首页

> 期刊论文知识库

首页 期刊论文知识库 问题

逆矩阵的求法毕业论文

发布时间:

逆矩阵的求法毕业论文

逆矩阵的求法:

1、利用定义求逆矩阵

设A、B都是n阶方阵, 如果存在n阶方阵B 使得AB=BA=E, 则称A为可逆矩阵, 而称B为A的逆矩阵。

2、运用初等行变换法

将一n阶可逆矩阵A和n阶单位矩阵I写成一个nX2n的矩阵B=(A,I])对B施行初等行变换,即对A与I进行完全相同的若干初等行变换,目标是把A化为单位矩阵。当A化为单位矩阵I的同时,B的右一半矩阵同时化为了A的逆矩阵。

3、增广矩阵法

如果要求逆的矩阵是A,则对增广矩阵(A E)进行初等行变换,E是单位矩阵,将A化到E,此时此矩阵的逆就是原来E的位置上的那个矩阵,原理是 A逆乘以(A E)= (E A逆)初等行变换就是在矩阵的左边乘以A的逆矩阵得到的。

4、待定系数法

待定系数法顾名思义就是对未知数进行求解。用一个新的包含未定因子的多项式来表达多项式,从而获得一个恒等式。接着,利用恒等式的特性,推导出一类系数必须满足的方程或方程,再由方程组或方程组得到待确定的系数,或确定各系数之间的对应关系,称为待定系数法。

逆矩阵的求法主要有以下两种:

1、利用定义求逆矩阵。

定义:设A、B都是n阶方阵,如果存在n阶层方阵B使得AB=BA=E。则称A为可逆矩阵,而称B为A的逆矩阵。

2、是初等变换法

求元素为具体数字的矩阵的逆矩阵,常用初等变换法。如果A可逆,则A通过初等变换,化为单位矩阵I,即存在矩阵P1、P2、......Ps使得:

(1)P1P2.......PsA=I,用A的负一次方右乘上式两端。

(2)P1P2.....PsI=A的负一次方。

比较(1)(2)两式,可以看到当A通过初等变换华为单位矩阵的同时,对单位矩阵I作同样的初等变换,就化为A的逆矩阵A的负一次方。这就是初等变换法在求逆矩阵中的应用。它是实际应用中比较简单的一种方法,需要注意的是,在作初等变换时只允许作行初等变换。同样,只作列初等变换也可以求逆矩阵。

一般用初等行变换,来求,对增广矩阵A|E,同时施行初等行变换,化成E|A^-1;

在原矩阵的右侧接写一个四阶单位矩阵,然后对扩展矩阵施行初等行变换,使前面的四阶矩阵化为单位矩阵,则右侧的单位矩阵就化为了原来前面的逆矩阵。

扩展资料:

逆矩阵求法:

求逆矩阵的初等变换法

将一n阶可逆矩阵A和n阶单位矩阵I写成一个nX2n的矩阵

对B施行初等行变换,即对A与I进行完全相同的若干初等行变换,目标是把A化为单位矩阵。当A化为单位矩阵I的同时,B的右一半矩阵同时化为了A。

如求

的逆矩阵A-1。

故A可逆并且,由右一半可得逆矩阵A-1=

初等变换法计算原理

若n阶方阵A可逆,即A行等价I,即存在初等矩阵P1,P2,...,Pk使得

,在此式子两端同时右乘A-1得:

比较两式可知:对A和I施行完全相同的若干初等行变换,在这些初等行变化把A变成单位矩阵的同时,这些初等行变换也将单位矩阵化为A-1。

如果矩阵A和B互逆,则AB=BA=I。由条件AB=BA以及矩阵乘法的定义可知,矩阵A和B都是方阵。再由条件AB=I以及定理“两个矩阵的乘积的行列式等于这两个矩阵的行列式的乘积”可知,这两个矩阵的行列式都不为0。也就是说,这两个矩阵的秩等于它们的级数(或称为阶,也就是说,A与B都是方阵,且rank(A) = rank(B) = n)。

换句话说,这两个矩阵可以只经由初等行变换,或者只经由初等列变换,变为单位矩阵[2] 。

伴随矩阵法

如果矩阵可逆,则

注意:

