首页

> 学术论文知识库

首页 学术论文知识库 问题

碳含量对硫的影响研究论文

发布时间:

碳含量对硫的影响研究论文

(1)①该装置中C、S在A装置中被氧气反应生成二氧化碳、二氧化硫,还有部分氧气剩余,所以气体a的成分是SO2、CO2、O2,故答案为:SO2、CO2、O2;②若钢样中碳以FeS形式存在,FeS被氧气氧化,Fe元素化合价由+2价变为+3价,-2价的S被氧化为+4价,结合化学计量数知,生成物是二氧化硫和四氧化三铁,所以反应方程式为3FeS+5O2  高温 . Fe3O4+3SO2,故答案为:Fe3O4;SO2;(2)①双氧水具有强氧化性,二氧化硫具有还原性,二者发生氧化还原反应生成硫酸和水,反应方程式为 H2O2+SO2=H2SO4,故答案为:H2O2+SO2=H2SO4;②若消耗1mL NaOH溶液相当于硫的质量为y克,z mL NaOH溶液相当于硫的质量为yzg,硫的质量分数为yzgxg×100%=yzx,故答案为:yzx;(3)①测定二氧化碳的含量,需要将二氧化硫除去防止造成干扰,B装置可吸收二氧化硫,C装置可以验证二氧化硫是否除尽,所以装置B和C的作用是除去二氧化硫,故答案为:排除二氧化硫对二氧化碳测定的干扰;②计算钢样中碳的质量分数,需要测定吸收二氧化碳的质量,所以需要测定吸收二氧化碳前后吸收瓶的质量,故答案为:二氧化碳前后吸收瓶的质量.

碳含量增加,强度提高,塑性,韧性和疲劳强度下降,同时恶化可焊性和抗腐蚀性.硫使钢热脆,磷使钢冷脆.但磷也可提高钢材的强度和抗锈性.

化学元素对钢性能的影响:1、碳(C):钢中含碳量增加,屈服点和抗拉强度升高,但塑性和冲击性降低,当碳量超过时,钢的焊接性能变坏,因此用于焊接的低合金结构钢,含碳量一般不超过。碳量高还会降低钢的耐大气腐蚀能力,在露天料场的高碳钢就易锈蚀;此外,碳能增加钢的冷脆性和时效敏感性。2、硅(Si):在炼钢过程中加硅作为还原剂和脱氧剂,所以镇静钢含有-的硅。如果钢中含硅量超过,硅就算合金元素。硅能显著提高钢的弹性极限,屈服点和抗拉强度,故广泛用于作弹簧钢。在调质结构钢中加入-的硅,强度可提高15-20%。硅和钼、钨、铬等结合,有提高抗腐蚀性和抗氧化的作用,可制造耐热钢。含硅1-4%的低碳钢,具有极高的导磁率,用于电器工业做矽钢片。硅量增加,会降低钢的焊接性能..............

(1)气体a:CO2、SO2、O2; 3FeS + 5O2 = Fe3O4 + 3SO2;(2)H2O2 + SO2 = H2SO4;zy/x。(3)除去SO2;CO2吸收瓶的增重。

淬火温度对碳含量的影响研究论文

当碳含量在能完全溶在铁中的范围内,含碳量越高淬火后形成的马氏体越多,硬度越高,刚性越好。淬火时:温度必须比临界温度高出20-50C°才能发生组织变化。太高了过火,变脆!回火时:(温度从低到高)变化透切,组织均匀。(硬度更高,刚性更好)——马氏体开始兑变(变软,弹性增加)——(超过临界温度)马氏体消失,软,弹性也没了,切削性能好,——完全退火。全软,弹性也几付没了。 详细请看《金属热处理》。

