For circle detection, many researchers have developed the modified HT methods using the parameter decomposition and/or some geometric properties of circles to reduce the complexities. Yuen et al. (1990) have performed a comparative study of several HT-based techniques for circle finding. The parameter decomposition-based approaches usually start with the detection of the centers of the circles, then determine the radii. One of those properties is that the normal to a point on a circle passes through the center of the circle (Davies, 1987a; Illingworth and Kittler, 1987). Yip et al. (1992) used the property that two points on a circle whose tangent lines are parallel are the endpoints of the diameter of the circle. The above approaches require the gradient information of edge contours which are sensitive to noise (Davies, 1987b).
许多研究者开发了改良的HT方法,这是通过使用参数分解及/或一些圆弧的几何特性来降低它的复杂性。袁氏与伙伴曾于1990年对多种基于HT的圆弧识别技术进行比较研究。参数分解法的步骤通常是以识别圆弧的中心开始,然后才确定它们的半径。其中的一个几何特性是:在圆弧上一点的法线经过圆弧的中心(Davies, 1987a; Illingworth和Kittler, 1987)。叶氏与伙伴于1992年则使用另一个特性:在圆弧上两点的正切线如果是平行,这两点就是圆弧直径的两个端点。上述两种方法都需要对噪音极度敏感的边缘轮廓的梯度信息 (Davies, 1987b)。
The e�ect of noise on the edge direction information is generally larger than that on the edge position. There are several approaches without using the edge direction information. Chan and Siu (1990) proposed a fast ellipse detection based on the horizontal and vertical chord bisectors. Similarly, Ho and Chen (1995) proposed a fast detection algorithm of circles using a global geometric symmetry. It computed the circle center from the symmetrical vertical axis and the symmetrical horizontal axis.
一般来说,边缘方向信息受噪音的影响要大于在边缘的位置;有几种方式可以避免使用边缘方向信息。陈和萧于1990年提出基于水平与垂直平分弦的椭圆识别快速算法。何与陈于1995年也提出通过使用全体几何对称性的类似的圆弧识别快速算法。它是从对称竖轴与横轴计算圆弧的中心。
Sheu et al. (1997) used the symmetric axis information throughout the entire process to compute all five parameters. Goneid et al. (1997) developed the chord bisection method using a 1D array. Davies (1999) studied a simple chord bisection method for the rapid accurate location of ellipses. The method of Ioannou et al. (1999) is based on the property that the line perpendicularly bisecting a chord of the circle passes through its center. Lei and Wong (1999) detected the symmetric axes and found pairs of two orthogonal axes whose intersections are the candidates of the centers. Its disadvantage is that straight lines in the image may make the detection of symmetric axes complex.
萧氏与伙伴则于1997年在整个过程中使用对称轴的信息来计算全部五个参数。Goneid与伙伴开发了使用一维数组的平分弦方法。Davies于1999年研究一种简单的平分弦方法对椭圆的快速、正确定位。1999年Loannou与伙伴的方法则是基于垂直平分圆弧弦的线会经过其中心点的几何特性。黎与黄于1999年测到对称轴线,并发现多双正交轴线,其交叉点是圆弧的中心。它的缺点是图像里的直线会与对称轴线混淆,导致识别的复杂性。
【英语牛人团】
1.进入百度主页之后,在搜索框中输入“中国知网查重”,点击【搜索】;
2.由于知网不对个人用户开放,我们可以选择知网旗下的第三方合作平台“学术不端论文查重系统”,这个系统就是针对无法使用知网查重又想通过知网查重的同学们;
3.进入“学术不端论文查重系统”主页之后,点击选择【大学生本科学位论文查重PMLC】,这个入口是专科、本科论文查重专用的,并且结果是与各大高校一致的。点击蓝色方框下面的【立即检测】;
4.进入检测界面之后,需要先输入论文相关信息,例如:论文标题、论文作者、属性分类,上传本科论文的格式一定要是word文档并且要小于25M;
5.千万记得填写手机号,手机号要认真填写正确,手机号是之后作为检测记录的凭证的,是下载检测报告的凭证的关键依据;
6.相关信息填写好,论文上传之后,需要支付本科论文查重的资金,这里支付方式有两种,一种是微信支付,一种是支付宝支付;
7.所有步骤完成之后,点击下面的蓝色椭圆框的【提交检查】即可,需要耐心等待10~30分钟即可。
你的开题报告有什么要求?
开题报告是需要多少字?