中元素的排列特点是的第k列元素是A的第k行元素的代数余子式。

要求得

即为求解的余因子矩阵的转置矩阵。

A的伴随矩阵为,其中Aij=(-1)i+jMij称为aij的代数余子式。

参考资料:百度百科-逆矩阵

求逆矩阵例题

关于逆矩阵求法的毕业论文

还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考! 1、导数在不等式证明中的应用 2、导数在不等式证明中的应用 3、导数在不等式证明中的应用 4、等价无穷小在求函数极限中的应用及推广 5、迪克斯特拉(Dijkstra)算法及其改进 6、第二积分中值定理“中间点”的性态 7、对均值不等式的探讨 8、对数学教学中开放题的探讨 9、对数学教学中开放题使用的几点思考 10、对现行较普遍的彩票发行方案的讨论 11、对一定理证明过程的感想 12、对一类递推数列收敛性的讨论 13、多扇图和多轮图的生成树计数 14、多维背包问题的扰动修复 15、多项式不可约的判别方法及应用 16、多元函数的极值 17、多元函数的极值及其应用 18、多元函数的极值及其应用 19、多元函数的极值问题 20、多元函数极值问题 21、二次曲线方程的化简 22、二元函数的单调性及其应用 23、二元函数的极值存在的判别方法 24、二元函数极限不存在性之研究 25、反对称矩阵与正交矩阵、对角形矩阵的关系 26、反循环矩阵和分块对称反循环矩阵 27、范德蒙行列式的一些应用 28、方阵A的伴随矩阵 29、放缩法及其应用 30、分块矩阵的应用 31、分块矩阵行列式计算的若干方法 32、辅助函数在数学分析中的应用 33、复合函数的可测性 34、概率方法在其他数学问题中的应用 35、概率论的发展简介及其在生活中的若干应用 36、概率论在彩票中的应用 37、概率统计在彩票中的应用 38、概率统计在实际生活中的应用 39、概率在点名机制中的应用 40、高阶等差数列的通项,前n项和公式的探讨及应用 41、给定点集最小覆盖快速近似算法的进一步研究及其应用 42、关联矩阵的一些性质及其应用 43、关于Gauss整数环及其推广 44、关于g-循环矩阵的逆矩阵 45、关于二重极限的若干计算方法 46、关于反函数问题的讨论 47、关于非线性方程问题的求解 48、关于函数一致连续性的几点注记 49、关于矩阵的秩的讨论 _ 50、关于两个特殊不等式的推广及应用 51、关于幂指函数的极限求法 52、关于扫雪问题的数学模型 53、关于实数完备性及其应用 54、关于数列通项公式问题探讨 55、关于椭圆性质及其应用地探究、推广 56、关于线性方程组的迭代法求解 57、关于一类非开非闭的商映射的构造 58、关于一类生态数学模型的几点思考 59、关于圆锥曲线中若干定值问题的求解初探 60、关于置信区间与假设检验的研究 61、关于周期函数的探讨 62、函数的一致连续性及其应用 63、函数定义的发展 64、函数级数在复分析中与在实分析中的关系 65、函数极值的求法 66、函数幂级数的展开和应用 67、函数项级数的收敛判别法的推广和应用 68、函数项级数一致收敛的判别 69、函数最值问题解法的探讨 70、蝴蝶定理的推广及应用 71、化归中的矛盾分析法研究 72、环上矩阵广义逆的若干性质 73、积分中值定理的再讨论 74、积分中值定理正反问题‘中间点’的渐近性 75、基于高中新教材的概率学习 76、基于最优生成树的'海底油气集输管网策略分析 77、级数求和的常用方法与几个特殊级数和 78、级数求和问题的几个转化 79、级数在求极限中的应用 80、极限的求法与技巧 81、极值的分析和运用 82、极值思想在图论中的应用 83、几个广义正定矩阵的内在联系及其区别 84、几个特殊不等式的巧妙证法及其推广应用 85、几个重要不等式的证明及应用 86、几个重要不等式在数学竞赛中的应用 87、几种特殊矩阵的逆矩阵求法