摘要:研究证明,经淬火碳分配工艺处理后的钢可获得优异的强度和塑韧性等综合力学性能,其室温组织由贫碳的马氏体和富碳的残余奥氏体组成,马氏体组织保证了钢的强度,而残留奥氏体提高了钢的塑性。文章对近年来淬火-碳分配工艺的研究进展做了概述,并对该工艺未来的发展趋势做了展望。 关键词: 残余奥氏体 淬火 淬火碳分配工艺 热处理工艺 马氏体 1、概述马氏体钢传统的热处理工艺为淬火和回火。淬火组织主要为马氏体或是马氏体加残余奥氏体,其强度高;回火则消除淬火应力、同时马氏体析出碳化物、残余奥氏体分解。在1960年,Matas[1]等发现,在过冷奥氏体转变过程中,钢中的C原子可以由马氏体相向残余奥氏体中扩散。随后,Sarikaya[2]等通过实验证明,在淬火过程中,C会由马氏体相向残余奥氏体中进行分配,从而造成增C现象。虽然很早人们就知道C会从马氏体向残余奥氏体分配,但是由于传统的理论研究认为室温下存在的残余奥氏体对材料的强度、硬度和耐磨性有害,从而希望材料中的残余奥氏体越少越好。2003年,美国科罗拉多矿校Speer[3]提出一种新工艺,即淬火碳分配工艺(Q&P),该工艺通过提高钢中残余奥氏体的含量,使钢在室温下的微观组织由马氏体和残余奥氏体组成,从而保证钢在高强度下具有较高的塑韧性,获得综合性能优良的钢。淬火碳分配工艺(Q&P)与传统的淬火回火工艺的区别在于,Q&P工艺利用钢中的元素如Si、AL等来阻碍碳化物的析出,使C从马氏体向残余奥氏体中分配,残余奥氏体富C,从而获得稳定的奥氏体组织,使钢在保证高强度的情况下具有高的韧性。2、淬火碳分配工艺过程图1为淬火碳分配热处理工艺示意图[4]。QT表示初始淬火温度,PT表示碳分配温度。其中将QT=PT的处理称为一步法工艺,将QT PT的处理称为两步法工艺。图1淬火碳分配热处理工艺示意图3、淬火碳分配工艺的研究现状(1)在钢种方面,研究者们发现通过淬火碳分配处理后的钢能获得较好的强塑性结合,主要在于该工艺能够有效的增加残余奥氏体的体积分数及其含碳量,最终获得马氏体与残余奥氏体的复合组织。[5]等人将高碳含硅钢()进行淬火碳分配工艺处理,其硬度为HRC58,残余奥氏体含量为10%。而传统的Q-T工艺得到的残余奥氏体一般都在2%左右。唐荻[6]等对钢通过淬火碳分配处理后,其残余奥氏体体积分数高达,有较高的强塑积,其抗拉强度为1221MPa,伸长率为14%。较传统热处理工艺,综合性能提高很多。钟宁[7]对钢进行淬火碳分配处理后,显微组织由高位错密度的板条马氏体和残余奥氏体组成,其屈服强度达900MPa,抗拉强度达1100MPa,伸长率为21%,与其它先进结构钢(马氏体钢、TRIP钢、双相钢)相比,经淬火碳分配处理后的钢拥有较好的综合力学性能。(2)在工艺参数方面,研究者们主要在初始淬火温度、碳分配温度、碳分配保温时间、淬火介质等方面做了不同的研究。陈连生[8]等对进行淬火碳分配处理,研究碳配分温度对钢的组织性能以及残余奥氏体含量的影响,实验结果表明,当碳配分温度为400 时,其强塑积达到最大值22610MPa.%,此时残余奥氏体的含量(体积分数)达到最大值。蒯振[9]等人通过对进行淬火碳分配处理,发现在配分时间为300秒时,抗拉强度为1000MPa,伸长率为,强塑积达到最大为27300MPa.%。董辰[10]等对钢进行淬火碳分配处理,研究不同初始淬火温度对钢组织和力学性能的影响,发现在250 时获得较好的强塑积。Ludmila[11]等人对42SiCr进行研究,选取多种淬火介质,并以淬火冷却速度作为研究的对象,结果表明,不同的淬火冷却速度会影响钢的强度,但是对塑韧性的影响不大。盐浴炉中得到的钢的屈服强度最高,其值为1788MPa,抗拉强度为1920MPa;水淬得到的屈服强度不高,但是抗拉强度最大,其值为2008MPa。4、对淬火碳分配工艺发展的展望为了进一步提高钢的强度,节约能源和资源,徐祖耀[12]在淬火碳分配的基础上提出了淬火碳分配回火(Q-P-T)工艺,在设计的碳含量小于的钢中加入了碳化物形成元素,通过实验,初步获得钢的抗拉强度在2000MPa以上,而断后伸长率在10%以上。较淬火碳分配工艺,该工艺引入了碳化物沉淀机制,能获得更高的强度和塑性相结合的钢。辛沛森[13]基于淬火碳分配工艺的热冲压U形件的制备实验研究结果表明:基于淬火碳分配的热冲压件的强塑积比同等条件下的传统热冲压件的强塑积高。对高强度钢板的热冲压成形工艺在工业生产中的应用有一定的指导意义。5、结论采用淬火碳分配工艺,在不降低或者降低很少强度的情况下,能使钢的塑韧性大大提高,从而获得性能优良的钢。在淬火碳分配钢的基础上添加适量的碳化物形成元素,初步研究出含碳量小于的淬火-碳分配-回火钢也能显示良好的力学性能。基于淬火碳分配的热冲压件其性能也优于相同条件下的传统的热冲压件,对引导实际生产具有重要的意义。基于淬火碳分配工艺获得的钢制品在提高制件的强度,减轻制件重量,节能降耗方面有着重要的意义。

