初中数学教学中渗透数形结合思想的意义及途径论文
在个人成长的多个环节中,大家都跟论文打过交道吧,借助论文可以有效训练我们运用理论和技能解决实际问题的的能力。那么你知道一篇好的论文该怎么写吗?下面是我帮大家整理的初中数学教学中渗透数形结合思想的意义及途径论文,希望对大家有所帮助。
摘要: 初中数学教学作为连接小学与高中数学知识的纽带,对于学生数学知识的学习与巩固具有重要的作用,并为学生日后进行高层次的数学学习奠定基础。因此,初中数学教师在进行教学时,要格外重视提高学生的数学学习效率,帮助学生全面掌握相关的数学知识及能力。数形结合思想是初中数学课堂教学中普遍使用的教学方式,其在提高学生数学学习能力以及教师课堂教学质量方面具有重要的促进作用。基于此,本文主要对数形结合思想在初中数学教学中的渗透路径进行探讨,并给出相关策略。
关键词: 数形结合思想;初中;数学教学;渗透路径;
在新课改不断推进以及新课标对初中数学教学提出更高要求的背景下,传统初中数学教学模式已经难以满足当前教育的需要。因此,教师在进行数学教学时也在不断改变传统的教学观念及模式,积极探索及创新的教学手段,以提高当下数学课堂教学效果,并取得了一定的收获。其中,数形结合思想因其能够帮助学生更好地理解数学理论知识,从而实现提高学生数学学习能力的作用,而受到初中数学教师的普遍应用。
一、数形结合思想在初中数学教学中的重要性
(一)有助于调动学生对数学课堂学习的兴趣
初中数学教材知识内容相较于小学数学知识有了很大的变化,其难度也有所增加。而该阶段学生的思维方式正处于过渡时期,也就是说,让学生理解抽象性数学理论知识是有一定难度的,加之数学教学氛围一般都普遍枯燥乏味,因而学生很难对数学课堂学习提起兴趣,更不要说调动学生数学学习的积极性了,以致学生学习效率低下。但是,数形结合思想在教学中的应用则可以有效地改善这种情况,借助数形结合的方式,教师可以将抽象化的理论知识变得更为具体可感,进而为学生的数学学习创设一个逼真的教学情境,这样有助于吸引学生的注意力,激发学生学习的兴趣与积极性,促使其自觉参与到学习中来[1]。
(二)有助于拓展学生的数学思维
理论源自实践,数学学科虽然是一门抽象性极强的科目,但是它与人们的`现实生活联系密切,尤其是有关数学与图形的知识是日常生活中经常涉及的,如温度计高低的变化、超市的收银以及舞蹈时的位置等都或多或少涉及数学知识。因此,数学教师在进行数学教学时,应当有意识的引导学生将数学理论知识与生活实际相结合,并在此基础上对数学问题及其现象进行分析与解答,从而提高学生解答问题的能力。总之,当学生学会懂得采用数形结合的思想分析问题时,学生自身的思维也会有很大的提升。
(三)有助于强化学生对知识的记忆以及提高其创造能力
之所以要学习知识,其最终目的还是为了解决生活中遇到的问题,但是学生要想运用理论知识解决现实问题,其首先就要充分理解以及掌握相关数学知识,也就是说,学生解决数学问题的前提是其要全面掌握数学知识[2]。而数形结合思想在教学中的应用,就可以很好的帮助学生记忆以及区分数学知识,进而指导学生进行实践。同时,数学问题所涉及的答案或许是唯一的,但其具体的解题思路及方式却是具有多样性的。换句话说,采用数形结合的思想分析及解答数学问题,那学生可以获得多种解题方法。总之,在初中数学教学中,采用数形结合的思想进行数学教学,有助于提高学生对抽象性数学知识的记忆,并让学生在解答数学问题的过程中,促进其发散思维及创新能力的提升。
二、数形结合思想在初中数学教学中的渗透路径
(一)培养学生数形结合意识,调动学生数学学习的积极性
