解一元二次不等式,不等式的证明,解任意三角形,数列的通项公式,等差数列,等比数列,曲线与方程,直线方程,二元一次不等式的图象解法,简单线性规划问题,平面图形直观图的画法,加法原理,乘法原理,排列及排列数公式,组合及组合数公式,概率的意义,等可能事件的概率,互斥事件有一个发生的概率,独立重复试验发生的概率的,离散型随机变量分布列、期望值、方差,抽样方法,正态分布,线性回归,数列的极限,函数的极限,函数的连续性,导数的意义,初等函数的求导,函数的最大与最小值,求简单函数的不定积分,图形的面积计算,图形的体积。有时用到:映射, 反函数,指数函数 ,对数函数, 数学归纳法, 平面向量的运算,平面向量的坐标表示,平面向量的数量积, 三角函数的诱导公式,三角函数的图象和性质,圆的方程,抛物线及其标准方程,平面及其基本性质,空间向量及其运算,用空间向量处理几何问题,总体分布的估计,复合函数的求导,微分的运算,利用导数研究函数的性质,求简单函数的定积分,微积分基本公式,积分的其它应用,解指数不等式,复数的向量表示。偶尔用到:解无理不等式,解对数不等式,直线与平面的位置关系,多面体,棱柱,球, 椭圆极其标准方程,双曲线及其标准方程,椭圆、双曲线、抛物线的简单几何性质, 二项式定理,复数的运算。基本不用:平面与平面的位置关系,异面直线, 三角函数的和差化积与积化和差,棱锥,复数的三角形式运算。3.对是否可以列入新高中数学课程内容的调查。本次调查列出24个知识项分为可以与不可以两个方面进行调查(见附录一),结果如下(各个方向的意见不一致,大致统计)。认为可以列入的有:估算, 算法,向量与变换,行列式,矩阵的代数运算(以二维为主),逻辑量词,离散数学初步,数列的递推,条件概率,概率密度,连续型随机变量的分布列、期望值与方差,区间估计,相关系数,二项分布,探究性问题,用图形计算器解决问题,用计算机探究问题,数学建模。认为不可以列入的有:迭代法解方程, 矩阵与几何变换,复数的指数形式,复数与三角变换,回归函数,复合函数的积分,分步积分。对于本次调查的其他部分内容,如应重视哪能数学思想方法,应强调培养哪些数学能力,现行高中教材中“立体几何”“解析几何”“三角函数”等内容的功能和意义如何等项的调查正在进行之中。另外,根据附录一、二在网上调查也正在进行。
《实变函数》和《复变函数》都是数学系本科的专业课程。简单的说《实变函数》主要研究的是定义域为实数的函数的性质,而《复变函数》主要研究的是定义域为复数的函数的性质。 《实变函数》主要引进了一种新的积分-Lebesgue积分,用来研究不连续函数的积分问题。 《复变函数》主要研究定义域为复数的函数的微积分以及幂级数展开等性质。可以理解为复数函数的《数学分析》。但内容上有所增加。 在我国的数学系课程中,二者的联系并不大,研究的方法也不同。可以说《实变函数》要更深一些。如果要深入了解它们之间的联系,可以看一下这本书Walter Rudin的《Real and Complex Analysis》(有中译本),它是美国大学数学系研究生用书,其中包括了《实变函数》和《复以实数作为自变量的函数就做实变函数,以实变函数作为研究对象的数学分支就叫做实变函数论。它是微积分学的进一步发展,它的基础是点集论。什么是点集论呢?点集论是专门研究点所成的集合的性质的理论。也可以说实变函数论是在点集论的基础上研究分析数学中的一些最基本的概念和性质的。比如,点集函数、序列、极限、连续性、可微性、积分等。实变函数论还要研究实变函数的分类问题、结构问题。 实变函数论的内容包括实值函数的连续性质、微分理论、积分理论和测度论等。[编辑本段]实变函数论的产生 微积分产生于十七世纪,到了十八世纪末十九世纪初,微积分学已经基本上成熟了。数学家广泛地研究并建立起它的许多分支,是它很快就形成了数学中的一大部门,也就是数学分析。 也正是在那个时候,数学家逐渐发现分析基础本身还存在着学多问题。比如,什么是函数这个看上去简单而且十分重要的问题,数学界并没有形成一致的见解。以至长期争论者问题的这样和那样的解答,这样和那样的数学结果,弄不清究竟谁是正确的。又如,对于什么是连续性和连续函数的性质是什么,数学界也没有足够清晰的理解。 十九世纪初,曾经有人试图证明任何连续函数除个别点外总是可微的。后来,德国数学家维尔斯特拉斯提出了一个由级数定义的函数,这个函数是连续函数,但是维尔斯特拉斯证明了这个函数在任何点上都没有导数。这个证明使许多数学家大为吃惊。 由于发现了某些函数的奇特性质,数学家对函数的研究更加深入了。人们又陆续发现了有些函数是连续的但处处不可微,有的函数的有限导数并不黎曼可积;还发现了连续但是不分段单调的函数等等。这些都促使数学家考虑,我们要处理的函数,仅仅依靠直观观察和猜测是不行的,必须深入研究各种函数的性质。比如,连续函数必定可积,但是具有什么性质的不连续函数也可积呢?如果改变积分的定义,可积分条件又是什么样的?连续函数不一定可导,那么可导的充分必要条件由是什么样的?…… 上面这些函数性质问题的研究,逐渐产生了新的理论,并形成了一门新的学科,这就是实变函数。[编辑本段]实变函数的内容 以实数作为自变量的函数就做实变函数,以实变函数作为研究对象的数学分支就叫做实变函数论。它是微积分学的进一步发展,它的基础是点集论。什么是点集论呢?点集论是专门研究点所成的集合的性质的理论。也可以说实变函数论是在点集论的基础上研究分析数学中的一些最基本的概念和性质的。比如,点集函数、序列、极限、连续性、可微性、积分等。实变函数论还要研究实变函数的分类问题、结构问题。 实变函数论的内容包括实值函数的连续性质、微分理论、积分理论和测度论等。这里我们只对它的一些重要的基本概念作简要的介绍。 实变函数论的积分理论研究各种积分的推广方法和它们的运算规则。由于积分归根到底是数的运算,所以在进行积分的时候,必须给各种点集以一个数量的概念,这个概念叫做测度。 什么实测度呢?简单地说,一条线段的长度就是它的测度。测度的概念对于实变函数论十分重要。集合的测度这个概念实由法国数学家勒贝格提出来的。 为了推广积分概念,1893年,约当在他所写的《分析教程》中,提出了“约当容度”的概念并用来讨论积分。1898年,法国数学家波莱尔把容度的概念作了改进,并把它叫做测度。波莱尔的学生勒贝格后来发表《积分、长度、面积》的论文,提出了“勒贝格测度”、“勒贝格积分”的概念。勒贝格还在他的论文《积分和圆函数的研究》中,证明了有界函数黎曼可积的充分必要条件是不连续点构成一个零测度集,这就完全解决了黎曼可积性的问题。 勒贝格积分可以推广到无界函数的情形,这个时候所得积分是绝对收敛的,后来由推广到积分可以不是绝对收敛的。从这些就可以看出,勒贝格积分比起由柯西给出后来又由黎曼发扬的老积分定义广大多了。也可以看出,实变函数论所研究的是更为广泛的函数类。 自从维尔斯特拉斯证明连续函数必定可以表示成一致收敛的多项式级数,人们就认清连续函数必定可以解析地表达出来,连续函数也必定可以用多项式来逼近。这样,在实变函数论的领域里又出现了逼近论的理论。 什么是逼近理论呢?举例来说,如果能把 A类函数表示成 B类函数的极限,就说 A类函数能以 B类函数来逼近。如果已经掌握了 B类函数的某些性质,那么往往可以由此推出 A类函数的相应性质。逼近论就是研究那一类函数可以用另一类函数来逼近、逼近的方法、逼近的程度和在逼近中出现的各种情况。 和逼近理论密切相关的有正交级数理论,三角级数就是一种正交级数。和逼近理论相关的还有一种理论,就是从某一类已知函数出发构造出新的函数类型的理论,这种理论叫做函数构造论。 总之,实变函数论和古典数学分析不同,它是一种比较高深精细的理论,是数学的一个重要分支,它的应用广泛,它在数学各个分支的应用是现代数学的特征。 实变函数论不仅应用广泛,是某些数学分支的基本工具,而且它的观念和方法以及它在各个数学分支的应用,对形成近代数学的一般拓扑学和泛涵分析两个重要分支有着极为重要的影响。