可以借助Fe-Fe3C相图来解决这个问题。因为碳含量和热处理温度对钢的性能不是呈线性的关系。

含氧量对养殖的影响研究论文

氧气浓度对锦鲤养殖的影响:(1)饲养锦鲤的鱼池,最严重的污染源是锦鲤排泄的粪尿及饲料残渣,这些残渣也是一些微生物的食物来源。这些微生物就是草履虫及轮虫的原生动物。微生物的活动也需要氧气,合适的氧气浓度能为清理污染物质的微生物提供充足的氧气。(2)微生物与锦鲤一样吸收水中氧气使用微生物吃掉水中污染物质清净水质的方法称为“生物过滤”.氧气与生物过滤之间有很大的关系:在生物过滤中不可或缺的微生物亦与锦鲤一样吸收氧气而生存。当水中的溶存氧气浓度降低,微生物就不能繁殖,数量骤减。因而生物过滤就不能正常发挥功能,水质即劣化。(3)在容易堵塞的滤材上,短时间内就会有鱼粪等污染物质附着,然后微生物就快速繁殖而吃掉污染物。可是微生物繁殖增多时氧气耗用量亦增加,如果不将氧气送入滤材中,则微生物发生缺氧而猝死。将氧气送入滤材之中,是指要在滤材中形成水流之意。容易堵塞的滤材,水之流通不能充分广被于滤材各部,所以微生物就发生缺氧,致微生物不能繁殖,过滤槽就发生异臭(污泥臭)。在养殖锦鲤的水缸里,要具有经常充分供给氧气功能的过滤系统,过滤槽内微生物才能继续繁殖,所以能以高效率清净用水,减少锦鲤饲养出现的缺氧问题。

草履虫很多时间生活在水的表层,说明氧气是影响动物分布的环境条件。大部分动物都进行有氧呼吸,所以氧气的含量多少就成为影响动物分布的重要环境条件。比如,随大气层的延伸,海拔越高的地方,空气越稀薄,动物的种类会越稀少。

莹姐,氧气溶解的效果的话,一般都是温度温度越高它的溶解效果就越差,所以一定要进行降温处理。

二是当鱼儿发病时只集中精力于用药或调水,没把溶氧当成头等大事或者在低溶氧状态下只会加重病情,用再多的药也无济于事。一、水中的溶氧量及影响因素二、养殖池塘水体中溶氧的变化规律三、低溶氧对鱼虾蟹的危害及其行为反应

含钴量对钨钢的影响研究论文

CO能增加和保持刀具本身的红硬性和抗弯能力,所以一般在比较难加工的场合加工不锈钢和较硬的材料时会用含CO的高速钢刀具也就是看中这些特性,但是CO含量不能超过一定分量,狭义上理解CO只是一种添加剂粘合剂,无论是合金刀具还是高速钢刀具还是以钨为基底的,添加剂粘合剂太多了整个材料的组织结构就很难紧密均匀了就会导致材料不具备使用性了。

呵呵,你用的工具还不够先进。最新的电子显微镜应该可以看到的。我估计你用的是esd,它的能量分辨率低,一般为129—155ev,以及si(li)晶体需在低温下使用(液氮冷却)等缺点。而碳属于超轻元素,能量很低,因此探测不出来。

钨钢抗压强度,表示钨钢在压缩负荷下直至破坏时的极限强度。中文名钨钢抗压强度定义钨钢在压缩负荷下直至破坏时的极限强度δbc=P(最大载荷)/F(试样截面积),单位为N/mm。钨钢的抗压强度测量值比较分散,一般取10个试样测量的平均值。图1:钨钢Co含量对WC-Co合金抗压强度的影响图有研究表明,如图1:钨钢Co含量对WC-Co合金抗压强度的影响图所示。各种晶粒度的合金钴含量在4~6%时,合金出现最大抗压强度,之后,随钴含量增加抗压强度降低(有研究认为不存在峰值,而是随钴含量抗压强度降低,如图2:钨钢抗压强度与钴含量的关系图所示)。相同钴含量的合金,WC晶粒度越小,抗压强度越高,添加少量的TaC、NbC使合金抗压强度略有提高,添加过多,抗压强度反而下降。图2:钨钢抗压强度与钴含量的关系图YG钨钢的抗压强度大于YT钨钢的抗压强度;含钴量相同,YT钨钢的挤压强度随TiC增加而降低。