一般有2种方法。

1、伴随矩阵法。A的逆矩阵=A的伴随矩阵/A的行列式。

2、初等变换法。A和单位矩阵同时进行初等行(或列)变换,当A变成单位矩阵的时候,单位矩阵就变成了A的逆矩阵。

第2种方法比较简单,而且变换过程还可以发现矩阵A是否可逆(即A的行列式是否等于0)。矩阵可逆的充要条件是系数行列式不等于零。

矩阵求逆,即求矩阵的逆矩阵。

矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷。逆矩阵又是矩阵理论的很重要的内容,逆矩阵的求法自然也就成为线性代数研究的主要内容之一。设A是数域上的一个n阶方阵,若在相同数域上存在另一个n阶矩B,使得: AB=BA=E。 则我们称B是A的逆矩阵,而A则被称为可逆矩阵。其中,E为单位矩阵。

矩阵求逆方法研究论文

一般有2种方法。 1、伴随矩阵法。A的逆矩阵=A的伴随矩阵/A的行列式。 2、初等变换法。A和单位矩阵同时进行初等行(或列)变换,当A变成单位矩阵的时候,单位矩阵就变成了A的逆矩阵。 第2种方法比较简单,而且变换过程还可以发现矩阵A是否可逆(即A的行列式是否等于0)。 伴随矩阵的求法参见教材。矩阵可逆的充要条件是系数行列式不等于零。

1.公式法:A^(-1)=1/|A|*(A*),这就是一楼的伴随矩阵法..2.利用初等变换,行列都可以的,只有在解线性方程组时不能列变换...3.分块求逆;4.运用推论:只要找出一个B,使AB=E,A就是可逆的... 设A^2=2E,则(A+E)(A-E)=E, 所以(A+E)和(A-E)都可逆..

矩阵是工程技术以及经济管理等领域的不可缺少的数学工具,凡是用到矩阵的地方,基本上都要涉及广义逆矩阵,尤其数值分析与数理统计有着重要作用.广义逆矩阵共15类,但最常用有5类,包括A{1},A{1,2},A{1,3},A{1,4},A{1,2,3,4}.主要讨论这5类广义逆矩阵的计算及其应用.作 者: 马秀珍 韩静华 MA Xiu-zhen HAN Jing-hua 作者单位: 沈阳航空工业学院理学系,辽宁,沈阳,110034 刊 名: 沈阳航空工业学院学报 英文刊名: JOURNAL OF SHENYANG INSTITUTE OF AERONAUTICAL ENGINEERING 年,卷(期): 2005 22(2) 分类号: 关键词: 广义逆矩阵 矩阵方程 自反广义逆 最小范数广义逆 通解 机标分类号: 机标关键词: 广义逆矩阵应用数值分析数学工具数理统计经济管理工程技术计算 基金项目:

一般使用初等行变换或者伴随矩阵方法,来求逆矩阵。

矩阵秩的求法毕业论文

我以前写过一篇关于计算矩阵的秩的小论文,里面是我的一些看法,我从中摘录了一部分,附在下面,看看对你有没有什么帮助。我的看法也是通过将矩阵化成最简形来求解,以下是这么选择的原因。其实这个问题可以讨论讨论的,当时我对自己的算法也不算很满意,所以有什么问题尽管提。本程序是为求解矩阵的秩而进行编译的。要说明其功能,首先要明白什么是矩阵的秩。设在矩阵A中有一个不等于0的r结子式D,且所有r+1阶子式(如果存在的话)全等于0,那么D称为矩阵A的最高阶非零子式,数r称为矩阵A的秩,记作R(A)。零矩阵的秩为1。根据定义推断,计算矩阵A的秩,可以转化为计算矩阵A的最大非零子式。但是,实际应用这条原理来解决此问题并不容易。因为,应用计算机计算矩阵A所对应的行列式|A|的值非常麻烦。一个m×n的矩阵,其k阶子式多达m!/[k!•(m-k)!]•n!/[k!•(n-k)!]个,这大大增加了程序的计算量。同时,由于不同阶的子式的值的算法不易通用,故也增加了程序员的编程负担,最重要的是,程序的通用性较低,不易应用于相似题目的求解。故,本程序算法并未采用这种思路。那么,本题又应当如何求解呢?实际生活中,我们一般的求解方法是应用初等变换求解。应用初等变换,将要求的矩阵A变换成行最简形或列最简形然后再进行判断,这才是我们求解矩阵的秩的常规做法。那么,编写程序求解矩阵的秩当然也可以遵循这种做法。相对于前面所讨论的原理来说,应用这种原理进行算法设计,可以减少不少的时间,同时计算机求解的速度也能大大提高。而且,再本算法的基础上稍加改进,即可适应任何阶次的矩阵的秩的求解。

