您当前的位置:首页 > 发表论文>论文发表

钾钠元素检测论文

2023-03-06 09:21 来源:学术参考网 作者:未知

钾钠元素检测论文

纳氏试剂比色法测水中氨氮常见问题探讨论文

摘要: 纳氏试剂比色法测定水中的氨氮,因方法简便、快速、灵敏度高而广泛应用于水中氨氮检测。文章初步探讨了纳氏试剂比色法测定氨氮的几个应注意的问题:预处理方法的选择;水样中干扰的消除;配制酒石酸钾钠溶液及纳氏试剂应注意的问题以及显色条件的控制等等。

关键词: 纳氏试剂比色法,预处理,纳氏试剂,显色条件

1预处理方法的选择

水样带色或浑浊以及含其他干扰物质,影响暗淡的测定,因此需要相应的预处理,对于较清洁的水样可采用絮凝沉淀法[1],对严重污染的水或工业废水,则用蒸馏法[1]预处理以消除干扰。其中因前者更简单快捷,成为首选的方法。

1.1絮凝沉淀法及改进

1.1.1仪器

100ml具塞量筒或比色管

1.1.2试剂:

(1)10%硫酸溶液

(2)25%氢氧化钠溶液

1.1.3步骤

取100ml水样于具塞量筒或比色管中,加入1ml10%硫酸锌溶液和2~4滴25%氢氧化钠溶液,调pH值10.5左右,混匀,静置使沉淀。取适量上清液备用。在此处有一方法的改进,就是没用滤纸过滤,而是取静置后的上清液。静置的时间视取样时不能取到絮状物为准。

1.1.4讨论:《在水和废水监测分析方法》第四版中,经絮凝沉淀后的水样使用无氨水充分洗涤过的中速滤纸过滤,弃去初滤液20ml后的滤液。有实验表明,不同滤纸或同种滤纸但不同张之间铵盐含量差别很大,有些含量较高的滤纸虽多次用水洗涤,但仍达不到实验要求。因此使用前需对每一批次滤纸进行抽检,淋洗时要少量多次。也有研究发现滤纸中约有0.25%的可溶物和滤纸平均失重0.58%,这些可溶物将影响到分析结果的准确性。直接取上清液避免了这一弊端。

2水样中各种干扰的消除:

在实际工作中,由于样品千差万别,干扰物复杂多样,有时会出现样品经絮凝沉淀预处理后显色溶液浑浊的现象,严重影响透光率,造成结果偏高,这时要用蒸馏预处理法。方法参见《水和废水监测分析方法》(第四版)

2.1色(浊)度干扰的消除。

取50mL水样于50mL比色管中,加1.00mL酒石酸钾钠溶液,加1.00mL15%氢氧化钾溶液,测量吸光度(校正吸光度),水样经纳氏试剂比色后测得吸光度减去校正吸光度。

2.2金属离子干扰的消除。

在碱性环境中,金属离子容易发生水解,一般加入酒石酸钾钠络合;含有汞盐可加少量硫代硫酸钠络合而掩蔽;含有Mn2+时,用50%酒石酸钾钠1.00mL+2%Na2EDTA1.00mL代替纯酒石酸钾钠能掩蔽Mn2+干扰[2];含有大量Cu、Fe等金属离子,采用蒸馏法进行预处理后,再测定。

2.3有机物干扰的消除。

水样中含有甘氨酸、肼和某些胺类等有机物时,调节水样pH值到9.5左右,对其进行蒸馏处理;含有酮类、醛类和其他胺类时,在pH值较低情况下,用煮沸方法除去。

2.4显色溶液浑浊的应对措施

用絮凝沉淀法预处理后取上清液,加入酒石酸钾钠溶液和纳氏试剂后,有时会出现浑浊现象,严重影响透光率,误差非常大。笔者在测污水处理厂的'出水水样是经常会遇到此情况,不加酒石酸钾钠显色溶液不浑浊,由此可见是酒石酸钾钠的问题,可用(3.1)方法提纯后的酒石酸钾钠溶液,再不行就用蒸馏法预处理后测定。

3试剂配制应注意的问题

药品的纯度及试剂的配置方法都影响到实验结果。

3.1酒石酸钾钠纯度直接关系到测定结果,导致实验空白值高和引起实际水样浑浊,影响测定需要对其溶液进行提纯,以去除其中的铵盐。实际工作中,有两种处理方法。

①采用纳氏试剂对酒石酸钾钠溶液(50%)进行提纯,纳氏试剂加入量为酒石酸钾钠溶液体积2%,空白吸光度最小且基本稳定;