从柯西1814年论文脚注增补内容和1825年的论文可以看出,他是通过长期刻苦的思考才认识到,引进复量后可以用简单形式表达实函数对之间的关系,1830-1838柯西在都灵和布拉格期间发表的工作是不连贯的,后来《分析与数学物理练习》(四卷,1840-1847)重新整理了这些工作。 他在1831年的论文中指出下述定理:函数f(z)可以按麦克劳林公式展开为幂级数,对所有z绝对值小于那些使函数或其导数无穷或不连续的z收敛(那时柯西知道的奇点只是我们现在称为极点的奇点),他证明这个级数逐项按绝对值小于一个收敛的几何级数,其和数为 ,其中Z是使f(z)不连续的第一个值,f(z)上划线是对所有绝对值为|Z|的z而言|f(z)|的最大值。他给出了函数可展为麦克劳林级数的一个有力易用的判别法则,它用了现在称为强级数的比较级数。他首先证明 再将分式展开证明定理。在定理中他假定了函数本身的连续性必推出导数的存在性和连续性,也曾经在定理叙述中补充到:收敛区域止于使函数及其导数无穷或不连续的z值,但他没有确信必须对导数加些条件,后来又把这句补充删掉了。在另一篇论文中,柯西把[解析的]f(z)=u+iv沿一个[单连通]区域边界曲线的积分和展布在这个区域上的积分联系起来,得到了一个与路径无关的基本定理新证明。他对一个矩形证明定理后推广到了不自交的闭曲线(魏尔斯特拉斯1842年独立得出)。柯西早期可能受到了格林1828年工作的影响,因为他将结果推广到了曲面上的区域。 到1846年他改变了对复函数的观点,不像1826年以前关心实积分及其求值,而是为复函数理论本身建立基础,他给出了关于沿一条任意闭曲线的积分 的新叙述:如果曲线包围一些极点,那么积分值是函数在这些极点上留数之和的2πi倍。 他还着手处理了多值函数的积分,并进一步考虑积分号下的多值函数。如果被积函数是一个代数方程或超越方程的根,如 (其中w^3=z),且如果沿着一条闭路径积分并又回到起点,那么被积函数就表示另外一个根,在这些情形中沿着闭路径积分的值依赖于起点,而沿着路径的延拓产生积分的不同值。但若环绕路径充分多次使ω回到原始值,那么积分的值将重复出现,是z的一个周期函数。积分的周期模不再像单值函数那样可以用留数表示。 柯西关于多值函数积分的概念依然是模糊的。1821年起的二十几年里,柯西独自发展了复函数理论,1843年才有法国数学家继续他的工作,皮埃尔·阿方斯·洛朗(Pierre Alphonse Laurent,1813-1854)在1843年得到了一个重要结果,他证明当一个函数在一孤立点上不连续时,必须用变数的升幂及降幂展开式来代替泰勒展开式,如果函数和其导数在一个圆环内单值且连续,这个圆环的中心是孤立点a,则函数以相反方向沿圆环的两个边界圆所取的积分适当展开,给出z的升幂及降幂展开式,它在圆环内收敛。这个洛朗展开式是 ,它是泰勒展开式的一个推广。魏尔斯特拉斯1841年得到该结果,但未发表。 皮瑟(Victor Alexandre Puiseux,1820 -1883)在1850年发表了关于多值函数的论文,论f(u,z)=0给出的复代数函数,其中f是u和z的多项式,他首次区分极点与支点(柯西未发觉其中区别)并引入本性奇点(一个无穷阶的极点)概念(魏尔斯特拉斯也曾独立提出),比如e^(1/z)=0在z=0。虽然柯西在1846年的论文中考虑了简单多值函数沿着包围支点的几条路径的变化,但皮瑟证明如果u1是f(u,z)=0的一个解,且z沿着某一条路径变化,则u1的最后值并不依赖于路径,只要路径不包围使u1为无穷或其它解(即支点)的任何点。 皮瑟还证明z的函数在支点z=a处附近的展开式必须含有z-a的分数次幂,于是改进了柯西把函数展开为麦克劳林级数的定理,他得到f(u,z)=0的解u的一个展开式,它不是展成z的幂而是z-c的幂,所以展开式在一个以c为中心,且不含极点或支点的圆内正确,然后皮瑟让c沿着一条路径变化,使那些收敛圆部分重叠,并使在一个圆内的展开式可以延伸到另一个圆。这样从u在一点的值开始,可以沿任何一条路径了解其变化。 通过皮瑟对多值函数、多值函数在复平面上的支点、以及多值函数积分的研究,皮瑟把柯西的函数论工作发展到第一阶段完毕,多值函数的理论中仍有困难需要克服。柯西写了一些关于多值函数的论文,试图跟上皮瑟的工作。虽然他引入分支切割的概念,但仍未区分极点和支点。代数函数及其积分的课题要交给黎曼继续进行。 柯西在1851年的论文中对复函数性质作了更谨慎的叙述,他肯定了复函数本身及其导数的连续性对幂级数展开式是必需的。他指出u作为z的函数,在z=a处的导数与x+iy平面上z趋于a的方向无关,且u满足u对x的二阶导+u对y的二阶导=0。在这篇论文中他还引入了新的术语,称一个永不为无穷的、恰有一个导数的单值函数为synectique,后来Charles Briot(1817-1822)和Jean-Claude Bouquet(1819-1885)用holomorphic(全纯)代替了synectique,并用meromorphic(亚纯)指在区域中只有极点的函数。
实积分与复积分的比较研究一。对于理科类学科的学习而言,最重要的一点莫过于概念的清晰程度,因此有实积分与复积分的比较研究一。复变函数是以复数作为自变量和因变量的函数就叫做复变函数,而与之相关的理论就是复变函数论。
复变函数论的发展简况 复变函数论产生于十八世纪。1774年,欧拉在他的一篇论文中考虑了由复变函数的积分导出的两个方程。而比他更早时,法国数学家达朗贝尔在他的关于流体力学的论文中,就已经得到了它们。因此,后来人们提到这两个方程,把它们叫做“达朗贝尔-欧拉方程”。到了十九世纪,上述两个方程在柯西和黎曼研究流体力学时,作了更详细的研究,所以这两个方程也被叫做“柯西-黎曼条件”。 复变函数论的全面发展是在十九世纪,就像微积分的直接扩展统治了十八世纪的数学那样,复变函数这个新的分支统治了十九世纪的数学。当时的数学家公认复变函数论是最丰饶的数学分支,并且称为这个世纪的数学享受,也有人称赞它是抽象科学中最和谐的理论之一。 为复变函数论的创建做了最早期工作的是欧拉、达朗贝尔,法国的拉普拉斯也随后研究过复变函数的积分,他们都是创建这门学科的先驱。 后来为这门学科的发展作了大量奠基工作的要算是柯西、黎曼和德国数学家维尔斯特拉斯。二十世纪初,复变函数论又有了很大的进展,维尔斯特拉斯的学生,瑞典数学家列夫勒、法国数学家彭加勒、阿达玛等都作了大量的研究工作,开拓了复变函数论更广阔的研究领域,为这门学科的发展做出了贡献。 复变函数论在应用方面,涉及的面很广,有很多复杂的计算都是用它来解决的。比如物理学上有很多不同的稳定平面场,所谓场就是每点对应有物理量的一个区域,对它们的计算就是通过复变函数来解决的。 比如俄国的茹柯夫斯基在设计飞机的时候,就用复变函数论解决了飞机机翼的结构问题,他在运用复变函数论解决流体力学和航空力学方面的问题上也做出了贡献。 复变函数论不但在其他学科得到了广泛的应用,而且在数学领域的许多分支也都应用了它的理论。它已经深入到微分方程、积分方程、概率论和数论等学科,对它们的发展很有影响。复变函数论的内容 复变函数论主要包括单值解析函数理论、黎曼曲面理论、几何函数论、留数理论、广义解析函数等方面的内容。 如果当函数的变量取某一定值的时候,函数就有一个唯一确定的值,那么这个函数解就叫做单值解析函数,多项式就是这样的函数。 复变函数也研究多值函数,黎曼曲面理论是研究多值函数的主要工具。由许多层面安放在一起而构成的一种曲面叫做黎曼曲面。利用这种曲面,可以使多值函数的单值枝和枝点概念在几何上有非常直观的表示和说明。对于某一个多值函数,如果能作出它的黎曼曲面,那么,函数在离曼曲面上就变成单值函数。 黎曼曲面理论是复变函数域和几何间的一座桥梁,能够使我们把比较深奥的函数的解析性质和几何联系起来。近来,关于黎曼曲面的研究还对另一门数学分支拓扑学有比较大的影响,逐渐地趋向于讨论它的拓扑性质。 复变函数论中用几何方法来说明、解决问题的内容,一般叫做几何函数论,复变函数可以通过共形映象理论为它的性质提供几何说明。导数处处不是零的解析函数所实现的映像就都是共形映象,共形映像也叫做保角变换。共形映象在流体力学、空气动力学、弹性理论、静电场理论等方面都得到了广泛的应用。 留数理论是复变函数论中一个重要的理论。留数也叫做残数,它的定义比较复杂。应用留数理论对于复变函数积分的计算比起线积分计算方便。计算实变函数定积分,可以化为复变函数沿闭回路曲线的积分后,再用留数基本定理化为被积分函数在闭合回路曲线内部孤立奇点上求留数的计算,当奇点是极点的时候,计算更加简洁。 把单值解析函数的一些条件适当地改变和补充,以满足实际研究工作的需要,这种经过改变的解析函数叫做广义解析函数。广义解析函数所代表的几何图形的变化叫做拟保角变换。解析函数的一些基本性质,只要稍加改变后,同样适用于广义解析函数。 广义解析函数的应用范围很广泛,不但应用在流体力学的研究方面,而且象薄壳理论这样的固体力学部门也在应用。因此,近年来这方面的理论发展十分迅速。 从柯西算起,复变函数论已有170多年的历史了。它以其完美的理论与精湛的技巧成为数学的一个重要组成部分。它曾经推动过一些学科的发展,并且常常作为一个有力的工具被应用在实际问题中,它的基础内容已成为理工科很多专业的必修课程。现在,复变函数论中仍然有不少尚待研究的课题,所以它将继续向前发展,并将取得更多应用。
摘要: 在历届高考试题解析与应注意的问题中,一元二次函数占有重要的地位,不管在代数中,解析几何中,利用此函数的机会特别多,同时各种数学思想如函数的 ...