找点文献给你自己看看吧,需要就发邮件给我[1]高朝邦,祝宗山.关于矩阵的秩的等价描述[J].成都大学学报(自然科学版),2006,25(1)从行列式、矩阵的等价、线性方程组、线性空间、线性映射等角度来刻画矩阵的秩,进而用这些命题来证明与矩阵的秩有关的一些命题.[2]费绍金.用矩阵的秩判断空间中平面与平面、直线与直线及直线与平面间的位置关系[J].牡丹江教育学院学报,2007,(6)利用线性方程组解的理论讨论空间中平面与平面、直线与直线及直线与平面间的位置关系,给出用矩阵的秩判定以上关系的方法及结论.[3]严坤妹.一类矩阵的秩[J].福建商业高等专科学校学报,2005,(4)矩阵的秩是矩阵的一个重要不变量,根据两个重要的矩阵的秩的不等式以及分块矩阵的初等变换的性质,本文研究了一类矩阵的秩的特征.[4]戴红霞.关于矩阵的秩的例题教学[J].南京审计学院学报,2005,2(2)本文通过三个典型例题的具体讲解,加深学生对抽象概念"矩阵的秩"的理解和掌握.[5]余航.试论分块矩阵的秩[J].桂林师范高等专科学校学报,2001,15(3)任一矩阵都可求得它的秩,而在矩阵运算中,矩阵的分块是一个很重要的技巧.本文从不同角度,从特殊到一般地探求了分块矩阵的秩.[6]徐兰.利用分块矩阵探讨矩阵的秩的有关定理[J].昌吉学院学报,2003,(4)矩阵是线性代数的主要研究对象之一,利用分块矩阵,研究高阶矩阵的秩及矩阵在运算后秩的变化,得到有关的定理.[7]邹晓光.互素多项式矩阵的秩的一个简单结论及其应用[J].金华职业技术学院学报,2006,6(1)本文给出了互素多项式在矩阵的秩讨论中的一个简单结果:定理:设f(x),g(x)∈P[x],A是n阶方阵,若(f(x),g(x))=1,则n+r[f(A)g(A)]=r(f(A))+r(g(A)).以及结果的一些简单应用,对文献[1]中的一些结论进一步讨论.[8]张丽梅,乔立山,李莹.可逆坡矩阵与坡矩阵的秩[J].山东大学学报(理学版),2007,42(9)坡是两个元素的乘积小于等于每个因子的加法幂等半环.讨论了可逆坡矩阵的若干性质,证明了可逆坡矩阵必是满秩的.讨论了坡矩阵的行秩、列秩与Schein秩.给出了坡矩阵的Schein秩的一个重要性质.

第2行,减去第3、4行,变成0第2、4行交换,得到行阶梯型矩阵,数一下非零行数,是2则秩等于2

要快速求一个矩阵的秩当然是使用初等行变换的方法也就是进行矩阵行的化简在通过化简得到最简矩阵之后其矩阵的非零行数就是这个矩阵的秩即行秩是A的线性无关的横行的极大数目