②向酒石酸钾钠溶液中加少量碱液,煮沸蒸发至50mL左右,冷却并定容至100mL。试验表明:经以上两种方法提纯后空白值也能满足分析测定要求。

3.2纳氏试剂的配制

了解纳氏试剂测氨氮的显色原理有利于理解纳氏试剂的配制方法,原理如下:2K2[HgI4]+3NaOH+NH3→NH2HgIO+3NaI+4KI+2H2O

纳氏试剂的配制有两种方法,均能产生显色基团[HgI4]2—,第一种配制方法用氯化汞和碘化钾,关键在于把HgCl2的加入量,这决定着获得显色基团含量的多少,进而影响方法的灵敏度。但方法未给出HgCl2的确切用量,需要根据试剂配制过程中的现象加以判断,经验性强,因而较难把握。有人据经验总结出HgCl2与KI的用量比为0.44∶1时(即8.8gHgCl2溶于20gKI溶液),效果很好。在此不再赘述,第二种方法用碘化汞和碘化钾:称取16g氢氧化钠,溶于50ml水中,充分冷却至室温。另称取7g碘化钾和10g碘化汞溶于水,将此溶液在搅拌下徐徐注入氢氧化钠溶液中,用水稀释至100ml。在此尤其要注意碘化汞与碘化钾的比例,I—不能过量,否则反应会逆向进行,显色基团[HgI4]2—减少,纳氏试剂颜色变浅,用此纳氏试剂做出的氨氮工作曲线低点显色不灵敏,几乎没有差别,线性很差,实验失败。碘化汞微溶于水,溶液中存在I—的碱性溶液中反应生成[HgI4]2—红色沉淀才消失,过量时以红色碘化汞沉淀的形式存在,不会使显色反应逆向进行,因此在实际工作中应使碘化汞稍稍过量,配制好的的纳氏试剂静置后弃去沉淀,小心倒入聚乙烯瓶中,密塞,低温保存。

4显色反应条件的控制

4.1 反应温度、时间。实验表明:反应温度为25℃时,显色最完全,反应时间为10~30min,溶液颜色较稳定。实际工作中,显色温度控制在20℃~25℃,时间控制在10min左右,快速测定,以确保监测数据准确可靠。

4.2反应体系pH值。水样pH值的变化对显色有显著影响,水样呈中性或碱性,测定结果相对偏差符合分析要求,水样呈酸性无可比性。实验发现[3],当水样呈酸性时测定值为0.24mg/L ,呈碱性时测定值为1.03 mg/L ,呈中性时测定值为0.92 mg/L。实验表明[4]:当溶液pH<11时,不能使溶液中nh4+全部转化为nh3,使测定结果偏低;当ph>11时,99%以上NH4+ 转化为NH3。在测定水样时先调整pH至中性,加入纳氏试剂后体系pH值在11.8~12.4为宜。实际工作中,配制较强缓冲能力的氢氧化钾-酒石酸溶液(浓度比为2.54:1),能够更好地控制体系pH值。

结论:纳氏试剂比色法测水中氨氮,灵敏度高,操作简便,易于推广,对于不同的水样要选择不同的预处理方法,否则会给结果带来很大误差,对于相对清洁,干扰较少的水样可采用简单省时的絮凝沉淀法,采用此法时可用取上清液的方法,以避免滤纸过滤引进的氨氮污染。对于污染严重,干扰物较多的水样应用蒸馏法予以预处理。针对不同的干扰物应分别采取相应的消除措施。试剂的配制也很关键,对市售酒石酸钾钠予以提纯以消除高铵盐带来的误差,纳氏试剂的配制碘化汞应稍稍过量,出现少量的红色沉淀不影响实验结果,相反,碘化钾过量会导致显色不灵敏,实验失败。控制显色的时间、温度及反应体系的pH值也结果准确可靠的重要条件。

参考文献:

