0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变数(一个变数在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变数在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变数,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,巨集观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。
千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:452.5=112.5(千米),112.5+18=130.5(千米),130.52=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是452.5=112.5(千米),112.5-18=94.5(千米),94.52=189(千米)。所以正确答案应该是:452.5=112.5(千米),112.5+18=130.5(千米),130.52=261(千米)和452.5=112.5(千米),112.5-18=94.5(千米),94.52=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。
在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。 大家一定从小就开始奇怪了,0到底是怎么来的呢?关于0的起源,有以下几种观点。①、古巴比伦的0的符号是用空位来表示的,例如要表示一百零一,古巴比伦写作1。1②、在古印度数学中,发现0的最早记载是公元876年,欧洲许多数学家都同意这一观点。公元6世纪,印度人就开始用“?”,后来变成了一个圆圈。到了公元九世纪就固定成了今天的“0”。③、0的故乡在中国。我国最早的诗歌总集《诗经》中就有0的记载,只不过当时0的意思是“暴风雨末了的小雨滴”。在我国远古时代的结绳记数法中,0是在对“有”的否定中出现的,意思是“没有”。总之,有关0的起源还没有一个定论。 但是无论如何,0自从一出现就具有非常旺盛的生命力,现在,它广泛应用于社会的各个领域。 在课堂上,常听老师说,0就是没有的意思,你有0元钱,就代表没有钱;你有0支笔,就代表你没有笔。在这样的情况下,温度表上的0度就代表着没有温度吗?答案肯定是否定的。纯净的冰水混合物的温度就是0度。 想一想我们四年级学的素数与合数吧!老师是这样解释的“自然数可以分成3类:1、素数与合数,一个自然数只有一和它本身两个因数的数是素数,因数大于3个就是合数,1单独为一种。”那0也是自然数,它是最小的自然数,0到底是质数还是合数呢?这个谁也说不清楚。 我还有一个关于0的问题,自然数也可以分成奇数与偶数,能被2整除的数就是合数,反之就是奇数。0是奇数还是偶数呢?看上去像偶数,但又说不准,到底是什么数谁也不清楚。 0还有许多奇妙有趣的事就在我们身边呢,大家一起来发现吧! 麻烦采纳,谢谢!
有趣的职业 小赵、小丁、小张分别是教师、医生和律师,只知道:1小赵比教师年纪大;2小张和教师不同岁;3小赵和律师是朋友,你能推断谁是教师,谁是律师,谁是医生吗? 根据1小赵比教师年纪大和3小赵和律师是朋友,可以推断小赵既不是教师,也不是律师,所以小赵是医生,再根据2小张和教师不同岁和小赵是医生可以看出小张是律师,所以剩下的小丁是个教师。 这道题目很简单,我运用了排除法,比如:根据条件1和3就可以看出,小赵既不是教师,也不是律师。以次类推就可以得出答案。在我们学习数学的过程中,我们只要掌握方法,就可以解决一切难题,想不到从数学中也能得到乐趣。
千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。所以正确答案应该是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米)和45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。
数学小论文 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变数(一个变数在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变数在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变数,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,巨集观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。
模糊不过vncjhvb
数学小论文 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变数(一个变数在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变数在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变数,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,巨集观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。 望采纳。
《容易忽略的答案》 大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。所以正确答案应该是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米)和45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。