浅谈初中函数教学方法论文
【摘要】 在初中数学中,二次函数占据了很大的比重.二次函数对学生来说既是难点又是重点.教学过程中的难点是学生对二次函数的很多概念并不理解,另外解题过程中出现的各种问题也会影响学生学习的积极性.针对教学中的这些问题,本文对二次函数的定义重新做了系统的注释,同时对教学过程中比较适合初中学生学习的教学方法进行讨论.
【关键词】 初中数学;二次函数;教学策略
初中数学在中考中占据了很大的比重,也是学生学习过程中的很重要的基础学科,在日常生活中,数学的运用也会带来很多的好处.二次函数的学习,不仅可以提升学生对数字的敏感度,也可以提升学生的逻辑思维,改善学生对于学习的态度以及方法,进而提高学习成绩.所以,要切实改进二次函数的教学方法.
一、二次函数的概念
二次函数的概念是一个“形式化”概念,在教学时教师不能直接给出概念,而是把教学重点放在二次函数概念的形成过程上.因此,我采用了几个问题情境将学生一步步引入到概念中来.
情境一:一粒石子投入到水中,激起的波纹不断向外扩展,扩大后的圆面积y与半径x有何关系?
情境二:用16米长的篱笆围成长方形的生物园饲养小兔.(1)如果长方形的长为y米、宽为x米,那么y和x之间有何关系?(2)如果长方形的面积为y平方米、宽为x米,那么y和x之间有何关系?
情境三:运动员进行5千米的比赛,甲每小时走x千米,乙比甲每小时多走1千米,比赛结束甲比乙多用y小时,则y和x之间的关系式是什么?
情境四:要给边长为x米的正方形房间铺设地板,已知某种地板的价格为每平方米240元,踢脚线的价格为每米30元,如果其他费用为1000元,门宽米,那么总费用y为多少元?
以上的问题情境,都是函数的浓缩问题,尤其是最后两个问题就是从实际问题中找到两个变量,确定函数解析式,为形成二次函数概念做准备.所以,在二次函数的教学中,教师应该就二次函数的基础概念向学生进行详尽的阐述,使得学生对二次函数概念的理解达到较为深刻的层次.
二、二次函数的教学活动讨论
(一)课堂教学多样化
在实际教学中,单一的课堂会令学生的学习活动显露疲态,而多样化的课堂教学会提升学生的学习兴趣,同时加强学生对于知识点的掌握程度,尤其是对二次函数进行的教学活动,本来就需要学生有着很大的兴趣,不断地提出心中的疑惑,并且在教师的指导下展开验证并进行发散性的思考.所以,教师更应该在实际教学中不断地进行改进.比如,在学习二次函数的通式和其他变形形式时,可以就顶点式y=a(x+m)2+n与通式y=mx2+nx+c间的异同点展开教学.两种形式除了外在上的不同,在解题思路上也有着很大的差异.可以就二者的恒等变形进行推演,帮助学生更好地学习二次函数.
(二)数形结合,在图像中发现函数的规律
相比普通函数,二次函数的图像变化更为复杂.这里用顶点式作为例子,不同参数的变化都会对二次函数的图像产生很大的影响.而随着教学活动的日益繁重,初中数学教师现在很难有时间以及精力有机会领学生绘制二次函数的图像.这就使得学生很难对二次函数进行认真的学习,很难理解二次函数和其坐标之间的对应关系.所以,初中数学教学中二次函数图像的绘制是很有用的.同时,由于课时有限,为了保障教学质量,教师应使用坐标纸来带领学生进行图像的绘制,充分保障教学质量,并保障学生也可以熟练地画出相应二次函数的图像.比如,在教学活动中,教师可以先针对y=3x2,y=3x2+5,y=3x2-5,这三个二次函数的图像进行绘制,引导学生观察三个图像之间的位置变化,思考变化的原因.而后,带领学生绘制y=-x2,y=-(x-5)2,y=-(x+5)2的图像,然后让学生观察图像的变化,并找出规律.最后,引导学生对找到的规律进行归纳总结,使得学生做到数形结合,增强这方面的`意识,加强学生对于二次函数图像的认识,进而增加对二次函数性质的理解.
(三)激发学生兴趣,提高学习效率
相比其他学科的学习,数学学科的学习,尤其是二次函数的学习,是十分枯燥、抽象的.即使在进行图像绘制时,也需要大量的计算,这些机械性的学习都使得学生对数学学习、二次函数的学习提不起兴趣.为提高学生的学习兴趣,教师要主动进行趣味性的教学,如,利用现在日益普及的网络系统,借助多媒体设备进行教学,通过视频、图片进行趣味性教学.比如,通过FLASH动画技术来展现参数不同时图像的变化情况,使得学生对于二次函数的内在含义的掌握更加熟练.这些活动会使学生对二次函数的兴趣有着极大的改善.若教师在进行教学活动中发现学生已经有了厌学心理,要根据学生的实际情况,适当放宽对于学生的要求,以改善学生的厌学心理,避免进一步打击学生学习数学的积极性.初中阶段,学生正处于青春期,针对这一时期学生的特点,不要因为二次函数的学习受阻,进而影响学生对整个数学学科的学习热情.要充分引导学生进行学习,关注学生的心理变化,提升学生学习数学的积极性.
三、总结
因为二次函数在整个初中数学教学中扮演着很重要的角色,所以教师要充分重视在教学活动中加强学生对二次函数的理解.为了保障教学质量,教师要对教学活动进行详细的思考,根据所带学生的实际情况、二次函数的特性来进行有针对性的教学活动.通过数形结合的方法,加深学生对二次函数的图像的认知,减少学生因学习不到位而引发的厌学心理,充分保护好学生的求知欲,同时对学生不容易理解的部分以及容易混淆的部分加强教学.有效地改善教学质量,帮助学生在初中学习过程中可以开心有效地进行学习.
【参考文献】
[1]王正美.初中数学中“二次函数”的教学策略研究[J].学周刊,2014(22):47.
[2]贾靖林.信息化环境下初中数学函数教学的策略研究[J].中国教育技术装备,2011(5):85-86.