[1]国家环境保护总局,《水和废水监测分析方法》编委会.水和废水监测分析方法.—4版. [M]北京:中国环境科学出版社 2002

[2]丁建森,李 凌. 饮用水中锰对氨氮检测影响的探讨[J] 上海预防医学杂志,1997 ,9 (10) :474 – 475

[3] 苏爱梅,王俊荣. 氨氮测定过程中有关问题的探讨[J] 干旱环境监测,2003,17(2):123-125

[4] 陈国强,卢明宇. 应用离子选择电极法测定生活污水中的氨氮[J].重庆环境科学,1998 ,20(3):58-90

卷烟纸中加入钾盐和钠盐对染色作用

卷烟纸中钾钠元素的快速测定应用曹婷婷,曹 忠*,梁海琴,苏 威,龙 姝,何婧琳,肖忠良【摘 要】卷烟纸中钾钠元素含量的快速检测是研究关注的重点。将PNa玻璃电极和PK电极分别应用于卷烟纸中钠离子和钾离子的测定,响应时间短,对常规金属离子的选择性好;钠电极在pH=12.03的二异丙胺缓冲溶液中对钠离子的线性响应范围为 2.0×10-6~2.0×10-2mol/L,能斯特响应斜率为 55.6±0.6 mV/-pC(25℃),检测下限为6.31×10-7mol/L;钾电极在pH=8.0的Tris-HCl缓冲溶液中对K+离子的线性响应范围为2.0×10-5~2.0×10-2mol/L,能斯特响应斜率为 53.7±0.5 mV/-pC(25 ℃),检测下限为 7.94×10-6mol/L;且对卷烟纸样品中Na和K含量测定的回收率分别为94.5%~103.3%、92.8%~105.5%,与火焰原子吸收光谱方法比较,结果一致,有应用前景。【期刊名称】化学传感器【年(卷),期】2014(000)002【总页数】8【关键词】离子选择性电极;卷烟纸;钠离子;钾离子;快速测定0 引言卷烟纸由植物纤维和遍布在其结构中的无机填料组成。其中,钾、钠离子作为矿质元素,一方面,在烟草生长过程中,钠起到了保证烟草正常生长、积累和形成不同化学成分的作用;而钾能维持细胞渗透压、调节细胞电中性,参与蛋白质合成、光合作用以及调节酶活性,并且钾的存在能改善烟叶吸湿性。另一方面,有机酸钾盐和钠盐是卷烟纸中的重要助燃剂,能减少卷烟燃烧时产生的焦油,使卷烟纸燃烧时达到低焦油、低一氧化碳的目的,从而能有效减轻吸烟对人和环境的影响[1]。因此,准确测定卷烟纸中的钾钠含量,对于评价卷烟纸性能和卷烟纸质量,进一步研究开发安全型卷烟纸具有重要意义。随着人们对卷烟纸质量的日益关注,测定钾钠元素的方法也越来越多,主要有离子色谱法[2~4]、高效液相色谱法[5~7]、原子发射光谱法[8~9]、电感耦合等离子发射光谱法[10~12]、火焰原子吸收光谱法[13~15]和流动注射分析法[16]等。这些方法都需要昂贵的精密仪器和复杂的样品制备流程而使其应用受到限制。因此,寻求一种简单、快速且方便的方法测定卷烟纸中钾钠离子的含量显得至关重要。
离子选择性电极 (ISE)方法由于具有速度快、制备简易、成本低和灵敏度高等优点,近年来已在环境监测、食品、医疗卫生和生化分析等领域得到广泛应用[17~19]。邱会东等[20]利用pK-1型PVC膜钾离子选择性电极测定含钾离子药物,测得的线性范围为 5.0×10-6~1.0×10-1mol/L,检出限为 2.0×10-6mol/L。 任跃红实验组[21]提出以亚戊基双苯并-15-冠-5为中性载体,以邻苯二甲酸二辛酯为增塑剂,以PVC为支持体的离子选择电极法测定钾肥中的钾离子,其检出限为2.63×10-6 mol/L,验证了离子选择电极法简便、快速、准确的优点,可以作为钾肥中钾含量测定的通用方法。刘建华等[22]用104-2型缬安霉素钾电极和102型PNa电极测定陶瓷原料中的钾、钠,从准确度和精确度以及回收率方面证明了此类离子选择性电极能够满足陶瓷生产原料的分析要求。Gupta等[23]用席夫碱聚合物作为膜电极的离子载体选择性测定镉(Ⅱ),这种方法可以很好地用于各种水和土壤样品中镉的检测。Anastasova等[24]已开发一种一次性固体接触选择性电极用于监测环境中的铅离子,这类传感器可以对水质进行原位监测。Rounaghi等[25]报道了一种基于含羟基和苯氧基的癸烷化合物敏感膜离子选择性电极,在 1.0×10-8~1.0×10-1mol/L 范围内对铈离子有能斯特响应。Ramanjaneyulu等[26]制作了一种灵敏的铯离子选择电极,其敏感膜为杯[4]芳烃-冠6化合物,检测结果显示,其对Cs检测限可达到8.48×10-8mol/L。 Yuan 研究组[27]设计了一种基于席夫碱复合物的铅离子选择性电位传感器,可在pH为4~10的溶液环境中实现对铅离子的检测,且响应速度很快,仅为10 s。基于此,该文研究小组采用PNa玻璃电极与PK-1钾离子电极用于卷烟纸中钠元素与钾元素含量的测定,探讨了两种离子选择电极的电位响应性能,并与火焰原子吸收方法进行比较。实验结果表明,两种电极能满足烟草卷纸中钾钠离子的快速检测,在烟草等行业工业领域具有重要的应用前景。
1 实验部分1.1 主要仪器与试剂PHSJ-3F型PH计(上海雷磁仪器厂),集热式磁力加热搅拌器(DF-Ⅱ型,江苏荣华仪器制造有限公司),AA-6800型火焰原子吸收光谱仪(日本岛津公司)。实验用钠离子工作电极为6801型PNa玻璃电极,参比电极为6802型0.1NKL甘汞电极,钾离子工作电极为PK-1钾离子电极,参比电极为217型双盐桥饱和甘汞电极,均购于上海越磁电子科技有限公司。卷烟纸由湖南中烟工业有限责任公司长沙卷烟厂(长沙)提供,二异丙胺、三羟甲基氨基甲烷(Tris)、氯化铯(CsCl)购于国药集团化学试剂有限公司(上海),氯化钾、氯化钠、硝酸、高氯酸及其它化学试剂购于湖南化学试剂总厂(长沙),所用试剂均为分析纯,实验用水为超纯水 (电导率≥18.3 MΩ·cm)。1.2 卷烟纸样品预处理称取 0.10~0.12 g 卷烟纸样品,剪成碎片,置于25mL烧杯中,加入2.0mL 65%的硝酸和0.25mL高氯酸,酸化静置两小时以上;然后置于调压控温电炉上消解(温度控制在110℃左右),赶酸至近干。冷却后移至50mL容量瓶中,用5%的硝酸定容至刻度。移取该试样的消化液5.0mL于100mL容量瓶中,加入1.0mL 5 g/L的氯化铯溶液,用5%的硝酸定容至刻度。1.3 电极的测试方法钠离子的测定:以6801型PNa玻璃电极为工作电极,6802型0.1NKL甘汞电极为参比电极,通过测试一系列已知浓度的钠离子标准溶液的电位值,以电位值对浓度值做工作曲线,然后测试未知浓度钠离子样品溶液的电位值,通过工作曲线求出样品溶液中钠离子的浓度值或含量。其中, 所用缓冲溶液为 pH10.05~12.55 的二异丙胺溶液(0.2 mol/L),采用 0.1 mol/L 的 HCl溶液调节被测溶液,用pH玻璃电极校正其pH值。钾离子的测定:以PK-1钾离子电极为工作电极,217型双盐桥饱和甘汞电极为参比电极,所用缓冲溶液为 pH4.0~10.0 的 Tris-HCl溶液(0.1 mol/L),测试和调制方法同上。
2 结果与讨论2.1 最佳pH的选择分别探讨 PNa玻璃电极在 pH为 10.05、10.55、10.99、11.55、12.03、12.55 条件下, 电极电位随钠离子溶液浓度的变化关系,并依此求出能斯特响应斜率,作出斜率与pH的关系图,如图1a所示。从图1a中可以看出,当pH=12.03时PNa玻璃电极的响应斜率最大,其斜率值为55.6±0.6 mV/-pC(25 ℃),且接近能斯特响应斜率的理论值。这说明,当pH=12.03时,PNa玻璃电极响应灵敏度最大,从而得到测钠的最佳pH值为 12.03。同样的,探讨了钾离子电极在pH为4.0、5.0、6.0、7.0、8.0、9.0、10.0 下 的 斜 率 与 pH 的 关系,如图1b所示。由图1b可知,当pH=8.0时PK-1钾离子电极响应斜率最大,其斜率值为53.7±0.5mV/-pC(25 ℃)。这说明, 当 pH=8.0 时PK-1钾离子电极响应最好,从而得到其最佳的pH 值为 8.0。2.2 电极响应范围和检测下限实验分别考查了PNa电极与PK电极对Na+和K+的测试响应性能,图2是PNa玻璃电极在二异丙胺缓冲溶液pH=12.03时,结合不同浓度Na+后得到的电位响应曲线图。由图2可知,随着Na+浓度的增加,电极电位逐渐增大,说明电极玻璃膜结合的 Na+增加,且该电极在pH=12.03的二异丙胺缓冲溶液中对 Na+离子在 2.0×10-6~2.0×10-2mol/L(0.117~1170 mg/L)的浓度范围有良好的线性响应关系(如图2内插图 ),采用最小二乘法拟合得线性方程为 ΔE=15.2+55.6 log10c,根据作图法得到其检测下限为6.3×10-7mol/L。图3是PK钾离子电极在Tris-HCl缓冲溶液pH=8.0时,加入不同浓度K+后得到的电位响应曲线及其线性关系图。由图3知,随着K+浓度的增加,电极电位也逐渐增大,且在pH=8.0的Tris-HCl缓冲溶液中对K+离子的线性响应范围为 2.0×10-5~2.0×10-2mol/L(1.49~1490mg/L),线性方程为 ΔE=279.1+53.7 log10c(见图3 内插图 ),根据作图法得到其检测下限为7.9×10-6mol/L。