为了激发学生数学学习的兴趣,促使学生积极投入到数学学习中,进而提高学生数学学习水平,初中数学教师在进行数学教学时,要合理地采用数形结合思想展开数学课堂教学,并让学生在分析与解答有关无理数与有理数相关知识的数学问题的过程中,帮助学生有效地使用该思想思考问题[3]。特别是在初中数学教学的早期,教师要有意识的培养学生学会采用数形结合的思想展开数学学习,并让学生在掌握该思想的运用方法的前提下,促使学生形成相关的数形结合意识,这样有助于学生在学习的过程中产生对数学知识学习的兴趣。例如,在进行“勾股定理”的教学时,数学教师就可以指导学生运用数形结合思想进行该知识点的学习,其可以让学生借助勾画图形的方式发现解决数学问题的关键,从而提高学生解决问题的能力。同样,在解答有关不等式组的数学问题时,学生也可以借助绘制图形的方式画出解集同数轴之间的关系,并以此算出答案。总之,借助数形结合思想,不仅有助于培养学生的数形结合意识,提高学生对数学问题的分析及解题能力,进而促进其数学学习能力的提升,而且也有助于降低学生数学学习的难度,提高学生数学学习的积极性。
(二)适当地引入教学案例展开课堂教学,强化学生数形结合思想
教师要想学生充分把握数形结合思想及其应用,就不能仅靠对学生的引导,其还需要在日常教学中强化对学生相关知识的训练,以帮助学生熟练地采用该思想解答问题。对此,初中数学教师在教学时,可适当地引入相关的案例展开课堂教学,通过向学生分析及讲解相关的案例,以及完善自身的教学设计等,以引导学生在实际动手操作的过程中发现其存在的问题,进而帮助学生在认识到自己错误的基础上进行针对性改进。当然,教师也可以有意识地在日常生活中收集一些富有趣味性的数学知识及故事,并将其作为案例融入数学教学中,以激发学生的求知欲和探究欲,从而促使其积极参与到数学教学中[4]。例如,在解答有关二次函数的数学问题时,教师要适当地引入案例对学生进行讲解,以便学生从中学会判断数学题目的根本意图,然后再让学生以绘图的方式,画出与之相匹配的图像,并求出相关的坐标,从而以此得出有关图像的开口方向及其定点位置等相关知识。
(三)创设有效的教学情境,引导学生进行探究性数学学习
学生的数学学习离不开对数学问题的解答,对数学问题的解答是提高学生数学学习能力、巩固已学知识以及检验学生对相关数学知识掌握程度的有效方法,因此,数学问题在学生数学学习的过程中占有很大的比重。同时,由于数学问题的题目普遍具有开放性、新颖性以及规律性等特点。所以,数学教师在向学生讲解如何解答数学问题时,其应当采用数学思维展开对知识的讲解,以便学生在教师的教授下全面地掌握数学解题方法及技巧,进而深化对数学理论知识的了解及应用,从而提高学生数学解题的效率及正确率[5]。此外,教师在教学时,也可以借助创设有效教学情境的方式,向学生提出相关数学问题,并引导学生采用小组合作或探究性方式进行数学学习,这样有助于学生在合作学习中总结相关的数学知识,如数学原理、规律及概念等,促使学生懂得灵活运用所学知识进行问题的解答。例如,在进行“多边形”的教学时,教师可以先让学生说说生活中由线段围成的图形形状,如长方形的菜园子、正方形的餐桌、六边形的地板等,以吸引学生对该节知识内容的学习兴趣。然后,教师可以让学生借鉴之前所学的有关三角形的概念意义,对多边形的概念下定义,并试着说出不同多边形的异同点。从而引出本节知识内容,如顶点、边、内角、外角、对角线间的关系等,进而让学生在分析知识点的过程中,了解多边形的基本概念及其性质以及相关原理。
三、结束语
总而言之,在新课改的背景下,初中数学教师在进行数学课堂教学时,要合理地采用数形结合思想展开对数学知识的讲解,以便在调动学生数学学习兴趣的同时,让学生掌握相关的数形结合方法,并引导学生将该方法运用到数学学习中,进而提高学生数学学习效率,提升其学习水平,促进初中数学教学质量的提高。
四、参考文献
[1]童琛菲.数形结合思想在初中数学解题教学中的渗透策略[J].数学学习与研究:教研版,2020(3):114.
[2]南旭辉.初中数学教学中数形结合思想的应用策略探究[J].新一代:理论版,2019(14):90.
[3]戴彦雪.相互渗透,交叉作用-论初中数学教学中数形结合思想的应用[J].数学大世界旬刊,2017(2).
[4]刘金方.数形结合思想在初中数学教学中的实践研究-以人教版初中数学教材为例[J].课程教育研究,2015(30):139.
[5]吴学军.数形结合引思激趣-论数形结合思想在初中数学教学中的渗透[J].数理化解题研究,2019(35):17-18.