记得暑假里的一天,我们到叔叔家里玩,正玩到兴头上,叔叔拿了10个硬币走了过来,说:“你们想要这些硬币吗?”“当然想啦!”大家异口同声地回答道。我望着叔叔,真有点丈二和尚——摸不著头脑,我心里琢磨著,不知道叔叔葫芦里卖的是什么药。“你们想要这些硬币,就要回答我的问题,谁答对,硬币就全归他了。”说完,叔叔就提出一个问题:“怎样才能把10个硬币放进3个杯子里,使每个杯子里的硬币数都是奇数,看谁能找出最多的方法。” 听完叔叔的题目,大家冥思苦想。只见表弟在客厅里走来走去,表姐坐在椅子上冷静地思考着。不一会,我看见妹妹找来了材料,试着做。可是,做了很久,妹妹还是没找到具体解题的方法。我也不甘示弱,开动脑筋想着。哎,要是能把这硬币拿到手,那该多好啊! 过了十多分钟,大家都没有想到怎么做,叔叔见此情景,对我们说:“给你们一点提示吧!解这道题要学会多转几个弯,不要……”“等等!”话没说完,表弟好象想到了什么似的。只见他拿起10个硬币,先把第1个硬币放到第1个杯子里去,然后把3个硬币投进第2个杯子里,看到这里,我不禁想道:这个办法嘛,我早就想过了,根本就不行,剩下的硬币有6个,6是偶数,我可以肯定地说一句:“这个办法是行不通的。”当表弟把剩下的6个硬币放到第3个杯子时,我插嘴道:“这办法根本……”我的话还没说完,表弟就把我的话打断了,“表姐,你还是看我的表演吧!”表弟神气地说。只见他拿起第1个杯子,把那个硬币放到第3个杯子里去。“这就是第一种方法。”表弟得意地扮了个鬼脸。“哎呀!我真笨,怎么想到第三步就放弃了呢?真不值得!”接着,表弟按照第一次那样做,先把3个硬币放到第1个杯子里,然后在第二个杯子里放5个硬币,接着把剩下的硬币放到第三个杯子里,最后,把第一个杯子里的硬币放到第三个杯里去。这样第二种方法就完成了。按著这样的方法,表弟连续做了13次。 看到这里,站在一旁的叔叔拍起了手掌,点点头说:“真想不到,你这小鬼还会有动脑筋的时候,这回你赢了,10个硬币都归你了。”叔叔一边称赞表弟,一边抚摸着他的小脑袋。“不过,小瑜呀,你可得加把劲了,这回连表弟都赢了你。记住,凡事多动脑筋,别轻易放弃。” 是呀,叔叔说得对,凡事多动脑筋,别轻易放弃。如果我刚才想到第三步没放弃的话,再动动脑筋,那道题就被我解开了。以后,真的要加把劲,要努力学好数学,掌握好数学,更要学会在生活中灵活运用好数学。
第一页 居中 先写题目 第二行写班级、姓名 换页 找关于论文的主题的例子 写完一个例子写两行左右的说明,例如这题的做法是怎么样的 写三到五个例题即可 一般用WROD两页即可,建议多写,但不要写的题目太难,不符合你的年龄段
自然科学是研究无机自然界和包括人的生物属性在内的有机自然界的各门科学的总称。论文常用来指进行各个学术领域的研究和描述学术研究成果的文章,简称之为论文。以下科学小论文欢迎大家参阅!
浅谈“最大公约数”在实际中的应用
我们小学五年级第二学期的数学课本,讲到了“最大公约数”的问题。这个概念非常重要,在实际生活中的应用也很广泛。下面,我就来谈谈这个问题:
一、“最大公约数”的概念:
要了解这个问题,首先要知道什么叫“约数”。我们说,如果整数a能被整数b***b≠0***整除,那么a就叫做b的倍数,b就叫做a的“约数”。例如:12能被1、2、3、4、6、12这六个数整除,那么12就叫做这六个数的倍数,这六个数就分别叫做12的约数。在这里,我们可以看出,一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。
那么,什么是“公约数”呢?我们说,几个数“公有”的约数,就叫做这几个数的“公约数”。例如:12的约数是1、2、3、4、6、12;18的约数是1、2、3、6、9、18;那么12和18“公有”的约数1、2、3、6,就叫做12和18的“公约数”。这四个“公约数”中,1最小,6最大,那么1就叫做12和18的“最小公约数”,6就叫做12和18的“最大公约数”。由此可以看出,几个数的“最大公约数”,就是它们的“公约数”中最大的一个。
二、求“最大公约数”的方法:
求几个数的“最大公约数”,就是先分别求出每个数的“约数”,然后找出它们的“公约数”,再在“公约数”中找出最大的一个。这里,有两个非常重要的概念,就是“质数”和“合数”。课本上的定义是:一个数,如果只有1和它本身两个约数,这样的数叫做“质数”。例如:2、3、5、7、11都是“质数”。一个数,如果除了1和它本身还有别的约数,这样的数就叫做“合数”。例如:4、6、8、9、10、12都是“合数”。每个“合数”都可以写成几个“质数”相乘的形式。例如:60=6×10=2×3×2×5;28=4×7=2×2×7。其中每个“质数”都是这个“合数”的因数,也叫做这个“合数”的“质因数”。像这样把一个合数用“质因数”相乘的形式表示出来,就叫做“分解质因数”。1既不是“质数”,也不是“合数”。公约数只有1的两个数,叫做“互质数”。
求几个数的“最大公约数”,可以用“分解质因数法”和“短除法”中的任意一个。一般为了简便,常常采用“短除法”来求几个数的“最大公约数”。所谓短除法:就是先用一个能整除这几个合数的最小质数***除数***,同时去除这几个合数,得出的商如果有一个是质数,则这个除数就是这几个合数的“最大公约数”;如果得出的商都是合数,就照上面的方法继续除下去,直到得出的商有一个是质数为止,然后把各个除数相乘,就是这几个合数的“最大公约数”。
三、“最大公约数”在实际中的应用:
求“最大公约数”的方法,在我们的实际生活中应用非常广泛。下面举一个例子说明如下:
“一张长方形的钢板,长75厘米、宽60厘米。现在要把它切割成若干块小正方形,要求正方形的边长为整厘米数,有几种切割法?如果要使切割的正方形面积最大,可以切多少块?”