2.3 电极的响应时间与重现性实验分别考查了PNa电极与PK电极对Na+和K+的响应时间,如图4所示。图4a是PNa电极在二异丙胺缓冲溶液中加入不同浓度Na+离子后的动态电位变化曲线图,以达到电位响应最大值的 95%来计算。即通过在 2.0×10-7~2.0×10-3mol/L范围内从低浓度到高浓度进行连续测量并记录随时间变化的电位值,可以看出,在整个浓度范围内PNa电极达到平衡的反应时间很短,即≤24s,表明该PNa电极对钠离子有很快的响应速度。同样的,图4b是PK电极在Tris-HCl缓冲溶液中加入不同浓度K+离子后的动态电位变化曲线图,由图4b 可知,在 2.0×10-6~2.0×10-2mol/L 浓度范围内电极达到平衡的反应时间为≤30 s,表明该PK电极对钾离子也有较快的响应速度。实验还分别考查了PNa电极与PK电极对Na+和K+的电位响应重现性,将PNa电极对两种不同浓度样品(2.0×10-5mol/L 和 2.0×10-4mol/L)来回测定电位值10次,其相对标准偏差分别为0.47%和 0.51%; 同样,PK 电极对 2.0×10-4mol/L和2.0×10-3mol/L的 K+样品来回测定 10次,相对标准偏差分别为0.76%和0.54%,说明这两支电极的重现性好。2.4 电极的选择性离子选择性电极的重要特性之一就是它对溶液中某种离子的特定响应,其选择性系数是衡量电极性能的最重要指标。因此该实验采用固定干扰离子浓度法(Fixed interference method,FIM)测定了该电极的离子选择性系数,即以一定活度的干扰离子为底液,来配制一系列主离子活度不同的混合溶液,用选择性电极和参比电极组成的电池来测定它们的电位值,通过Nicolskii-Eisenman公式[28]计算选择性系数:其中,表示主离子选择性系数,aPq+表示主离子活度,aMn+表示干扰离子活度。实际计算时,忽略离子强度系数,用浓度近似代替活度。PNa电极与PK-1钾离子电极对不同金属离子的选择性系数分别列于图5中。由图5可知,这些金属离子的选择性系数都比较小,不干扰电极对钾钠离子的测定,说明PNa电极与PK电极分别对钠离子与钾离子都表现出良好的选择性。
2.5 回收率的测定在优化的实验条件下,分别利用PNa玻璃电极与PK电极对实际卷烟纸中钠钾元素进行检测。测定时,采用标准加入法,在实际样品中加入已知浓度的钠离子和钾离子,测出其电位的变化量,对照工作曲线找出浓度,比较实际加入量和测得量,分别得到钠元素的回收率为94.5%~103.3% (见表1), 钾元素的回收率为 92.8%~105.5%(见表 2)。为了验证该方法的准确性,把这几种不同浓度的样品采用火焰原子吸收光谱法测定,结果见表1与表2。由表1与表2可知,两种离子选择性电极测定的数据与火焰原子吸收法测定的数据无明显差异,说明PNa电极与PK电极可以分别用于卷烟纸中钾钠元素含量的测定。2.6 卷烟纸中钠钾元素含量的测定取卷烟纸样品0.110 6 g,分别用火焰原子吸收光谱和离子选择性电极测定卷烟纸中钾钠元素的含量,根据中华人民共和国烟草行业标准计算方法,钾钠元素的含量χ以质量分数(%)表示,按式(2)进行计算:χ—试样中钾或钠的含量,%;C—测试样中钾或钠的浓度,单位为毫克每升(mg/L);C0—试样空白中钾或钠的浓度,单位为毫克每升(mg/L);V—试样消化液的总体积,单位为毫升(mL);n—试样消化液的稀释倍数;m—试样质量,单位为克(g);ω—试样水分含量,%。采用两种电极测得该卷烟纸样品中钠钾的含量分别为 0.402 5%、0.697 0%(其中 ω为3.002%),如表3所示,与火焰原子吸收光谱方法比较,相对误差分别为-1.9%和-4.2%,说明这两种方法无明显差异。但火焰原子吸收法需要昂贵的精密仪器、复杂的样品制备流程和熟练的操作人员,且不能或不方便在户外使用,从而限制了其在卷烟纸中钾钠元素含量检测的实际应用。而该方法所利用的离子选择性电极方法成本低,操作简单、快速,且所用仪器简单轻巧,有潜力实现微型化,在烟草等行业工业领域具有重要的应用价值。3 结论该工作利用PNa玻璃电极与PK玻璃电极分别测定了卷烟纸中钠钾元素含量,测试实验结果显示,两种电极与火焰原子吸收方法测得的结果一致,且测得卷烟纸样品中钾钠的含量分别为0.402 5%和 0.697 0%。综上所述,该方法设备简单、操作方便、灵敏度高且选择性好,有利于连续和自动分析,可望实现对卷烟纸中钾钠元素含量的超灵敏现场监测和安全评估,为卷烟纸的质量控制提供有效的方法,具有十分重要的现实意义。
参考文献[1]李劲峰,向能军,李春,等.卷烟纸助燃剂含量对卷烟烟气有害物质的影响[J].中国造纸,2012,31(6):32~35.[2]Caland L B,Silveira E L C,Tubino M.Determination of sodium,potassium,calcium and magnesium cations in biodiesel by ion chromatography[J].Analytica Chimica Acta,2012,718:116~120.[3]Farcas F,Chaussadent T,Fiaud C,et al.Determination of the sodium monofluorophosphate in a hardened cement paste by ion chromatography[J].Analytica Chimica Acta,2002,472(1):37~43.[4]冯广林,李力,朱立军,等.微波消解样品-离子色谱法测定卷烟纸中钠、钾、镁、钙的含量[J].理化检验-化学分册,2012,48(4):449~455.[5]Ruckmani K,Shaikh S Z,Khalil P,et al.Determination of sodium hyaluronate in pharmaceutical formulations by HPLC– UV[J].Journal of Pharmaceutical Analysis,2013,3(5):324~329.[6]Li F Q,Xu S,Su H,et al.Development of a gradient reversed-phase HPLC method for the determination of sodium ferulate in beagle dog plasma[J].Journal of Chromatography B,2007,846(1-2):319~322.