数形结合就是运用图形来简化解题思路,
数与形是数学中的两个最古老,也是最基本的研究对象,它们在一定条件下可以相互转化。
中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合,或形数结合。我国著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事非。”“数”与“形”反映了事物两个方面的属性。我们认为,数形结合,主要指的是数与形之间的一一对应关系。数形结合就是把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来,通过“以形助数”或“以数解形”即通过抽象思维与形象思维的结合,可以使复杂问题简单化,抽象问题具体化,从而起到优化解题途径的目的。
作为一种数学思想方法,数形结合的应用大致又可分为两种情形:或者借助于数的精确性来阐明形的某些属性,或者借助形的几何直观性来阐明数之间某种关系,即数形结合包括两个方面:第一种情形是“以数解形”,而第二种情形是“以形助数”。“以数解形”就是有些图形太过于简单,直接观察却看不出什么规律来,这时就需要给图形赋值,如边长、角度等等。
数形结合的思想方法是数学教学内容的主线之一,应用数形结合的思想,可以解决以下问题:
一、解决集合问题:在集合运算中常常借助于数轴、Venn图来处理集合的交、并、补等运算,从而使问题得以简化,使运算快捷明了。
二、解决函数问题:借助于图象研究函数的性质是一种常用的方法。函数图象的几何特征与数量特征紧密结合,体现了数形结合的特征与方法。
三、解决方程与不等式的问题:处理方程问题时,把方程的根的问题看作两个函数图象的交点问题;处理不等式时,从题目的条件与结论出发,联系相关函数,着重分析其几何意义,从图形上找出解题的思路。
四、解决三角函数问题:有关三角函数单调区间的确定或比较三角函数值的大小等问题,一般借助于单位圆或三角函数图象来处理,数形结合思想是处理三角函数问题的重要方法。
五、解决线性规划问题:线性规划问题是在约束条件下求目标函数的最值的问题。从图形上找思路恰好就体现了数形结合思想的应用。
六、解决数列问题:数列是一种特殊的函数,数列的通项公式以及前n项和公式可以看作关于正整数n的函数。用数形结合的思想研究数列问题是借助函数的图象进行直观分析,从而把数列的有关问题转化为函数的有关问题来解决。
七、解决解析几何问题:解析几何的基本思想就是数形结合,在解题中善于将数形结合的数学思想运用于对点、线、曲线的性质及其相互关系的研究中。
八、解决立体几何问题:立体几何中用坐标的方法将几何中的点、线、面的性质及其相互关系进行研究,可将抽象的几何问题转化纯粹的代数运算。
多做几个类似的题目啊....找本专题什么的强化一下就可以了
数 形 结 合
江苏省阜宁中学 黄爱华 224400
数形结合是根据数量与图形之间的关系,认识研究对象的数学特征、寻找解决问题的一种数学思想。通常情况下,在应用数形结合思想方法解决问题时,往往偏重于"形"对"数"的作用,也就是经常地利用图形的直观性来解决某些数学问题。
数形结合思想方法是近些年来高考重点考查的思想方法之一,每年的高考试题(特别是客观题)能够用此方法解决者均占相当的比例。其特点是形象、直观、快捷,因此是高考备考中应予重视的重要数学解题方法。
例1 (1995年全国理)已知I为全集,集合M、NI,若M∩N=N,则( )
A、 B、M C、 D、
分析:集合M、N比较抽象,欲具体考察其关系有困难,若能借助集合的图示(文氏图),就能化抽象为具体,故可作出文氏图加以解决。
可作出文氏图加以解决:
解:用文氏图来表示M、N(如图1),显然CIMCIN ,故选C
评注:对于抽象集合问题,只须按题设作出文氏图即可解决。
例2、(2003年新课程理)
设函数f(x)=,若f(x)>1,则x0的取值范围是
A.(-1,1) B.(-1,+∞) C.(-∞,-2)∪ (0,+∞) D.(-∞,-1)∪ (1,+∞)
分析:常规思路:分段函数进行分段处理,因为f(x0)>1,当x0≤0时,2-x0-1>1,2-x0>2,∴x0<-1;当x0>0时,∴x0>1
综上,x0的取值范围是(-∞,-1)∪(1,+∞)
本题若作出函数图象,就能回避分类讨论。