解决这个问题,可以用求“公约数”和“最大公约数”的方法。因为切割的正方形边长必须能同时整除75厘米和60厘米,这就是求75和60的“公约数”的问题;要使切割成的小正方形面积最大,也就是要使它的边长最大,这就是求75和60的“最大公约数”的问题。
解题:
1、用“分解质因数法”求出75和60的“公约数”:
75=3×25=3×5×5; 60=2×30=2×2×15=2×2×3×5
75和60的“公约数为:1、3、5、15,所以,有4种不同的切割方法。
2、用“短除法”求出75和60的“最大公约数”:
3|_ 75__60_
5|_25__20
5 4
所以,75和60的“最大公约数”是:3×5=15
要使切割成的小正方形面积最大,可以切割的块数是:
***75 ÷15***×***60÷15***=5×4=20***块***
由此可以看出,我们现在所学的各种知识,都是和社会和现实生活密切相关的。要建设好我们的国家,就要从小学好各种知识。只有这样,才能使自己将来成为一个对社会有用的人!
数的认识”包括数的意义、数的读法和写法、数的改写、数的大小比较、数的整除、分数和小数的基本 性质六个方面的知识。这部分内容概念多,又比较抽象,而且是分散在几个年级学习的,间隔时间长,容易遗 忘。要使学生牢固地掌握这些知识,教师应结合课本《整理和复习》的内容,既要注意全面系统的复习,又要 注意突出重点,有针对性地根据学生实际掌握知识的情况安排复习。下面就这部分内容提几点建议,供总复习 时参考。
一、归类整理,形成系统
数学知识具有严密的系统性,每一概念与邻近概念之间都是纵向发展、横向联系着的。复习时,要在学生 掌握概念意义的基础上,引导学生归类整理,发现和把握知识纵向发展、横向联系的脉络,使之系统化,从而 更深刻地理解和掌握概念。例如,小学阶段学习的数概念,可复习整理成下表:
(附图 {图})
复习时,首先复习自然数。人们数物体的时候,表示物体个数的1、2、3……叫做自然数,自然数的个数是 无限的。然后复习0,明确自然数和0都是整数(还有小于0的整数以后学习);接着复习自然数的单位是1,由 把单位"1"平均分成若干份,表示这样的一份或几份的数引出分数,并进一步说明两个数相除的商可以用分数表 示,以显现出分数和整数的关系;然后从分数与小数的联系出发,复习小数的意义;最后复习百分数的意义: 表示一个数是另一个数的百分之几。这样,就把数的发展的来龙去脉显现在学生面前,学生得到的是前后联系 着的整块知识。
又如,数的整除这部分知识整个儿就是一个前衔后接、联系紧密的概念系统。复习时要在理解概念意义的 基础上,抓住概念之间的内部联系和发展,整理成下表:
(附图 {图})
其中,整除是这一块知识的基础。从整除出发,引出倍数、约数、能被2、5、3整除的数的特征三条线索。 从倍数到公倍数到最小公倍数;从约数到公约数到最大公约数,从含有约数的个数和特点引出质数和合数,从 质数引出质因数,从合数引出分解质因数,从两个数含有公约数的个数和特点引出互质数;从能被2整除的数的 特征中引出偶数和奇数。最后利用这些知识求两个数的最大公约数和最小公倍数。这样,数的整除的所有知识 就形成有结构的一大块贮存于学生的认知结构中。
数学的某项知识或技能常常包括几个方面,复习时也要帮助学生排列整理出来,一一认清情境,分别采取 适当的方法处理。如小学阶段先后学过好多种数的改写,可以一一排列出来复习:1.把较大的多位数改写成万 、亿作单位的数,如432150=43.215万。2.把较大的数省略某一位后面的尾数,取它的近似值,如432150≈43万 。3.把小数省略某一位后面的尾数,取它的近似值,如3.41986≈3.4(保留一位小数),3.41986≈3.42(保留 两位小数),3.41986≈3.420(保留三位小数)。4.假分数与带分数、整数的相互改写(例略)。5.分数、小 数、百分数之间的互化(见课本《整理和复习》)。把几种改写的情况清晰地排列出来,引导学生加以辨析和 掌握。