[7]Barnes A R.Determination of caffeine and potassium sorbate in a neonatal oral solution by HPLC[J].International Journal of Pharmaceutics,1992,80(1):267~270.[8]Barros A I,de Oliveira A P,de Magalhães M R L,et al.Determination of sodium and potassium in biodiesel by flame atomic emission spectrometry,with dissolution in ethanol as a single sample preparation step[J].Fuel,2012,93:381~384.[9]Dancsak S E,Silva S G,Nóbrega J A,et al.Direct determination of sodium,potassium,chromium and vanadium in biodiesel fuel by tungsten coil atomic emission spectrometry[J].Analytica Chimica Acta,2014,806(2):85~90.[10]叶楠,肖作兵,冯涛,等.ICP-AES测定卷烟烟气中钾、钠金属离子[J].食品工业,2012,3:122~124.[11]Yan Q H,Yang L,Wang Q,et al.Determination of major and trace elements in six herbal drugs for relieving heat and toxic by ICP-AES with microwave digestion[J].Journal of Saudi Chemical Society,2012,16(3):287~290.
[12]Murcia M A,Vera A,Martínez T M,et al.Fast determination of the Ca,Mg,K,Na and Zn contents in milk and nondairy imitation milk using ICP-AES without mineralization stage[J].LWT-Food Science and Technology,1999,32(3):175~179.[13]蒋衍钜.原子吸收光谱法测定卷烟纸中钾、钠含量不确定度评定[J].研究与开发,2013,34(14):36~38.[14]de Jesus A,Silva M M,Vale M G R.The use of microemulsion for determination of sodium and potassium in biodiesel by flame atomic absorption spectrometry[J].Talanta,2008,74(5):1 378~1 384.[15]Ieggli C V S,Bohrer D,do Nascimento P C,et al.Determination of sodium,potassium,calcium,magnesium,zinc and iron in emulsified chocolate samples by flame atomic absorption spectrometry[J].Food Chemistry,2011,124(3):1 189~1 193.[16]Doku G N,Gadzekpo V P Y.Simultaneous determination of lithium,sodium and potassium in blood serum by flame photometric flow-injection analysis[J].Talanta,1996,43(5):735~739.
[17]Liu Y L,Xue Y H,Tang H F,et al.Click-immobilized K+-selective ionophore for potentiometric and optical sensors[J].Sensors and Actuators B,2012,171-172:556~562.[18]Ma Y H,Yuan R,Chai Y Q,et al.A new aluminum(Ⅲ)-selective potentiometric sensor based on N,N’-propanediamide bis(2-salicylideneimine)as a neutral carrier[J].Materials Science and Engineering C,2010,30(1):209~213.[19]Mashhadizadeh M H,Sheikhshoaie I.Mercury(Ⅱ)ionselective polymeric membrane sensor based on a recently synthesized Schiff base[J].Talanta,2003,60(1):73~80.[20]邱会东,熊伟.离子选择性电极法快速测定含钾类药物实验[J].重庆科技学院学报,2009,11(4):58~59.[21]任跃红,杨娜,张彩凤.离子选择电极测定钾肥中钾含量的方法研究[J].腐植酸,2011,3:22~25.[22]刘建华,李建英,熊淑萍.用离子选择性电极测定陶瓷原料中的钾、钠[J].中国陶瓷,2006,42(8):43~44.[23]Gupta V K,Singh A K,Gupta B.Schiff bases as cadmium(Ⅱ)selective ionophores in polymeric membrane electrodes[J].Analytica Chimica Acta,2007,583(2):340~348.
[24]Anastasova S,Radu A,Matzeu G,et al.Disposable solidcontact ion-selective electrodes for environmental monitoring of lead with ppb limit-of-detection[J].Electrochimica Acta,2012,73:93~97.[25]Rounaghi G,Kakhki R M Z,Sadeghian H.A new cerium(Ⅲ)ion selective electrode based on 2,9-dihydroxy-1,10-diphenoxy-4,7-dithia decane,a novel synthetic ligand[J].Electrochimica Acta,2011,56(27):9 756~9 761.[26]Ramanjaneyulu P S,Kumar A N,Sayi Y S,et al.A new ion selective electrode for cesium (Ⅰ)based on calix[4]arene-crown-6 compounds[J].Journal of Hazardous Materials,2012,205-206:81~88.[27]Yuan X J,Wang R Y,Mao C B,et al.New Pb(Ⅱ)-selective membrane electrode based on a new schiff base complex[J].Inorganic Chemistry Communications,2012,15:29~32.[28]Yan Z N,Wang S Q,Wang H X,et al.Bismuth(Ⅲ)PVC membrane ion selective electrodes based on two compounds:Acylhydrazoneand thiosemicarbazonewith 1,3,4-thiadiazole[J].Materials Science and Engineering C,2013,33:2 562~2 568.