在初中教材中,对二次函数作了较详细的研究,由于初中学生基础薄弱,又受其接受能力的限制,这部份内容的学习多是机械的,很难从本质上加以理解。进入高中以后,尤其是高三复习阶段,要对他们的基本概念和基本性质(图象以及单调性、奇偶性、有界性)灵活应用,对二次函数还需再深入学习。一、进一步深入理解函数概念初中阶段已经讲述了函数的定义,进入高中后在学习集合的基础上又学习了映射,接着重新学习函数概念,主要是用映射观点来阐明函数,这时就可以用学生已经有一定了解的函数,特别是二次函数为例来加以更深认识函数的概念。二次函数是从一个集合A(定义域)到集合B(值域)上的映射�0�6:A→B,使得集合B中的元素y=ax2+bx+c(a≠0)与集合A的元素X对应,记为�0�6(x)= ax2+ bx+c(a≠0)这里ax2+bx+c表示对应法则,又表示定义域中的元素X在值域中的象,从而使学生对函数的概念有一个较明确的认识,在学生掌握函数值的记号后,可以让学生进一步处理如下问题:类型I:已知�0�6(x)= 2x2+x+2,求�0�6(x+1)这里不能把�0�6(x+1)理解为x=x+1时的函数值,只能理解为自变量为x+1的函数值。类型Ⅱ:设�0�6(x+1)=x2-4x+1,求�0�6(x)这个问题理解为,已知对应法则�0�6下,定义域中的元素x+1的象是x2-4x+1,求定义域中元素X的象,其本质是求对应法则。一般有两种方法:(1)把所给表达式表示成x+1的多项式。�0�6(x+1)=x2-4x+1=(x+1)2-6(x+1)+6,再用x代x+1得�0�6(x)=x2-6x+6(2) 变量代换:它的适应性强,对一般函数都可适用。 令t=x+1,则x=t-1 ∴(t)=(t-1)2-4(t-1)+1=t2-6t+6从而�0�6(x)= x2-6x+6二、二次函数的单调性,最值与图象。在高中阶阶段学习单调性时,必须让学生对二次函数y=ax2+bx+c在区间(-∞,-]及[-,+∞) 上的单调性的结论用定义进行严格的论证,使它建立在严密理论的基础上,与此同时,进一步充分利用函数图象的直观性,给学生配以适当的练习,使学生逐步自觉地利用图象学习二次函数有关的一些函数单调性。类型Ⅲ:画出下列函数的图象,并通过图象研究其单调性。(1)y=x2+2|x-1|-1 (2)y=|x2-1| (3)= x2+2|x|-1这里要使学生注意这些函数与二次函数的差异和联系。掌握把含有绝对值记号的函数用分段函数去表示,然后画出其图象。类型Ⅳ设�0�6(x)=x2-2x-1在区间[t,t+1]上的最小值是g(t)。求:g(t)并画出 y=g(t)的图象解:�0�6(x)=x2-2x-1=(x-1)2-2,在x=1时取最小值-2当1∈[t,t+1]即0≤t≤1,g(t)=-2当t>1时,g(t)=�0�6(t)=t2-2t-1当t<0时,g(t)=�0�6(t+1)=t2-2 t2-2, (t<0) g(t)= -2,(0≤t≤1) t2-2t-1, (t>1)首先要使学生弄清楚题意,一般地,一个二次函数在实数集合R上或是只有最小值或是只有最大值,但当定义域发生变化时,取最大或最小值的情况也随之变化,为了巩固和熟悉这方面知识,可以再给学生补充一些练习。如:y=3x2-5x+6(-3≤x≤-1),求该函数的值域。三、二次函数的知识,可以准确反映学生的数学思维:类型Ⅴ:设二次函数�0�6(x)=ax2+bx+c(a>0)方程�0�6(x)-x=0的两个根x1,x2满足0
研究性学习其本质是学生的教师的引导下进行有效的体验活动,从而利用推理、类比、分析等方法得出教学目标所要求的学习内容。本文根据研究性学习的含义,分别阐述了研究性学习在课堂开展的四个基本过程:准备阶段——体验阶段——探究阶段——分享总结阶段。能过多个教学中常见案例,把研究性学习方式与传统教学方式作对比,从而体现研究性学习的优势。关键词:研究性学习、体验、探究、分享、过程 新课程标准的提出到落实已有经过一段较长时间的实施期。在我市使用新教材进行教学已有四年之久了,而新课标的理念在教学中也真正的落到实处。这就为传统教学模式带来重大的冲击。从心理学的角度来看,不同的教学模式会导致不同的课堂气氛、师生关系、师生在课堂中的地位、学习模式等。在这个新时期,一种新的教学--学习方式产生了——研究性学习。研究性学习其本质是学生的教师的引导下进行有效的体验活动,从而利用推理、类比、分析等方法得出教学目标所要求的学习内容。以下是本人在教学过程中总结出来的一点经验,我认为开展研究性学习的课堂应该有以下几个步骤: 一、研究性学习以丰富的现实材料为基础(准备阶段) 数学是来源于生活,也用于生活的一种技能。在小学阶段,数学的生活性、实用性尤为突出。新课程标准明确提出,让学生学有用的数学。我们都知道任何的学习都要以生活经验、知识经验为基础,因此,教学的过程中,作为老师应该有意识地提出大量的现实材料,以为学生的学习打下基础。在教学时学生很多时候不能马上联想到与学习内容相关的内容,即使能列举出来,也未必是完整的,这时就要求老师要有这样的教学预设,并做好材料的准备。 如在教学一年级《找规律》一课中,课一开始的时候,我出示了大量的有规律的图片:如衣服或窗帘上的图案、路边花草的摆放、地砖的排列、节日的布置……,让学生感受到规律的美,在内心产生出想学规律、想创造规律的情感。如果没有这些准备,学生单纯根据课本的一张主题图来学习规律,相信后来的学习中学生是不会有研究规律的发生、发展的愿望了。 为教学提供丰富的现实材料不单单是为了引起研究的兴趣,它再是为了给研究性学习提供研究的材料。数学与物理有一个重大的区别,那就是物理只要证明某一现象存在就可以了成立了,而数学则需证明这一现在在任何情况、任何条件下都必须正确才成立,所以数学知识的研究是需要非常大的严紧性。在教学中,我让学生了解,别人说的不一定是正确的,即使是老师说的、书本说的需要经过自己的验证才能确定,这使学生有了研究的知识的精神。 如在教学一年级《0的认识》时,有一个知识点是任何数加0都是不变的。在传统的教学中,一般只会出示1到2条关于几加0的算式就可以告诉学生这一定律了。在研究性学习的指导下,我让学生看多幅关于几加0的图片,列出多条几加0的算式,学生在经历了这么多的算式对比后,再进行小组讨论,从而让任何数加0都是不变的规律由学生的口中说出。 知识由老师硬塞给学生,那么这些知识永远都还是老师的;而如果知识是自己研究出来的,好么这些知识永远都是自己的。 二、研究性学习以游戏、活动、实验等为主要形式(体验阶段) 研究性学习区别于传统教学的另一主要内容就是课堂的组织形式。研究性学习以游戏、活动、实验等方式为主,让学生在动手操作、体验活动中过程中把数学“做”出来。游戏、活动、实验都是一个体验的过程,有体验才能使思考更深入、更有根有据。体验的过程其实就是研究学习的过程,因此在教学中要有意识地开展有意义的体验活动。 如二年级的《角的认识》,其中有一个知识点的让学生理解角的大小与边的长短无关。我让学生用三角尺画出一个角(45度角),由于三角尺有大有小,学生画出来的角边的长短也不一样。然后学生可以去找,有没有与自己的角不一样大小的。在这样的实验下,学生发现,角的大小与边的长短无关。 又如在一年级《平面图形的认识》教学中,我以学生已有的对立体图形认识的经验为基础,让学生找出立体图形上的面,并把面“搬”出来得出平面图形。学生通过观察、讨论、交流、汇报……在立体图形上找到了各种平面图形,也找到了把面“搬”出来的方法。学生通过撕、画、剪等活动,做出了平面图形。在这个“做”的过程中,学生了解到了面从体中来,了解到几种平面图形的特征。利用活动使学生掌握了本节课所要求达到的教学目标。这其实就是一个研究的过程,根据困难、问题,积极地思考解决的方法,经过尝试——再尝试——到成功,学生感受到学习的乐趣,体验到知识获取的过程。 三、研究性学习以推理、类比、分析为手段(探究阶段) 每一个数学知识都不会是独立存在的,而是相互联系、互相转化的。有了研究材料,有了体验过程,不代表知识就能被“创造”出来的,这些都只是条件,必须要经过推理、类比、分析等方法去伪存真,得出知识的精粹。分析,把研究材料有条理地进行整理,思考其含义。推理,可以使研究材料知识化。类比,根据知识相同、相似的部分进行分类,后比较其差异,从而更好地掌握知识。 在二年级《找规律》教学中,我出示一组有规律的图案,然后推测这组图案未出示部分。学生根据已有条件找出图案的规律,然后进行推理,有根有据地说出原因,思考的方法。又如学习《三角形的边的规律》时,根据两点间直线距离最短,可以推理出两边之和大于第三边的规律。…… 如果学生能保持这种分析问题的策略、研究的精神,那尽管以后可能会把某些定律忘记,但还是可以再推算出来。 四、研究性学习以分享为课堂总结(分享总结阶段) 学习的后期,我们需要把知道进行总结整理。在研究性学习中以分享为主要形式。传统教学中,我们往往只关注到对知识技能的总结,而忽略了对过程方法、情感态度价值观的总结。而这些恰恰是新课程标准中对教学目标的三个惟度的要求。一节成功的课,不单是在知识技能方面对学生有提升,而应该是在各个方面上都对学生有一定的作用。以分享的方式或以对三个惟度的教学目标都能体现。以下是我在教学《解决问题》后的分享活动,我以几个问题逐层深入地学生总结整节课的收获,并简单分析学习了这节课后的作用: “闭上眼睛回忆这节课的过程。你认为自己最成功是什么?”(关于情感态度价值观的分享,让学生体验到成功,提升自己的价值,感受到数学学习的乐趣。) “如果以后现学到类似的问题,你会怎样解决?”(这是学法、知识、技能的总结,让学生思考这节课是怎样学的,学到什么,以后遇到这类问题也将可以用同样的方法解决。) “你认为在生活中,这些知识会用得上吗?哪能里会用到?”(突出数学的有用性、有效性。并把数学回归到生活之中,使学生跳出书本的框框,了解数学的用处。) 有效的分享对于一节课来说虽然只是一小部分,但它是作用十分重要,它能给课堂画龙点睛,把学生原来不够清晰的思路理顺,突显学生的成功,体现知识的现实意义。 研究性学习是一个过程,重视过程是它的一大原则。学生的学习是一个过程,它包括学习的准备、体验、思维、总结。每一部分都重要,每一个环节都是密不可分的,没有前一个阶段作铺垫,后一个阶段将无法实施。在这个过程中,学生学到的是学习的方法、数学地思考。这正好比“授人以鱼,不如授人以渔”,让学生掌握学习方法才是学习最核心的内容。只有自己研究出来的结果才是永难忘记的知识。