解:首先画出函数y=f(x)与y=1的图象(图2),结合图象,关注选项特征,易得f(x)>1时,所对应的x的取值范围,选D。
评注:对于与分段函数相联系的相关问题(如不等式,最值),均可借助图象法优化解题,另外,对于一些简单不等式,特别是解无理不等式,抽象不等式,均可考虑数形结合法,请看例3 。
例3、(1)已知奇函数f(x)的定义域为{x|x≠0,x∈R},且在(0,+∞)上单调递增,若f(1)=0,则满足x·f(x)<0的x的取值范围是_________。
(2)解不等式>x+1
分析(1):函数f(x)比较抽象,欲化归为具体目标不等式困难,注意到x·f(x)<0表明自变量与函数值异号,故可作出函数f(x)的图象加以解决。
解:作出符合条件的一个函数图象(示意图)如图3,观察图象易知,满足x·f(x)<0的x的取值范围是(-1,0)∪(0,1)。
分析(2):令y1=的图象为C1,y2=x+1的图象为C2,则解不等式就归结为寻求C1在C2上方时x的取值范围。
解:在同一坐标系内分别作出y1=和y2=x+1的图象(图4),由=x+1解得A(2,3),观察图象易得原不等式的解集{x|- ≤x<2}。
例4、(2004年上海)若函数f(x)=a|x-b|+2在[0,+∞)上为增函数, 则实数a,b的取值范围是______。
分析:①当a>0时,需x-b恒为非负数,满足题意,即a>0,b≤0。
②当a<0时,x-b恒为非正数,又∵x∈(0.+∞),∴不成立。
综合①②知a>0且b≤0。
这是给出的参考答案,本题若能从函数f(x)的图象考虑,不难迅速确定答案。
解:先作出函数f(x)的图象,由图象变换理论,只须将O(0,0)移至O'(b,0),在新系下,只须作出y=a|x|+2图象,若b>0,结合图象知,f(x)在[0,+∞)不单调。
∴b≤0,此时要使f(x)在[0,+∞)递增,结合图象分析得a>0。
评注:图象法是解决函数单调性问题的最基本方法。
例5、(2004年上海)已知二次函数y=f1(x)的图象以原点为顶点且过点(1,1),反比例函数y=f2(x)的图象与直线y=x的两个交点间的距离为8,f(x)=f1(x)+f2(x)
(1)求函数f(x)的表达式。
(2)证明:当a>3时,关于x的方程f(x)=f(a)有三个实数解。
分析:由(1) ∴方程f(x)=f(a)即为,若去分母则得到关于x的三次方程,从“数”上处理较难,若能从“形”上考虑,“数形结合”问题可找到解决的方案。
解(2):由f(x)=f(a)得,在同一坐标系内作出f2(x)=和f3(x)=+的大致图象(图5),易知f2(x)与f3(x)在第三象限只有一个交点,即f(x)=f(a)有一个负数解。又f2(2)=4,f3(2)=+-4
当a>3时,
∴当a>3时,在第 一象限f3(x)的图象上存在
点(2,f3 (2))在f2(x)图象的上方。
∴f2(x)与f3(x)在第一象限有两个交点,即f(x)=f(a)有两个正数解。
因此,方程f(x)=f(a),有三个实数解。
评注:关于方程根的个数问题,使用数形结合处理比较方便、直观。
综上,从内容上讲,可以用数形结合思想方法解决的问题,主要有以下几类:
(1)集合的图示;
(2)与函数性质有关的问题;
(3)与方程、不等式有关的问题;
(4)最值问题;
(5)与解析几何有关的问题。
在使用数形结合方法时,要注意以下两点:
(1)数形结合常用来解选择题,填空题,属简缩思维模式,若用来处理解答题,要特别注意说理的严密性,如例5中两函数在第 一象限的交点的说明。
(2)在数形结合时,要注意对函数的优化选择,达到简洁、容易的目的,如将函数转化为=+处理。
函数图像的教学研究论文
摘要: 数形结合的思想是数学中一种重要的思想方法,而在函数的教学中把刻画数量关系的数和具体直观的图形有机结合,用代数的语言揭示几何要素及其关系,同时将几何问题转化为代数问题,扬数之长,取数之优,使抽象思维与形象思维珠联璧合,不但可以提高学生对图形世界的直观感知而且可以使学生更好地理解函数,更加快捷准确的求解答案。
关键词: 函数图像 研究
从以往的教学经验来看,学习函数这部分内容要求学生进行数与形相结合的运算,即要求使符号语言、图形语言结合起来,使抽象思维和形象思维结合起来。学生会遇到很多需要“数”与“形”并举或转换的情形。因此,函数的学习是困扰很多学生的难点。作为教师,我们面临的突出问题是:如何在教学中针对学生的思维特点,制定有效的教学策略高质量地完成函数教学任务。笔者从一个数学教师的角度出发浅谈一下自己对函数教学方面的研究以及心得体会。