你可以告诉我具体的排版格式要求,希望可以帮到你,祝开题报告选题通过顺利。
1、研究背景
研究背景即提出问题,阐述研究该课题的原因。研究背景包括理论背景和现实需要。还要综述国内外关于同类课题研究的现状:①人家在研究什么、研究到什么程度?②找出你想研究而别人还没有做的问题。③他人已做过,你认为做得不够(或有缺陷),提出完善的想法或措施。④别人已做过,你重做实验来验证。
2、目的意义
目的意义是指通过该课题研究将解决什么问题(或得到什么结论),而这一问题的解决(或结论的得出)有什么意义。有时将研究背景和目的意义合二为一。
3、成员分工
成员分工应是指课题组成员在研究过程中所担负的具体职责,要人人有事干、个个担责任。组长负责协调、组织。
4、实施计划
实施计划是课题方案的核心部分,它主要包括研究内容、研究方法和时间安排等。研究内容是指可操作的东西,一般包括几个层次:⑴研究方向。⑵子课题(数目和标题)。⑶与研究方案有关的内容,即要通过什么、达到什么等等。研究方法要写明是文献研究还是实验、调查研究?若是调查研究是普调还是抽查?如果是实验研究,要注明有无对照实验和重复实验。实施计划要详细写出每个阶段的时间安排、地点、任务和目标、由谁负责。若外出调查,要列出调查者、调查对象、调查内容、交通工具、调查工具等。如果是实验研究,要写出实验内容、实验地点、器材。实施计划越具体,则越容易操作。
5、可行性论证
可行性论证是指课题研究所需的条件,即研究所需的信息资料、实验器材、研究经费、学生的知识水平和技能及教师的指导能力。另外,还应提出该课题目前已做了哪些工作,还存在哪些困难和问题,在哪些方面需要得到学校和老师帮助等等。
6、预期成果及其表现形式
预期成果一般是论文或调查(实验)报告等形式。成果表达方式是通过文字、图片、实物和多媒体等形式来表现。
圆锥曲线问题是高中数学教学的重、难点。你知道怎么写有关圆锥曲线的小论文吗?下面我给你分享高中数学圆锥曲线论文,欢迎阅读。
高中数学圆锥曲线论文篇一:高中数学圆锥曲线的教学研究
圆锥曲线问题是高中数学教学的重、难点.每年的高考中,都会涉及圆锥曲线问题,出题形式多样,既有分值较低的选择题和填空题,也有分值很高的大题.但是学生的得分率普遍不高.圆锥曲线教学的综合性和系统性强.这不仅要求学生理解最基本的知识点,提高运算的速度和准确性,还要求学生能够灵活运用数形结合的方法,找到解题的突破口,化简变形,准确解题.本文主要分析研究高中数学圆锥曲线的教学现状及其相应的对策.
一、高中数学圆锥曲线教学现状
1.从教师角度分析
高中数学教学大纲中对圆锥曲线的教学目标、重难点知识的说明非常清楚.大多数教师都明白圆锥曲线的重要性,而且在课堂上讲解圆锥曲线知识点和解题思路的时候很清晰.不过,学生数学基础是有差异的.对于圆锥曲线的内容,有的学生接受起来容易,有的学生接受起来比较困难.这就要求教师在教学过程中要注重培养学生的学习兴趣,不能单凭过去的教学经验.圆锥曲线经常会用到数形结合思想,有的教师在教学时会告诉学生要运用数形结合的方法,但没有清楚地告诉学生是如何想到用这种解题思想的.教师应当让学生知其然,也要让学生知其所以然.很多学生做不到举一反三,就是因为在学习圆锥曲线知识的时候教师看重结果的正确而忽视了解题思路的理解.
考虑到圆锥曲线知识在高考中所占的比重较大,几乎每一年的高考题中都会有所涉及.因而,在教学过程中教师应当有意识地渗透,让学生清楚圆锥曲线知识学习的重要意义;圆锥曲线与向量、概率等其他模块的数学知识有密切的关系.在教学过程中,教师也要重视学生其他模块数学知识的掌握,从宏观角度提高圆锥曲线教学的效率.
2.从学生角度分析
圆锥曲线的学习对学生的数学运算能力、推理能力、逻辑思维能力等各种数学能力的要求都非常高,对于很多学生来说,圆锥曲线学习起来的难度较大.有的学生对这部分知识有畏惧心理,思想上的负担导致学习的困难加大;有的学生学习方法落后,在学习过程中,只是记忆圆锥曲线的相关概念、结论,或者模仿教材和教师的解题思路,但并没有真正理解概念、结论的意义,没有掌握知识之间内在的关联,尤其是综合运用知识的能力不够,不会举一反三.圆锥曲线的题型有很多种,教师在课堂上一般会对每一种题型都进行详细的讲解,但是有的学生没有及时总结或者总结的时候流于形式,导致在考试中遇到圆锥曲线方面的题目失分.
二、提升高中数学圆锥曲线教学效率的措施
1.培养学生学习圆锥曲线的兴趣
众所周知,兴趣是最好的老师.学生只有真正热爱圆锥曲线的学习,才能事半功倍.所以,教师在圆锥曲线的教学中应当运用有效的方法激发学生的学习兴趣.比如在课堂教学中,教师可以创设问题情境作为课堂导入.学生都在新闻上了解过人造地球卫星运转轨道,教师可以以此为切入点引入圆锥曲线的知识.学生发现了圆锥曲线知识在生活中的运用,学习兴趣就会大大提升.