研究性学习其本质是学生的教师的引导下进行有效的体验活动,从而利用推理、类比、分析等方法得出教学目标所要求的学习内容。本文根据研究性学习的含义,分别阐述了研究性学习在课堂开展的四个基本过程:准备阶段——体验阶段——探究阶段——分享总结阶段。能过多个教学中常见案例,把研究性学习方式与传统教学方式作对比,从而体现研究性学习的优势。关键词:研究性学习、体验、探究、分享、过程 新课程标准的提出到落实已有经过一段较长时间的实施期。在我市使用新教材进行教学已有四年之久了,而新课标的理念在教学中也真正的落到实处。这就为传统教学模式带来重大的冲击。从心理学的角度来看,不同的教学模式会导致不同的课堂气氛、师生关系、师生在课堂中的地位、学习模式等。在这个新时期,一种新的教学--学习方式产生了——研究性学习。研究性学习其本质是学生的教师的引导下进行有效的体验活动,从而利用推理、类比、分析等方法得出教学目标所要求的学习内容。以下是本人在教学过程中总结出来的一点经验,我认为开展研究性学习的课堂应该有以下几个步骤: 一、研究性学习以丰富的现实材料为基础(准备阶段) 数学是来源于生活,也用于生活的一种技能。在小学阶段,数学的生活性、实用性尤为突出。新课程标准明确提出,让学生学有用的数学。我们都知道任何的学习都要以生活经验、知识经验为基础,因此,教学的过程中,作为老师应该有意识地提出大量的现实材料,以为学生的学习打下基础。在教学时学生很多时候不能马上联想到与学习内容相关的内容,即使能列举出来,也未必是完整的,这时就要求老师要有这样的教学预设,并做好材料的准备。 如在教学一年级《找规律》一课中,课一开始的时候,我出示了大量的有规律的图片:如衣服或窗帘上的图案、路边花草的摆放、地砖的排列、节日的布置……,让学生感受到规律的美,在内心产生出想学规律、想创造规律的情感。如果没有这些准备,学生单纯根据课本的一张主题图来学习规律,相信后来的学习中学生是不会有研究规律的发生、发展的愿望了。 为教学提供丰富的现实材料不单单是为了引起研究的兴趣,它再是为了给研究性学习提供研究的材料。数学与物理有一个重大的区别,那就是物理只要证明某一现象存在就可以了成立了,而数学则需证明这一现在在任何情况、任何条件下都必须正确才成立,所以数学知识的研究是需要非常大的严紧性。在教学中,我让学生了解,别人说的不一定是正确的,即使是老师说的、书本说的需要经过自己的验证才能确定,这使学生有了研究的知识的精神。 如在教学一年级《0的认识》时,有一个知识点是任何数加0都是不变的。在传统的教学中,一般只会出示1到2条关于几加0的算式就可以告诉学生这一定律了。在研究性学习的指导下,我让学生看多幅关于几加0的图片,列出多条几加0的算式,学生在经历了这么多的算式对比后,再进行小组讨论,从而让任何数加0都是不变的规律由学生的口中说出。 知识由老师硬塞给学生,那么这些知识永远都还是老师的;而如果知识是自己研究出来的,好么这些知识永远都是自己的。 二、研究性学习以游戏、活动、实验等为主要形式(体验阶段) 研究性学习区别于传统教学的另一主要内容就是课堂的组织形式。研究性学习以游戏、活动、实验等方式为主,让学生在动手操作、体验活动中过程中把数学“做”出来。游戏、活动、实验都是一个体验的过程,有体验才能使思考更深入、更有根有据。体验的过程其实就是研究学习的过程,因此在教学中要有意识地开展有意义的体验活动。 如二年级的《角的认识》,其中有一个知识点的让学生理解角的大小与边的长短无关。我让学生用三角尺画出一个角(45度角),由于三角尺有大有小,学生画出来的角边的长短也不一样。然后学生可以去找,有没有与自己的角不一样大小的。在这样的实验下,学生发现,角的大小与边的长短无关。 又如在一年级《平面图形的认识》教学中,我以学生已有的对立体图形认识的经验为基础,让学生找出立体图形上的面,并把面“搬”出来得出平面图形。学生通过观察、讨论、交流、汇报……在立体图形上找到了各种平面图形,也找到了把面“搬”出来的方法。学生通过撕、画、剪等活动,做出了平面图形。在这个“做”的过程中,学生了解到了面从体中来,了解到几种平面图形的特征。利用活动使学生掌握了本节课所要求达到的教学目标。这其实就是一个研究的过程,根据困难、问题,积极地思考解决的方法,经过尝试——再尝试——到成功,学生感受到学习的乐趣,体验到知识获取的过程。 三、研究性学习以推理、类比、分析为手段(探究阶段) 每一个数学知识都不会是独立存在的,而是相互联系、互相转化的。有了研究材料,有了体验过程,不代表知识就能被“创造”出来的,这些都只是条件,必须要经过推理、类比、分析等方法去伪存真,得出知识的精粹。分析,把研究材料有条理地进行整理,思考其含义。推理,可以使研究材料知识化。类比,根据知识相同、相似的部分进行分类,后比较其差异,从而更好地掌握知识。 在二年级《找规律》教学中,我出示一组有规律的图案,然后推测这组图案未出示部分。学生根据已有条件找出图案的规律,然后进行推理,有根有据地说出原因,思考的方法。又如学习《三角形的边的规律》时,根据两点间直线距离最短,可以推理出两边之和大于第三边的规律。…… 如果学生能保持这种分析问题的策略、研究的精神,那尽管以后可能会把某些定律忘记,但还是可以再推算出来。 四、研究性学习以分享为课堂总结(分享总结阶段) 学习的后期,我们需要把知道进行总结整理。在研究性学习中以分享为主要形式。传统教学中,我们往往只关注到对知识技能的总结,而忽略了对过程方法、情感态度价值观的总结。而这些恰恰是新课程标准中对教学目标的三个惟度的要求。一节成功的课,不单是在知识技能方面对学生有提升,而应该是在各个方面上都对学生有一定的作用。以分享的方式或以对三个惟度的教学目标都能体现。以下是我在教学《解决问题》后的分享活动,我以几个问题逐层深入地学生总结整节课的收获,并简单分析学习了这节课后的作用: “闭上眼睛回忆这节课的过程。你认为自己最成功是什么?”(关于情感态度价值观的分享,让学生体验到成功,提升自己的价值,感受到数学学习的乐趣。) “如果以后现学到类似的问题,你会怎样解决?”(这是学法、知识、技能的总结,让学生思考这节课是怎样学的,学到什么,以后遇到这类问题也将可以用同样的方法解决。) “你认为在生活中,这些知识会用得上吗?哪能里会用到?”(突出数学的有用性、有效性。并把数学回归到生活之中,使学生跳出书本的框框,了解数学的用处。) 有效的分享对于一节课来说虽然只是一小部分,但它是作用十分重要,它能给课堂画龙点睛,把学生原来不够清晰的思路理顺,突显学生的成功,体现知识的现实意义。 研究性学习是一个过程,重视过程是它的一大原则。学生的学习是一个过程,它包括学习的准备、体验、思维、总结。每一部分都重要,每一个环节都是密不可分的,没有前一个阶段作铺垫,后一个阶段将无法实施。在这个过程中,学生学到的是学习的方法、数学地思考。这正好比“授人以鱼,不如授人以渔”,让学生掌握学习方法才是学习最核心的内容。只有自己研究出来的结果才是永难忘记的知识。
都是些论文看看这个吧,楼上废话好多……
中国数学发展史 中国古代是一个在世界上数学领先的国家,用近代科目来分类的话,可以看出无论在算术、代数、几何和三角各方而都十分发达。现在就让我们来简单回顾一下初等数学在中国发展的历史。 (一)属于算术方面的材料 大约在3000年以前中国已经知道自然数的四则运算,这些运算只是一些结果,被保存在古代的文字和典籍中。乘除的运算规则在后来的“孙子算经”(公元三世纪)内有了详细的记载。中国古代是用筹来计数的,在我们古代人民的计数中,己利用了和我们现在相同的位率,用筹记数的方法是以纵的筹表示单位数、百位数、万位数等;用横的筹表示十位数、千位数等,在运算过程中也很明显的表现出来。“孙子算经”用十六字来表明它,“一从十横,百立千僵,千十相望,万百相当。” 和其他古代国家一样,乘法表的产生在中国也很早。乘法表中国古代叫九九,估计在2500年以前中国已有这个表,在那个时候人们便以九九来代表数学。现在我们还能看到汉代遗留下来的木简(公元前一世纪)上面写有九九的乘法口诀。 现有的史料指出,中国古代数学书“九章算术”(约公元一世纪前后)的分数运算法则是世界上最早的文献,“九章算术”的分数四则运算和现在我们所用的几乎完全一样。 古代学习算术也从量的衡量开始认识分数,“孙子算经”(公元三世纪)和“夏候阳算经”(公元六、七世纪)在论分数之前都开始讲度量衡,“夏侯阳算经”卷上在叙述度量衡后又记着:“十乘加一等,百乘加二等,千乘加三等,万乘加四等;十除退一等,百除退二等,千除退三等,万除退四等。”这种以十的方幂来表示位率无疑地也是中国最早发现的。 小数的记法,元朝(公元十三世纪)是用低一格来表示,如作1356 。