又如,数的大小比较也可以排列出各种情况来研究:怎样比较整数的大小?怎样比较小数的大小?怎样比 较分数的大小?其中同分母分数怎样比较大小?同分子分数怎样比较大小?不同分母、分子的分数怎样比较大 小?分数与小数怎样比较大小?这样,学生就能从整体上提纲挈领地掌握数的大小比较这一块知识了。
二、加强比较,沟通联系
数学概念常常既以共同的本质特征相联系,又以不同的个性特征相区别。通过比较,既能求同归纳和概括 ,又能区别不同,遏制泛化和混淆。比如质数、互质数、质因数三个概念,从字面来看,似是而非。通过比较 ,让学生明白,质数是对一个数来说的,看它的约数是否只有1和本身,如2,7,31都是质数;互质数是对两个数 来说的,看这两个数的公约数是否只有1。尽管两个质数是互质数,但是互质的两个数并不一定是质数,比如8 和9、6和13,1和83等。质因数不能独立存在,它必须依存于某一个合数,既是质数,又是这个合数的因数,就 是这个合数的质因数。比如2是12的质因数,11是88的质因数……
又如,整数和小数的读法,可以集两者为“一身”来比较。如7645.7645,2005.2005,整数部分和小数部 分的数字相同,都是从高位读起,但读起来却不同:整数部分不仅要依次读出各个数位上的数字,而且要连同 计数单位一起读出,小数部分则只要依次读出各个数位上的数字就可以了,所以,7645.7645读成七千六百四十 五点七六四五;整数部分中间连续有几个零,只要读一个零就可以了,小数部分中间连续有几个零,则要一个 一个读出来,不能省读,所以,2005.2005读成二千零五点二零零五。
由于知识的分散教学,有些知识间的内在联系没有能及时显现,复习时可通过比较,把零散的知识串联起 来,使学生理解得更深刻。比如,复习时可将分数和小数的基本性质联系起来。分数的基本性质是,分数的分 子、分母同时乘以或者除以相同的数(零除外),分数的大小不变。小数的基本性质是,小数的末尾添上0或者 去掉0,小数的大小不变。其实,这两者是一致的。例如,0.7=0.70=0.700,7/10=70/100=700/1000。
又如,通分、约分是先后学习的,复习时可通过比较,使学生认识到两者都是分数基本性质的运用。不同 的是,约分是分子、分母同时除以相同的数(零除外),变成分子、分母都比较小的分数;通分是将异分母分 数通过分子、分母同时乘以相同的数(零除外),化成同分母分数。这样,把分数的基本性质、约分、通分捆 在一起复习,知识就能以编码结构的形式进入学生认知结构,使之成为一种概括程度很高的有意义学习。
三、设计练习,加深理解
1.抓住重点和关键,进行基本练习。“基本的东西往往是最重要的”。对于教材中的重点和关键,要加强 基本练习。数的意义、数的整除、数的性质等都必须通过练习使学生的理解达到内化程度。数的各种改写、数 的大小比较也都要通过必要的练习才能形成技能技巧。
2.加强综合练习,深刻理解概念。总复习应使学生将概念系统化和整体化,综合运用已学知识解决问题。 比如,( )/16=6/( )=( )÷40=0.75=( )%就涉及小数与分数、百分数的互化、分数与除法的关系、分数的 基本性质、除法商不变性质等知识;又如,有一个数,万位上是最小的质数,百位上是最小的合数,十分位上 是最小的奇数,百分位上是最小的一位数,千分位上是最小的自然数,其余各位上都是0,这个数是( ),读 作( ),这道题包括了写数、读数和质数、合数、奇数、自然数等概念的运用;再如,a与b是两个自然数, a÷b=5,a与b的最大公约数是( ),最小公倍数是( );根据4/7×2(5/8)×2/3=1,在( )里直接写出 得数:4/7×2(5/8)=( ),2(5/8)×2/3=( ),4/7×2/3=( )……学生在灵活运用已学知识综合解答问题的过 程中,对概念加深了理解。
3.通过比较,区分易混概念。总复习中可设计比较题,帮助学生区分相似、相近和易混概念。比如,把7÷ 3=2……1,0.8÷4=0.2,18÷6=3,3÷0.5=6,40÷8=5按要求填入表中。
除 尽 除不尽 整 除 不能整除
通过这一比较性练习,可以使学生明白:整除的一定是除尽的,除尽的却不一定能整除;不能整除的有时 是除尽的,有时是除不尽的,除不尽的则一定是不能整除的。