钴[gǔ] [1] ,元素符号Co,银白色铁磁性金属,表面呈银白略带淡粉色,在周期表中位于第4周期、第Ⅷ族,原子序数27,原子量,密排六方晶体,常见化合价为+2、+3。 钴是具有光泽的钢灰色金属,比较硬而脆,有铁磁性,加热到1150℃时磁性消失。钴的化合价为+2价和+3价。在常温下不和水作用,在潮湿的空气中也很稳定。在空气中加热至300℃以上时氧化生成CoO,在白热时燃烧成Co3O4。氢还原法制成的细金属钴粉在空气中能自燃生成氧化钴。钴是生产耐热合金、硬质合金、防腐合金、磁性合金和各种钴盐的重要原料。钴是具有光泽的钢灰色金属,熔点1493℃、比重,比较硬而脆,钴是铁磁性的,在硬度、抗拉强度、机械加工性能、热力学性质、的电化学行为方面与铁和镍相类似。加热到1150℃时磁性消失。

氢气对脱硫影响研究论文

氢气可以应用在工业领域,也可以应用在医学领域,可以消除有害自由基,中和成水排出。

氢气的用途有哪些呢

氢气的作用有:在石化工业中,需加氢通过去硫和氢化裂解来提炼原油,对人造黄油、食用油、洗发精、润滑剂、家庭清洁剂及其它产品中的脂肪氢化等。

氢是主要的工业原料,也是最重要的工业气体和特种气体,在石油化工、电子工业、冶金工业、食品加工、浮法玻璃、精细有机合成、航空航天等方面有着广泛的应用。

同时,氢也是一种理想的二次能源( 二次能源是指必须由一种初级能源如太阳能、煤炭等来制取的能源)。在一般情况下,氢极易与氧结合。这种特性使其成为天然的还原剂使用于防止出现氧化的生产中。在玻璃制造的高温加工过程及电子微芯片的制造中,在氮气保护气中加入氢以去除残余的氧。

在石化工业中,需加氢通过去硫和氢化裂解来提炼原油。氢的另一个重要的用途是对人造黄油、食用油、洗发精、润滑剂、家庭清洁剂及其它产品中的脂肪氢化。由于氢的高燃料性,航天工业使用液氢作为燃料。

用作合成氨、合成甲醇、合成盐酸的原料,冶金用还原剂,石油炼制中加氢脱硫剂等。

氢气治疗疾病的概况:

2007年,Ohsawa的关于氢气选择性抗氧化和对大鼠脑缺血治疗作用的报道是该领域具有开创意义的工作。虽然早在1975年和2001年就有关于氢气抗氧化的报道,但2001年是研究呼吸800 kpa氢气14天的效应,而2007年报道是呼吸2kpa氢气不足1小时的效应,两者分压相差400倍,呼吸时间相差600倍,所以这绝对是完全不同性质的工作。

该研究将大鼠中动脉临时阻断90分钟(将一根缝合线插到大脑中动脉起始段),然后再灌流,这是经典的脑中风动物模型,类似脑缺血后再恢复血流的情况。在恢复血液供应前5分钟开始给动物呼吸含氢气1、2、4%的混合气体35分钟,结果发现动物脑组织坏死体积非常显著地减少。

日本学者将这种作用归因于氢气可以选择性中和羟基自由基(羟基自由基是生物体毒性最强的自由基),尽管氢气也可以中和亚硝酸阴离子,但作用比较弱。该文章发表后,迅速引起国际上的广泛关注,大批临床和基础医学学者迅速跟进,至2014年已经有63个疾病类型被证明可以被氢气有效治疗。

每年氢气生物学文章数量,如2007年3篇、2008年15篇、2009年26篇、2010年50篇、2011年63篇、2012年95篇,呈现爆发式增长。氢气的分子效应可在多种组织和疾病存在,例如大脑、脊髓、眼、耳、肺、心、肝、肾、胰腺、小肠、血管、肌肉、软骨、代谢系统、围产期疾病和炎症等。

相关百科

热门百科

首页
发表服务