在算术中还应该提出由公元三世纪“孙子算经”的物不知数题发展到宋朝秦九韶(公元1247年)的大衍求一术,这就是中国剩余定理,相同的方法欧洲在十九世纪才进行研究。 宋朝杨辉所著的书中(公元1274年)有一个1—300以内的因数表,例如297用“三因加一损一”来代表,就是说297=3×11×9,(11=10十1叫加一,9=10—1叫损一)。杨辉还用“连身加”这名词来说明201—300以内的质数。 (二)属于代数方面的材料 从“九章算术”卷八说明方程以后,在数值代数的领域内中国一直保持了光辉的成就。 “九章算术”方程章首先解释正负术是确切不移的,正象我们现在学习初等代数时从正负数的四则运算学起一样,负数的出现便丰富了数的内容。 我们古代的方程在公元前一世纪的时候已有多元方程组、一元二次方程及不定方程几种。一元二次方程是借用几何图形而得到证明。 不定方程的出现在二千多年前的中国是一个值得重视的课题,这比我们现在所熟知的希腊丢番图方程要早三百多年。具有x3+px2+qx=A和x3+px2=A形式的三次方程,中国在公元七世纪的唐代王孝通“缉古算经”已有记载,用“从开立方除之”而求出数字解答(可惜原解法失传了),不难想象王孝通得到这种解法时的愉快程度,他说谁能改动他著作内的一个字可酬以千金。 十一世纪的贾宪已发明了和霍纳(1786—1837)方法相同的数字方程解法,我们也不能忘记十三世纪中国数学家秦九韶在这方面的伟大贡献。 在世界数学史上对方程的原始记载有着不同的形式,但比较起来不得不推中国天元术的简洁明了。四元术是天元术发展的必然产物。 级数是古老的东西,二千多年前的“周髀算经”和“九章算术”都谈到算术级数和几何级数。十四世纪初中国元代朱世杰的级数计算应给予很高的评价,他的有些工作欧洲在十八、九世纪的著作内才有记录。十一世纪时代,中国已有完备的二项式系数表,并且还有这表的编制方法。 历史文献揭示出在计算中有名的盈不足术是由中国传往欧洲的。 内插法的计算,中国可上溯到六世纪的刘焯,并且七世纪末的僧一行有不等间距的内插法计算。 十四世纪以前,属于代数方面许多问题的研究,中国是先进国家之一。 就是到十八,九世纪由李锐(1773—1817),汪莱(1768—1813)到李善兰(1811—1882),他们在这一方面的研究上也都发表了很多的名著。 (三)属于几何方面的材料 自明朝后期(十六世纪)欧几里得“几何原本”中文译本一部分出版之前,中国的几何早已在独立发展着。应该重视古代的许多工艺品以及建筑工程、水利工程上的成就,其中蕴藏了丰富的几何知识。 中国的几何有悠久的历史,可靠的记录从公元前十五世纪谈起,甲骨文内己有规和矩二个字,规是用来画圆的,矩是用来画方的。 汉代石刻中矩的形状类似现在的直角三角形,大约在公元前二世纪左右,中国已记载了有名的勾股定理(勾股二个字的起源比较迟)。 圆和方的研究在古代中国几何发展中占了重要位置。墨子对圆的定义是:“圆,一中同长也。”—个中心到圆周相等的叫圆,这解释要比欧几里得还早一百多年。 在圆周率的计算上有刘歆(?一23)、张衡(78—139)、刘徽(263)、王蕃(219—257)、祖冲之(429—500)、赵友钦(公元十三世纪)等人,其中刘徽、祖冲之、赵友钦的方法和所得的结果举世闻名。 祖冲之所得的结果π=355/133要比欧洲早一千多年。 在刘徽的“九章算术”注中曾多次显露出他对极限概念的天才。 在平面几何中用直角三角形或正方形和在立体几何中用锥体和长方柱体进行移补,这构成中国古代几何的特点。 中国数学家善于把代数上的成就运用到几何上,而又用几何图形来证明代数,数值代数和直观几何有机的配合起来,在实践中获得良好的效果. 正好说明十八、九世纪中国数学家对割圆连比例的研究和项名达(1789—1850)用割圆连比例求出椭圆周长。这都是继承古代方法加以发挥而得到的(当然吸收外来数学的精华也是必要的)。 (四)属于三角方面的材料 三角学的发生由于测量,首先是天文学的发展而产生了球面三角,中国古代天文学很发达,因为要决定恒星的位置很早就有了球面测量的知识;平面测量术在“周牌算经”内已记载若用矩来测量高深远近。 刘徽的割圆术以半径为单位长求圆内正六边形,十二二边形等的每一边长,这答数是和2sinA的值相符(A是圆心角的一半),以后公元十二世纪赵友钦用圆内正四边形起算也同此理,我们可以从刘徽、赵友钦的计算中得出、15o、、30o、45o等的正弦函数值。 在古代历法中有计算二十四个节气的日晷影长,地面上直立一个八尺长的“表”,太阳光对这“表”在地面上的射影由于地球公转而每一个节气的影长都不同,这些影长和“八尺之表”的比,构成一个余切函数表(不过当时还没有这个名称)。 十三世纪的中国天文学家郭守敬(1231—1316)曾发现了球面三角上的三个公式。 现在我们所用三角函数名词:正弦,余弦,正切,余切,正割,余割,这都是我国十六世纪已有的名称,那时再加正矢和余矢二个函数叫做八线。 在十七世纪后期中国数学家梅文鼎(1633—1721)已编了一本平面三角和一本球面三角的书,平面三角的书名叫“平三角举要”,包含下列内容:(1)三角函数的定义;(2)解直角三角形和斜三角形;(3)三角形求积,三角形内容圆和容方;(4)测量。这已经和现代平面三角的内容相差不远,梅文鼎还著书讲到三角上有名的积化和差公式。十八世纪以后,中国还出版了不少三角学方面的书籍。
一、教师教学观念的转变是在高中数学教学中开展研究性学习的重要保证.首先,教师要成为研究者.教学过程不仅是知识的再现过程,更重要的是知识的再现的形成过程.这就要求教师有亲身参加研究的体验,并将自己的研究过程和研究成果再现给学生,给学生以示范、启迪.另一方面,在研究性学习课题的开展中很少有现成的材料,需要发挥教师的创造性劳动.其次,教师应具有开展研究性学习的使命感、责任感.社会发展和学生教育发展对教师提出更高的要求,教师肩负着不可推卸的历史使命.有的中学教师总以为研究性学习是大学生、研究生的事情,应由大学老师、教授去承担.研究性学习是一个学习过程,它不分时间和阶段,只要掌握一定的基础知识,具有研究的思想方法和手段的人都可以进行研究性学习.二、高中数学研究性课题中教师主导作用教师根据学生探究情况,作适当的点拔,主要是方法上的引导1.交流整合.学生个体或小组经过思考、讨论、探究之后,形成了初步成果,教师利用课堂时间组织学生进行交流,对学生探究过程的奇异想法(即使很幼稚)也要予以肯定和赞扬,鼓励创新.师生在平等交流中取长补短,最后将修改后的结论以论文形式表示出来.2.深化总结师生交流后,及时引导学生总结、反思.让学生讲一讲研究学习过程中思维受阻情况,讲一讲交流后的感受、启示.本课题重在引导学生学习研究问题的一般操作程序,掌握常用的思维方法:从特殊到一般的归纳推理,由此及彼的类比推理等等.通过研究过程的反思总结,学生逐渐积累起研究的经验,掌握研究的方法,从而真正学会研究.3.类比应用.在交流、总结之后,教师给出给出相同类型的的问题,让学生运用自己的研究成果去独立解决,学生在自主地完成任务之后产生的喜悦之情是不言而喻的,从而更加增强了研究性学习的信心.4.推广延伸.在完成上述课题后,教师引导学生思考能否作进一步的推广和再探究.让有一定能力的同学继续探究,使学生体会到,知识是无限的,学习和探索的过程也是永无止境的.三、在高中数学教学中开展研究性学习应遵循的原则1.面向全体学生原则.研究性学习在选题上,要切合学生实际,不要定得过高,要能反映学生的最近发展区,不要成为少数学生的专利,应做到人人都能参与,人人都能参与研究,通过参与研究的过程获得体验.2.层次性原则.所选择的内容应当能区分不同的层次,体现个性化原则,以满足不同层次学生学习的需要.课后作业也要有层次性,以满足学有余力的学生作进一步研究.3.与教学内容相结合原则.要使学生人人参与研究,所选择的内容应当能与教学内容相关联,是教学内容的延伸与拓展,使学生能够较好地应用所学知识.4.可研究性原则.所选择的内容应当与学生的学习的实际水平相适应,要有一定的深度,有一定的研究价值,并蕴含较丰富的教学思想和教学方法,通过研究使学生都有所得.5.合作原则.所选择的内容应当能体现合作学习的优势,需要组织学生讨论,需要有学生的分工合作,才能更好地完成研究.6.小型化、多样化原则.所选择的内容能在较短的时间内完成,题材应当多样化,以吸引更多的学生参与.特别是在研究性学习的起步阶段,学生还不具有较强的研究能力,更需要所研究的课题尽可能小一些,以取得较好的研究效果.7.递进性原则.研究性学习一开始不要定得过高,学生对研究性学习还处在朦胧阶段,可由案例研究开始,逐步转化为课题研究,以适应学生的思维发展要求.四、高中数学研究性课题中让电脑成为研究性学习的帮手.随着教育现代化的推进,电脑和数学软件正在象“黑板、粉笔”一样走进寻常数学教学之中,它为研究性学习的开展开辟了更加广阔的渠道.运用电脑技术,可以把文字、声音、图形、动画、色彩与闪烁结合起来,在探索问题、培养学生创新能力方面,有着独到的作用.如利用几何画板研究函数y=asin(ωx+φ)的图像及性质,学生可以亲身感悟到图像的形成过程及变化规律,这是传统教学手段永远无法做到的.如用计算机探讨y=asinx+bcosx的图像及性质,设计如下:①把学生分成若干组,引导学生操作,给出a、b一些值,在计算机上显示它们的图像,仔细观察,记录每一组结果;②分析数据a、b对函数图像的影响;③猜想图像对应的函数表达式;④运用数学知识证明猜想;⑤用计算机验证研究结果;⑥写出研究报告.学生通过实验、观察、猜想、证明、检验,亲身经历了知识每一发生形成过程,真正进入了一个研究者的角色.