4.加强针对性练习,不断强化对易错概念的纠正。对学生易错的概念,要引导他们认识错误情况和错误原 因,然后指导他们运用概念回答问题,解决问题。如,判断“偶数都是合数”、“42分解质因数是42=2×3×7 ×1”、“一个数的倍数一定比它的约数大”对错的过程也是找错、议错、改错的过程,从对错误的省悟中强化 对概念的理解。
四、启发学生,主动复习
总复习最终是让学生掌握已学的知识。教学时,要启发引导学生主动地复习,共同重温并整理所学的知识 ,使之系统化。在回忆和整理知识时,要让学生做复习的主人,多让学生发言,互相补充,逐步形成系统的、 完整的、明确的知识网络。这样,学生对所学知识不仅加深了理解,印象深刻,而且感到通过复习和整理确实 有所提高,从而激发学生复习的积极性,提高复习的效果。
这是我的博客中的一篇文,复制给你做参考:
自然数的因数
我们知道,每个自然数(不包括0和1)都有2个以上的因数,因数最少的是质数(也叫素数),质数的因数是1和它本身。非质数的自然数也叫合数,它们都含有3个以上(含3个)的因数。
1、怎样求一个数有多少个因数?
对于一个已知的自然数,要求出它有多少个因数,可用下列方法:
首先将这个已知数分解质因数,将此数化成几个质数幂的连乘形式,然后把这些质数的指数分别加一,再相乘,求出来的积就是我们要的结果。
例如:求360有多少个因数。
因为360分解质因数可表示为:360=2^3×3^2×5,2、3、5的指数分别是3、2、1,这样360的因数个数可这样计算出:
(3+1)(2+1)(1+1)=24个。
我们知道,360的因数有 1,2,3,4,5,6,8,9,10,12,15,18,20,24,30,36,40,45,60,72,90,120,180,360正好24个,可见上述计算正确。
2、怎样求出有n个因数的最小自然数?
同样拥有n个(n为确定的数)因数的自然数可以有多个不同的数,如何求出这些数中的最小数?
这是与上一个问题相反的要求,是上一题的逆运算。
比如求有24个因数的最小数是多少?
根据上一问题解决过程的启示,可以这样做,先将24分解因式,把24表示成几个数连乘积的形式,再把这几个数各减去1,作为质数2、3、5、7......的指数,求出这些带指数的数连乘积,试算出最小数即可。具体做法是:
因为:24=4×6, 24=3×8, 24=4×3×2,
现在分别以这三种表示法试求出目标数x:
(1)、24=4×6,4-1=3,6-1=5
X=2^5×3^3=864
(2)、24=3×8,3-1=2,8-1=7
X=2^7×3^2=1152
(3)24=4×3×2,4-1=3, 3-1=2, 2-1=1
X=2^3×3^2×5=360
综合(1)、(2)、(3)可知360是有24个因数的最小数。
素数分布基本定理
素数判定定理1:“若正整数n 不能被不超过n 的任何素数整除,则n 是素数。”
素数分布基本定理2:“正整数列1、2、……、n,从1 开始每隔⎡ n ⎤
⎣ ⎦ 个数分一段,设
1 2 , , , m p p ?? p 是不超过n 的所有素数。
I、第一分段中1 2 , , , m p p ?? p 的倍数个数不小于任何一个分段。
II、在正整数列1、2、……、n 内,每一个完整分段至少有一个素数。
证明:
I、设1、2、……、n 是第1 分段, 1 2 , , , m p p ?? p 是不超过n 的所有素数。根据容斥
定理,第1 分段中1 2 , , , m p p ?? p 的倍数的个数为:
( ) 1
1
1
1
m m m
m
m
i i i j i j i j k i j k
i
i
n n n n
p pp ppp p
−
= < < <
=
⎡ ⎤
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎢ ⎥
⎢ ⎥ − ⎢ ⎥ + ⎢ ⎥ + + − ⎢ ⎥
⎣ ⎦ ⎢⎣ ⎥⎦ ⎢⎣ ⎥⎦ ⎢ ⎥
⎢⎣ ⎥⎦
Σ Σ Σ
Π
??