矩阵特征值的数值求法毕业论文

求n阶矩阵A的特征值的基本方法:根据定义可改写为关系式,为单位矩阵(其形式为主对角线元素为λ- ,其余元素乘以-1)。要求向量具有非零解,即求齐次线性方程组有非零解的值。即要求行列式。 解次行列式获得的值即为矩阵A的特征值。将此值回代入原式求得相应的,即为输入这个行列式的特征向量。具体操作以右图为例。定义1设是一个阶方阵(即使一个n*n的矩阵),是一个数,如果方程(1)存在非零解向量,则称为的一个特征值,相应的非零解向量称为属于特征值的特征向量.(1)式也可写成,(2)这是个未知数个方程的齐次线性方程组,它有非零解的充分必要条件是系数行列式, (3)即 上式是以为未知数的一元次方程,称为方阵的特征方程.其左端是的次多项式,记作,称为方阵的特征多项式.===显然,的特征值就是特征方程的解.特征方程在复数范围内恒有解,其个数为方程的次数(重根按重数计算),因此,阶矩阵有个特征值.设阶矩阵的特征值为由多项式的根与系数之间的关系,不难证明(Ⅰ)(Ⅱ)若为的一个特征值,则一定是方程的根,因此又称特征根,若为方程的重根,则称为的重特征根.方程的每一个非零解向量都是相应于的特征向量,于是我们可以得到求矩阵的全部特征值和特征向量的方法如下:第一步:计算的特征多项式;第二步:求出特征方程的全部根,即为的全部特征值;第三步:对于的每一个特征值,求出齐次线性方程组:的一个基础解系,则的属于特征值的全部特征向量是(其中是不全为零的任意实数).[注]:若是的属于的特征向量,则也是对应于的特征向量,因而特征向量不能由特征值惟一确定.反之,不同特征值对应的特征向量不会相等,亦即一个特征向量只能属于一个特征值.由以上讨论可知,对于方阵的每一个特征值,我们都可以求出其全部的特征向量.但对于属于不同特征值的特征向量,它们之间存在什么关系呢?这一问题的讨论在对角化理论中有很重要的作用.对此我们给出以下结论:定理1属于不同特征值的特征向量一定线性无关.

不太懂编程, 不过有现成工具可用.Mathematica只需要一个函数就能得到所有特征值和对应的特征向量:Eigensystem[{{1, 1/3, 1, 1/6, 1/5, 1/3, 1/2},{3, 1, 3, 1/3, 1/4, 1/2, 1/2},{1, 1/3, 1, 1/5, 1/5, 1/5, 1/3},{6, 3, 5, 1, 1, 2, 1},{5, 4, 5, 1, 1, 2, 2},{3, 2, 5, 1/2, 1/2, 1, 1/2},{2, 2, 3, 1, 1/2, 2, 1}}]数值结果用:N[Eigensystem[{{1, 1/3, 1, 1/6, 1/5, 1/3, 1/2},{3, 1, 3, 1/3, 1/4, 1/2, 1/2},{1, 1/3, 1, 1/5, 1/5, 1/5, 1/3},{6, 3, 5, 1, 1, 2, 1},{5, 4, 5, 1, 1, 2, 2},{3, 2, 5, 1/2, 1/2, 1, 1/2},{2, 2, 3, 1, 1/2, 2, 1}}]]输出为{{, + I, - I, + I, - I, + I, - I}, {{, , , , , , 1.},{ - I, + I, - I, + I, - I, + I, 1.},{ + I, - I, + I, - I, + I, - I, 1.},{ - I, - I, + I, + I, - I, - I, 1.},{ + I, + I, - I, - I, + I, + I, 1.},{ - I, + I, + I, + I, - I, - I, 1.},{ + I, - I, - I, - I, + I, + I, 1.}}}第一组为特征值, 后面为依次对应的特征向量.所以只有一个实特征值: , 相应特征向量:{, , , , , , 1.}.刚看到另一个一样的问题(不过(1,6)和(6,1)两个位置不一样).特征向量乘以非零数还是特征向量.作为权重是要各分量之和为1?那不妨将上面所得特征向量除以各分量之和, 得.{, , , , , , }.

用 Matlab 的计算结果为:>> eig(M) --所有特征值ans = + - + - + - >> [V,D]=eig(M);V = - + - + + - + - + - + - - + + - - + + - - + - + + - 每一列是对应的特征向量对的不齐, 对应 特征值 的特征向量是

|λE-A|=|λ-1 2 -2|=(-1)^2×|-2 -4 λ+2| (把第一行和第二行互换,再把新的第一行和 |2 λ+2 -4| |λ-1 2 -2| 第三行互换) |-2 -4 λ+2| |2 λ+2 -4|=|-2 -4 λ+2|=(-1)×|-2 -4 λ+2| |0 4-2λ 1/2×λ^2+1/2×λ-3| |0 λ-2 λ-2| |0 λ-2 λ-2| |0 4-2λ 1/2×λ^2+1/2×λ-3|=(-1)×|-2 -4 λ+2|=(λ+7)(λ-2)^2. |0 λ-2 λ-2| |0 0 1/2×(λ+7)(λ-2)|所以,A的特征值为-7,2,2.

相关百科

热门百科

首页
发表服务