经验一: 1、不妨给自己定一些时间限制。连续长时间的学习很容易使自己产生厌烦情绪,这时可以把功课分成若干个部分,把每一部分限定时间,这样不仅有助于提高效率,还不会产生疲劳感。如果可能的话,逐步缩短所用的时间,不久你就会发现,以前一小时都完不成的作业,现在四十分钟就完成了。 2、不要在学习的同时干其他事或想其他事。一心不能二用的道理谁都明白,可还是有许多同学在边学习边听音乐。或许你会说听音乐是放松神经的好办法,那么你尽可以专心的学习一小时后全身放松地听一刻钟音乐,这样比带着耳机做功课的效果好多了。 3、不要整个晚上都复习同一门功课。这样做非但容易疲劳,而且效果也很差。每晚安排复习两三门功课,情况要好多了。 除了十分重要的内容以外,课堂上不必记很详细的笔记。如果课堂上忙于记笔记,听课的效率一定不高,况且你也不能保证课后一定会去看笔记。课堂上所做的主要工作应当是把老师的讲课消化吸收,适当做一些简要的笔记即可。 经验二: 学习效率这东西,我也曾和很多人谈起过。本来,有付出就应该有回报,而且,付出的多就应该回报很多,这是天经地义的事。但实际的情况却并非如此,这里边就存在一个效率的问题。效率指什么呢?好比学一样东西,有人练十次就会了,而有人则需练一百次,这其中就存在一个效率的问题。 如何提高学习效率呢?我认为最重要的一条就是劳逸结合。学习效率的提高最需要的是清醒敏捷的头脑,所以适当的休息,娱乐不仅仅是有好处的,更是必要的,是提高各项学习效率的基础。那么上课时的听课效率如何提高呢?课前要有一定的预习,这是必要的,不过我的预习比较粗略,无非是走马观花地看一下课本,这样课本上讲的内容、重点大致在心里有个谱了,听起课来就比较有针对性。预习时,我们不必搞得太细,如果过细一是浪费时间,二是上课时未免会有些松懈,有时反而忽略了最有用的东西。上课时认真听课当然是必须的,但就象我以前一个老师讲的,任何人也无法集中精力一节课,就是说,连续四十多分钟集中精神不走神,是不太可能的,所以上课期间也有一个时间分配的问题,老师讲有些很熟悉的东西时,可以适当地放松一下。另外,记笔记有时也会妨碍课堂听课效率,有时一节课就忙着抄笔记了,这样做,有时会忽略一些很重要的东西,但这并不等于说可以不抄笔记,不抄笔记是不行的,人人都会遗忘,有了笔记,复习时才有基础,有时老师讲得很多,在黑板上记得也很多,但并不需要全记,书上有的东西当然不要记,要记一些书上没有的定理定律,典型例题与典型解法,这些才是真正有价值去记的东西。否则见啥记啥,势必影响课上听课的效率,得不偿失。 作题的效率如何提高呢?最重要的是选“好题”,千万不能见题就作,不分青红皂白,那样的话往往会事倍功半。题都是围绕着知识点进行的,而且很多题是相当类似的,首先选择想要得到强化的知识点,然后围绕这个知识点来选择题目,题并不需要多,类似的题只要一个就足够,选好题后就可以认真地去做了。作题效率的提高,很大程度上还取决于作题之后的过程,对于做错的题,应当认真思考错误的原因,是知识点掌握不清还是因为马虎大意,分析过之后再做一遍以加深印象,这样作题效率就会高得多。 评:夏宇同学对于听课和做题的建议,实际上反应了提高学习效率的一个重要方法--“把劲儿使在刀刃上”,即合理分配时间,听课、记笔记应抓住重点,做习题应抓住典型,这就是学习中的"事半功倍"。 经验三: 学习效率是决定学习成绩的重要因素,我们如何提高自己学习效率呢? 一、要自信。很多的科学研究都证明,人的潜力是很大的,但大多数人并没有有效地开发这种潜力,这其中,人的自信力是很重要的一个方面。无论何时何地,你做任何事情,有了这种自信力,你就有了一种必胜的信念,而且能使你很快就摆脱失败的阴影。相反,一个人如果失掉了自信,那他就会一事无成,而且很容易陷入永远的自卑之中。 二、学会用心。学习的过程,应当是用脑思考的过程,无论是用眼睛看,用口读,或者用手抄写,都是作为辅助用脑的手段,真正的关键还在于用脑子去想。举一个很浅显的例子,比如说记单词,如果你只是随意的浏览或漫无目的地抄写,也许要很多遍才能记住,而且不容易记牢,而如果你能充分发挥自己的想象力,运用联想的方法去记忆,往往可以记得很快,而且不容易遗忘。现在很多书上介绍的英语单词快速记忆的方法,也都是强调用脑筋联想的作用。可见,如果能做到集中精力,发挥脑的潜力,一定可以大大提高学习的效果。 三、人的情绪。如果某一天,自己的精神饱满而且情绪高涨,那样在学习一样东西时就会感到很轻松,学的也很快,其实这正是我们的学习效率高的时候。因此,保持自我情绪的良好是十分重要的。我们在日常生活中,应当有较为开朗的心境,不要过多地去想那些不顺心的事,而且我们要以一种热情向上的乐观生活态度去对待周围的人和事,因为这样无论对别人还是对自己都是很有好处的。这样,我们就能在自己的周围营造一个十分轻松的氛围,学习起来也就感到格外的有精神。 [编辑本段]学习要讲究效率,提高效率 一、每天保证8小时睡眠 晚上不要熬夜,定时就寝。中午坚持午睡。充足的睡眠、饱满的精神是提高效率的基本要求。 二、学习时要全神贯注 玩的时候痛快玩,学的时候认真学。一天到晚伏案苦读,不是良策。学习到一定程度就得休息、补充能量。学习之余,一定要注意休息。但学习时,一定要全身心地投入,手脑并用。我学习的时候常有陶渊明的"虽处闹市,而无车马喧嚣"的境界,只有我的手和脑与课本交流。 三、坚持体育锻炼 身体是"学习"的本钱。没有一个好的身体,再大的能耐也无法发挥。因而,再繁忙的学习,也不可忽视放松锻炼。有的同学为了学习而忽视锻炼,身体越来越弱,学习越来越感到力不从心。这样怎么能提高学习效率呢? 四、学习要主动 只有积极主动地学习,才能感受到其中的乐趣,才能对学习越发有兴趣。有了兴趣,效率就会在不知不觉中得到提高。有的同学基础不好,学习过程中老是有不懂的问题,又羞于向人请教,结果是郁郁寡欢,心不在焉,从何谈起提高学习效率。这时,唯一的方法是,向人请教,不懂的地方一定要弄懂,一点一滴地积累,才能进步。如此,才能逐步地提高效率。 五、保持愉快的心情,和同学融洽相处 每天有个好心情,做事干净利落,学习积极投入,效率自然高。另一方面,把个人和集体结合起来,和同学保持互助关系,团结进取,也能提高学习效率。 六、注意整理 学习过程中,把各科课本、作业和资料有规律地放在一起。待用时,一看便知在哪。而有的学生查阅某本书时,东找西翻,不见踪影。时间就在忙碌而焦急的寻找中逝去。我认为,没有条理的学生不会学得很好。