5.9
百度文库VIP限时优惠现在开通,立享6亿+VIP内容
立即获取
卷烟纸中钾钠元素的快速测定应用
卷烟纸中钾钠元素的快速测定应用
曹婷婷,曹 忠*,梁海琴,苏 威,龙 姝,何婧琳,肖忠良
【摘 要】卷烟纸中钾钠元素含量的快速检测是研究关注的重点。将PNa玻璃电极和PK电极分别应用于卷烟纸中钠离子和钾离子的测定,响应时间短,对常规金属离子的选择性好;钠电极在pH=12.03的二异丙胺缓冲溶液中对钠离子的线性响应范围为 2.0×10-6~2.0×10-2mol/L,能斯特响应斜率为 55.6±0.6 mV/-pC(25℃),检测下限为6.31×10-7mol/L;钾电极在pH=8.0的Tris-HCl缓冲溶液中对K+离子的线性响应范围为2.0×10-5~2.0×10-2mol/L,能斯特响应斜率为 53.7±0.5 mV/-pC(25 ℃),检测下限为 7.94×10-6mol/L;且对卷烟纸样品中Na和K含量测定的回收率分别为94.5%~103.3%、92.8%~105.5%,与火焰原子吸收光谱方法比较,结果一致,有应用前景。
第 1 页
【期刊名称】化学传感器
【年(卷),期】2014(000)002
【总页数】8
【关键词】离子选择性电极;卷烟纸;钠离子;钾离子;快速测定
0 引言
卷烟纸由植物纤维和遍布在其结构中的无机填料组成。其中,钾、钠离子作为矿质元素,一方面,在烟草生长过程中,钠起到了保证烟草正常生长、积累和形成不同化学成分的作用;而钾能维持细胞渗透压、调节细胞电中性,参与蛋白质合成、光合作用以及调节酶活性,并且钾的存在能改善烟叶吸湿性。另一方面,有机酸钾盐和钠盐是卷烟纸中的重要助燃剂,能减少卷烟燃烧时产生的焦油,使卷烟纸燃烧时达到低焦油、低一氧化碳的目的,从而能有效减轻吸烟对人和环境的影响[1]。因此,准确测定卷烟纸中的钾钠含量,对于评价卷烟纸性能和卷烟纸质量,进一步研究开发安全型卷烟纸具有重要意义。