1加强学生对函数概念的理解
初中课本上运用“变量说”将函数描述为:设在一个变化过程中有两个变量x与y,如果变量y随着x的变化而变化,并对于x在某个变化范围内的每一个值,按照某个对应规则,都有唯一确定的y值和它对应,那么y就是x的函数,x称为自变量,x的取值范围称为函数的定义域,和x的值对应的y值称为函数值,函数值的全体称为函数的值域。高中阶段,运用“对应说”函数被定义为:设A,B是两个非空的数集,如果按某种对应法则f对于集合A中的每一个元素x,在集合B中都有唯一的元素y和它对应,这样的对应叫做从A到B的一个函数记作:y=f(x),x∈A。
以上两种函数的定义,各有各的不同特点。“变量说”是最朴素、最根本的,便于和实际相结合,初学者更容易接受。“对应说”抽象化的`程度较高,对于研究函数的精细性质具有一定的优势。适合在高中阶段介绍给学生。
讲述函数概念时,我们需要注意以下细节问题。
1。1实现由静到动的转变
学生由于长期在常量范围内计算、思维,因此以为变量一直是变,常量永远是不变。在引入函数概念之前,需要完成从常量到变量的转变,这是函数教学的一个重点。
例如“一架飞机每小时飞行1000千米,问5小时此架飞机飞行的距离是多少?”小学生只能给出正确的答案,但很少能够注意到路程S和时间t的关系。对于初中生我们要能引导他得出S=1000t的函数公式。在高中的实际教学中,我们可以把S表示为数轴上的一个定点,而把t看成是一个动点。取自变量t的一系列特定值,列出相应的另一个变量S(t)的对应值,在坐标系上描绘出这些点,这样会使学生能够比较容易地感受到变量的真实意义。
1。2突出变量之间的依赖关系
自变量和因变量之间的依赖关系是函数。通常表示为y=f(x),f表示x和y之间的对应关系。对于定义域内的任意一个x,通过对应关系f,对应唯一的一个y值。我们可以例举生活中的例子,让学生找出自变量x,然后再找出依赖此变量x的变化而变化的因变量y,最后设法找出它们之间的对应关系。从实际事例中寻找函数关系,构造事物变化过程中的具体函数关系,有利于加强学生对函数的理解。
2加强学生对函数图像的应用
在函数的教学中,我们不但要让学生深刻的理解函数的概念。还要不断帮助学生归纳各种初等函数的图形性质,并且教会学生快速画出初等函数的图形,这样在其今后的解题中将会发挥重大的作用。函数一般分为一次函数、二次函数、指数函数、对数函数和幂函数,下面以二次函数为例,来谈一下函数教学的研究体会。
在教学中,我们要引导学生对函数的图像特征进行归纳总结。可以先介绍特殊的二次函数的表达式y=ax2(a≠0),通过赋予x特殊的数值来对其图像进行描绘,进而归纳图像特征:图像形状为抛物线;顶点为原点;对称轴为y轴;a决定其开口方向,a>0时开口向上,a<0时开口向下。进而通过将y=ax2(a≠0)的图像向上下左右平移,引出二次函数的一般表达式y=ax2+bx+c(a≠0),并将其配方为y=a(x+b a="">0时开口向上,a<0时开口向下;(2)函数的对称轴为x=—b c="">0时,图像与y轴交在正半轴,c<0,图像与y轴交在负半轴,c=0,图像与y轴交在原点;(5)△=b2—4ac决定图像与x轴的交点个数,△>0时,图像与x轴有两个交点,△<0时,图像与x轴无交点,△=0时,图像与x轴无交点。
掌握了函数的基本特征后,学生就能对任一个二次函数进行绘制了,进而在一些有关函数的解题过程中就可以通过数形结合进行求解,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程。这在解选择题、填空题中更显其尤为重要,因此我们要引导学生加强对函数图形的掌握,培养数形结合的这种思想意识,做到胸中有图,见数想图,以开拓自己的思维视野。
参考文献
[1]吴志鹃。二次函数图像的教学设计[J]。希望月刊(上半月),2007(11):108。
[2]梁小瑜。加强函数图像教学,衔接初高中数学教学[J]。师道·教研,2010(6):27~28。
[3]付尚英。浅谈利用函数的图像特征解题[J]。金色年华(教学参考),2010(12):113。