一、联系生活实际,引发问题——学现实的数学传统的数学观将数学看成一套已完成的严密的数学结论体系,而教师的任务又大都停留在忠实地教“数学(教科书)”,这就最终导致数学严重脱离实际,脱离学生生活。建构主义数学观认为,数学是一个活的、动态的、开放的数学活动。教师的主要工作是为学生的学习活动提供一个合适的环境,促进学生投入到教学活动中去,促进学生主动地建构知识。以此为出发点,则要求我们在设计课程内容时,要加强数学与学生生活和社会现实的联系,将数学与学生熟悉或感兴趣的问题有机结合起来,让学生真切感受到他们所学的数学是与当代社会生活密切相关的。例如,在数学人教版第十一册数学“求比一个数多(少)百分之几”的应用题时,笔者以备受学生关注的“世界杯”足球赛为题材组织教学:在多媒体播放巴西球星射门时激动人心的录像片断后,我及时抽取了近4届“世界杯赛”每届进球数这组信息制成统计表(见下表)在多媒体中出示供学生观察。在此基础上,启发学生提出用百分数表示表中两者关系的问题,现实的背景加上学生积极、灵活的思维,学生一下子提出了许多百分数问题。比较、分类后,抽取其中的“1998年进球比2002年多百分之几,2002年进球比1998年少百分之几”一组问题,即构成了本课要研究的重点。至此,学生经历了一个从现实背景中引发问题的过程,而真切地体验到数学与日常生活的密切联系,感受到数学的趣味和作用。年份20020进球(个)161 171141115 生活是数学的源泉,紧密联系生活的“源头性”的数学问题既能让学生感受到数学与生活的密切联系,更能激发学生强烈的探究兴趣。而要做到这一点,关键是教师首先自身要关注社会,关注学生生活,这样才能提出、提供生活中的现象和问题,并引导学生去观察、解释、探究。二、利用生活经验,主动建构——学有意义的数学构建智慧的重要基础,是人们已有的生活、学习经验。为此,建构主义教学论把“通过自己的经验主动建构”看成是其“灵魂”。还有学者认为。对小学生来说,小学数学知识并不是“新知识”,在一定程度上是一种“旧知识”,在他们的生活中已经有许多数学知识的体验,学校数学学习是他们生活中有关数学现象经验的总结与升华,每一个学生都从他们的现实数学世界出发与教材内容发生交互作用,构建自己的数学知识。鉴于学生并不是一张“白纸”,教学时,我们应充分利用其已有的学习、生活经验促使其主动建构。例如,教学“一个数加上或减去接近整百、整千数的速算”时,我充分利用学生生活中已有的购物付款时“付整找零”的经验,设计了这样一道生活情境题:“六·一”节,小明的妈妈带了136元钱去新华书店买了99元一套精装本的《上下五千年》,作为送给小明的节日礼物,妈妈可以怎样付钱,还剩多少元?讨论该题时,学生想出了很多办法,而首选的方法便是“先付100元,再用36元加上找回的1元钱”,而这恰恰就是“凑整简算”的思想,原先不易被同学们所理解的“思想”由于其生活经验的支撑得以主动建构。又如,“年、月、日”的教学,教学之前,学生在生活中已积累了年、月、日的许多“经验”,以此为起点,教学时,我让学生以小组为单位,先个人观察自己手中不同年份的年历卡,然后组内交流,自己发现问题,待组际汇报时,一年有12个月,月又分为31天的大月和30天的小月以及二月的天数等知识都已被同学们所理解和掌握,在此基础上我又出示了1990年至2000年来2月份的天数让学生作再次的研究和探索,四年一闰,以及判断平、闰年的方法又被同学们所发现。学习是经验的组织和重新解释的过程,而利用学生先前生活经验的学习则显得更积极、更主动,也更富有意义。三、应用生活现实,体现价值——学有用的数学荷兰数学家弗赖登塔尔在他的《作为教育任务的数学》中阐明:数学来源于现实,也必须扎根于现实,并且应用于现实。数学学习的最终目的还是看学生能否运用所学的知识去解决问题,尤其是一些简单的实际问题。所以,我们应及时提供把课堂上所学知识应用到实践中去的机会,让学生在应用中更深刻地理解和掌握数学知识,在应用中更深刻地感受数学的魅力,并通过应用促使学生更主动地观察生活中的数学,在学习和生活中更主动地运用数学。小学数学中,数学应用于现实的例子很多,如学习了《长方体的表面积》后,学生计算粉刷自己所在教室的总面积;学习《圆》《圆锥》后,引导学生测量、计算大树的直径与横截面的面积、沙堆、稻谷堆的体积和重量;学习《百分数的意义》后,引导学生收集日常生活和社会生活中的百分数材料,并通过数据对比、分析,了解社会的变化和进步;学习《比和比例》后,让学生测量、绘制学校平面图、家庭所在居委的示意图等等。这些活动大多可以在数学实践活动课上进行。需要提及的是,平时的数学课能否体现,又该怎样体现数学的应用价值呢?笔者认为,对课本例(习)题进行“生活化”处理,不失为既“经济”又“实用”的好办法,以人教版第十一册数学“工程问题”为例,在例题的教学并进行了适量的巩固练习后,我设计并出示了这样一道题:李军星期天进城买文具,所带的钱如果全部买笔记本,可以买10本,如果全部买铅笔,可以买15支,现在他先买了4本笔记本,剩下的钱还能买多少支铅笔?通过对该题的解答,既培养了学生灵活运用知识解决问题的能力,又使学生体验到用数学知识解决生活问题带来的愉悦和成功。
网上查,有步骤的。
中学阶段常见的数学模型有:方程模型、不等式模型、函数模型、几何模型和统计模型等。我们也把运用数学模型解决实际问题的方法统称为应用建模 。可以分五种模型来写这是某数学竞赛的建模论文要求,可以参考一下1. 题目题目是给评委的第一印象,所以论文的题目一定要避免指代不清,表达不明的现象.建议将论文所涉及的模型或所用的计算方式写入题目.如“用概率方法计算商场打折与返券的实惠效应”.2. 摘要摘要是论文中重要的组成部分.摘要应该使用简练的语言叙述论文的核心观点和主要思想.如果你有一些创新的地方,一定要在摘要中说明.进一步,必须把一些数值的结果放在摘要里面,例如:“我们的最终计算得出,对于消费者来说,打折比返券的实惠率提高了23%.”摘要应该最后书写.在论文的其他部分还没有完成之前,你不应该书写摘要.因为摘要是论文的主旨和核心内容的集中体现,只有将论文全部完成且把论文的体系罗列清楚后,才可写摘要.摘要一般分三个部分.用三句话表述整篇论文的中心.第一句,用什么模型,解决什么问题.第二句,通过怎样的思路来解决问题.第三句,最后结果怎么样.当然,对于低年级的同学,也可以不写摘要.3. 正文正文是论文的核心,也是最重要的组成部分.在论文的写作中,正文应该是从“提出问题—分析问题—选择模型—建立模型—得出结论”的方式来逐渐进行的.其中,提出问题、分析问题应该是清晰简短.而选择模型和建立模型应该是目标明确、数据详实、公式合理、计算精确.在正文写作中,应尽量不要用单纯的文字表述,尽量多地结合图表和数据,尽量多地使用科学语言,这会使得论文的层次上升.4. 结论论文的结论集中表现了这篇论文的成果,可以说,只有论文的结论经得起推敲,论文才可以获得比较高的评价.结论的书写应该注意用词准确,与正文所描述或论证的现象或数据保持绝对的统一.并且一定要对结论进行自我点评,最好是能将结论推广到社会实践中去检验.5. 参考资料在论文中,如果使用了其他人的资料.必须在论文后标明引用文章的作者、应用来源等信息.(二)、建模论文的写作步骤1. 确定题目选择一个你感兴趣的生活中的问题作为研究对象,并根据研究对象设置论文题目.最好是找一位或几位老师帮助安排研究课题.在确定好课题后,应该写一个写作计划给指导老师看看,并征求他们对该计