100分,跪求,分析化学论文?

  钠:

  物理性质:

  1.银白色金属。
  2.质软。
  3.密度比水小,能浮在水面上。
  4.熔点底,小于100度。
  5.能导电导热。

  原子体积:(立方厘米/摩尔)

  23.7
  金属钠很软,可以用刀切割。切开外皮后,可以看到钠具有银白色的金属光泽。钠是热和电的良导体。钠的密度是0.97g/cm3,比水的密度小,钠的熔点是97.81℃,沸点是882.9℃。

  元素在太阳中的含量:(ppm) 40
  地壳中含量:(ppm)23000
  元素在海水中的含量:(ppm)10500
  晶胞参数:
  a = 429.06 pm
  b = 429.06 pm
  c = 429.06 pm
  α = 90°
  β = 90°
  γ = 90°
  氧化态:
  Main Na+1
  Other Na-1 (in liquid NH3)
  莫氏硬度:0.5
  声音在其中的传播速率:(m/S)3200
  电离能 (kJ/ mol)
  M - M+ 495.8
  M+ - M2+ 4562.4
  M2+ - M3+ 6912
  M3+ - M4+ 9543
  M4+ - M5+ 13353
  M5+ - M6+ 16610
  M6+ - M7+ 20114
  M7+ - M8+ 25490
  M8+ - M9+ 28933
  M9+ - M10+ 141360
  热导率: W/(m·K)142