在第 r个分段中,设A { ( 1, 2 ) i i= 素数p的倍数,}i = ??m ,
- 2 -
B { ( 1, 2 ) i i= 素数p的最多倍数,}i = ??m 。
引理 1:n 个连续正整数至少有一个数能整除n。
当 m ⎡⎣ n ⎤⎦ ≠ p 时,由于1 2 , , , m p p ?? p 是不超过n 的所有素数,⎡ n ⎤
⎣ ⎦ 为合数,
⎡ n ⎤
⎣ ⎦ 至少能被1 2 , , , m p p ?? p 之一整除,否则⎡ n ⎤
⎣ ⎦为素数,这与n ⎡ ⎤
⎣ ⎦ 为合数矛盾。当
m ⎡⎣ n ⎤⎦ = p 时, m p ⎡ n ⎤
⎣ ⎦。故n ⎡ ⎤
⎣ ⎦ 至少能被1 2 , , , m p p ?? p 之一整除。
不妨设i p ⎡ n ⎤
⎣ ⎦,存在正整数q 使i ⎡⎣ n ⎤⎦ = qp ,那么第1 分段中有q 个i p 的倍数。
我们按正整数i p 把正整数分段,可以把第1 分段中的数刚好分为q 段。以此类推,可以得
到第r 分段中的数也刚好分为q 段,每一个分段末尾的数刚好就是i p 的倍数。这就是说第r
段中i p 的倍数正好就是q 个。即第r 段中i p 的倍数正好就是
i
n
p
⎡ ⎤
⎢ ⎥
⎣ ⎦
个, i i A = B ,
i
i
B n
p
⎡ ⎤
= ⎢ ⎥
⎣ ⎦
。对于其它素数,第r 段中素数k p 倍数的个数最多为
1,( ,1 )
k
n k i k m
p
⎡ ⎤
⎢ ⎥ + ≠ ≤ ≤
⎣ ⎦
, k k A ⊂ B , 1 k
k
B n
p
⎡ ⎤
= ⎢ ⎥ +
⎣ ⎦
。因此,根据组合意义就是从m
个素数中任意取一个,又因为i p ⎡ n ⎤
⎣ ⎦,所以n ⎡ ⎤
⎣ ⎦ 个连续正整数中,刚好有
i
n
p
⎡ ⎤
⎢ ⎥
⎣ ⎦
个数
能被i p 整除,不再加1,故可以得公式1 1 m C − 。同理,可以得到第r 段中素数的倍数最多为:
( ) 1
1 1 1
1
m m m m m
m
i i i j i j k i
i i i j i j k i
B B B B B B B B −
= = < < < =
∪ =Σ −Σ ∩ + Σ ∩ ∩ −?? − ∩
1 2 3
1
1
m m m
m m m
i i i j i j i j k i j k
n C n C n C
= p < p p < < p p p
⎛ ⎡ ⎤ ⎞ ⎛ ⎡ ⎤ ⎞ ⎛ ⎡ ⎤ ⎞
= ⎜⎜ ⎢ ⎥ + − ⎟⎟ − ⎜⎜ ⎢ ⎥ + ⎟⎟ + ⎜⎜ ⎢ ⎥ + ⎟⎟ ⎝ ⎣ ⎦ ⎠ ⎝ ⎢⎣ ⎥⎦ ⎠ ⎝ ⎢⎣ ⎥⎦ ⎠
Σ Σ Σ
( ) 1
1
1 m m
m m
i
i
n C
p
−
=
⎛ ⎡ ⎤ ⎞
⎜ ⎢ ⎥ ⎟
− + − ⎜ ⎢ ⎥ + ⎟
⎜ ⎢ ⎥ ⎟
⎜ ⎢⎣ ⎥⎦ ⎟ ⎝ ⎠
Π
??
( ) 1
1
1
1
m m m
m
m
i i i j i j i j k i j k
i
i
n n n n
p pp ppp p
−
= < < <
=
⎡ ⎤
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎢ ⎥
= ⎢ ⎥ − ⎢ ⎥ + ⎢ ⎥ − + − ⎢ ⎥
⎣ ⎦ ⎢⎣ ⎥⎦ ⎢⎣ ⎥⎦ ⎢ ⎥
⎢⎣ ⎥⎦
Σ Σ Σ
Π
??