  化学性质
  钠原子的最外层只有1个电子,很容易失去。因此,钠的化学性质非常活泼,主要表现在:
  1.钠跟氧气的反应
  在常温时��4Na+O2=2Na2O
  在点燃时��2Na+O2=Na2O2(淡黄色)
  ���������� 过氧化钠比氧化钠稳定。
  2.钠能跟卤素、硫、磷、氢等非金属直接发生反应,生成相应的化合物,如
  2Na+Cl2=2NaCl
  2Na+S=Na2S(硫化钠)(跟硫化合时甚至发生爆炸。)
  3.钠跟水的反应
  �2Na+2H2O=2NaOH+H2↑
  钠的化学性质很活泼,所以它在自然界里不能以游离态存在,因此,在实验室中通常将钠保存在煤油里。
  钠由于此反应放出大量的热,能引起氢气燃烧,所以钠失火不能用水扑救。钠具有很强的还原性,可以从一些熔融的金属卤化物中把金属置换出来。由于钠极易与水反应,所以不能用钠把居于金属活动性顺序钠之后的金属从其盐溶液中置换出来。
  钠还能与钾、锡、锑等金属生成和金;金属钠与汞反应生成汞齐,这种合金是一种活泼的还原剂,在许多时候比纯钠更适用。钠离子能使火焰呈黄色,可用来灵敏地检测钠的存在。

  名称由来:
  钠,原子序数11,原子量22.989768,是最常见的碱金属元素。元素名来源拉丁文,原意是“天然碱”。在地壳中钠的含量为2.83%,居第六位,主要以钠盐的形式存在。
  发现人: 戴维 (用电解熔融的氢氧化钠的方法制得钠 )时间: 1807 地点: 英格兰
  中世纪拉丁文:sodanum(头痛药);元素符号来自于拉丁文“natrium”(钠)。
  元素描述:
  柔软的银白色金属,在地壳中含量第六。在空气中燃烧时发出耀眼的白色火焰。
  元素来源:
  通过电解熔融的氯化钠(食盐),硼砂或冰晶石获得。
  元素用途:
  纯净的金属钠并没有多大用处,然而钠的化合物可以应用在医药、农业和摄影器材中。氯化钠就是餐桌上的食盐。液态的钠有时用于冷却核反应堆{钠钾合金在室温下呈液态,是核反应堆的导热剂,起把反应堆产生的热量传导给蒸气轮机的作用。
  以往金属钠主要用于制造车用汽油的抗暴剂,但由于会污染环境,已经日趋减少。金属钠还用来制取钛,及生产氢氧化钠、氨基钠、氰化钠等。熔融的金属钠在增值反应堆中可做热交换剂。

  生理作用
  1.钠是细胞外液中带正电的主要离子,参于水的代谢,保证体内水的平衡。
  2.维持体内酸和碱的平衡。
  3.是胰汁、胆汁、汗和泪水的组成成分。
  4.参于心肌肉和神经功的调节

  缺乏
  人体内钠在一般情况下不易缺乏、但在某些情况下,如禁食、少食,膳食钠限制过严而摄入非常低时,或在高温、重体力劳动、过量出汗、肠胃疾病、反复呕吐、腹泻使钠过量排出而丢失时,或某些疾病,如艾迪生病引起肾不能有效保留钠时,胃肠外营养缺钠或低钠时,利尿剂的使用而抑制肾小管重吸收钠时均可引起钠缺乏。
  钠的缺乏在早期症状不明显,倦怠、淡漠、无神、甚至起立时昏倒。失钠达0.5g/kg体重以上时,可出现恶心、呕吐、血压下降、痛性吉尔痉挛,尿中无氯化物检出。

  过量
  正常情况下,钠摄入过多并不蓄积,但某些情况下,如误将食盐当食糖加入婴儿奶粉中喂养,则可引起中毒甚至死亡。急性中毒,可出现水肿、血压上升、血浆胆固醇升高、脂肪清楚率降低、胃黏膜上皮细胞受损等。那的适宜摄入量(AI)成人为2200mg/d。

  来源
  钠普遍存在于各种食物中,一般动物性食物高于植物性食物,但人体钠来源主要为食盐、以及加工、制备食物过程中加入的钠或含钠的复合物(如谷氨酸、小苏打等),以及酱油、盐渍或腌制肉或烟熏食品、酱咸菜类、发酵豆制品、咸味休闲食品等。

钠钾离子的检验

焰色反应 Na+为黄色,K+透过蓝色钴玻璃为紫色
化学方法
Na+ 加入锑酸钾饱和溶液 产生白色结晶状沉淀
K+ 加入钴亚硝酸钠产生 亮黄色沉淀

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页