2.教师要重视演示数学知识的形成过程
考试中的选择题和填空题不必要求学生将解题过程详细呈现出来,不管用何种解题方法,只要结果正确就可以.但是对于试卷中的大题,解题过程相当重要,清晰明了的解题过程是得分的关键,尤其是圆锥曲线的大题解题过程更是如此.因而,教师在进行圆锥曲线的教学时,不能只重视结果,而是应当重视从多方面来讲解解题步骤,通过清晰的演示让学生掌握圆锥曲线的知识.比如圆锥曲线中“多动点”的问题,很多学生不知如何理解,这时教师应当进行演示,让学生知道怎样运用参数求解法、怎样画图等.
3.坚持学生的主体地位
教学活动中,教师是引领者,学生是主体,任何情况下学生的主体地位都不能被削弱.当学生学习圆锥曲线的知识遇到问题的时候,教师要认真解答;教学过程中,教师要了解学生的认知规律,鼓励学生探索,让学生带着浓厚的兴趣融入课堂;教师应当多肯定、赞扬学生,提高学生学习的主动性和积极性.有的圆锥曲线的题目,不只有一种解题方法,对于这些题目,教师应当培养学生自主探究的能力,比较不同的解题方法,在考试中运用准确性和解题速度都高的方法.
三、结语
高中圆锥曲线的难度较大,教师在教学的时候要把握好重难点,循序渐进,切忌急于求成,保证学生夯实基础的前提下,提高难度.圆锥曲线教学过程中要因材施教,结合学生的接受能力来规划教学的进度和难易程度,对于学生提出的问题,教师要耐心认真的解答.教师还应注重培养学生的数形结合思想,从而提高圆锥曲线教学的效率.
高中数学圆锥曲线论文篇二:圆锥曲线学习中的思考
【摘 要】 根据教学中遇到的问题,尝试运用数学教育心理学的有关知识分析学生在学习椭圆时的问题和特点,分析产生的可能原因,根据这些特点将其迁移到双曲线的学习过程中。
【关键词】 椭圆;双曲线;相似性质
学生在学习椭圆和双曲线时,教师可能会更多的关注学生在学习中普遍存在的问题,虽然这些问题是导致学生学习困难的因素之一,但我觉得,因为这些问题在学生中比较普遍,也可以认为是他们学习这部分知识时所表现出的一种共性。归纳起来主要有以下几点:
1、对椭圆的第一定义记忆太深刻,甚至有些机械化,以至于对后面将要讲的双曲线第一定义记忆不清,容易忘记“绝对值”的作用,或者说对“双曲线的一支”还是“两支”深感困惑。
2、在推导椭圆的标准方程时,因为用到二次平方,虽然没有任何技巧性,但因为运算量大,学生就感觉难度很大,我曾经统计过将近有一半的学生自己当堂无法推导出结果。
3、对教材中最后要求的标准形式有些困惑,因为二次平方后出现的是整式形式,这应该说是比较好的形式了,为什么还要画蛇添足,写成分式的形式呢?
4、研究椭圆的几何性质时,学生会感觉发现容易,结论漂亮,但记忆困难,变化多端,运用时想不起来,就是想起来了,也不知道该用哪一条性质,不能灵活应用,甚至有的学生感觉太神奇,摸不着。
5、在学了双曲线之后,学生能发现椭圆与双曲线之间的关系比较密切,有关椭圆和双曲线的计算问题在解决过程中也有类似之处,但普遍感觉双曲线比椭圆难度大很多。
我在接受本科教育时虽然学习过一些有关公共教育学和心理学的基本知识,但对教育心理学领域几乎没有接触。2010年在北京师范大学学习,院方给我们新疆班的教师们开了“数学教育心理学”这门课,时间很短,课时紧张,我也学的比较肤浅。但我还是想借助数学教育心理学的有关知识来尝试分析一下以上的问题。
首先,有关椭圆的第一定义与双曲线的第一定义。
“定义”属于概念的教学,“数学教育心理学”中有关“概念”的理解是:概念是指哲学、逻辑学、心理学等许多学科的研究对象。概念通常包括四个方面:概念的名称、定义、例子和属性。由于数学的研究对象是事物的数量关系和空间形式,而这种关系和形式脱离了事物的具体属性,因此,数学概念有与此相对应的特点。学生的认知结构处于发展过程之中,他们的数学认知结构比较具体而简单、数学知识比较贫乏,在学习新的数学知识时,作为“固着点”的已有知识往往很少或者不具备。
比如:学生在初中学习过圆的定义是“平面内到顶点的距离等于定长的点的轨迹”,此时涉及到的定点只有一个,定长就是所谓的“半径”。而椭圆和双曲线的第一定义中涉及到的定点有两个,并且还有“距离之和”与“距离之差的绝对值”的问题。由圆的图形容易联想到椭圆,但双曲线就比较困难。虽然初中学习过反比例函数,但这个内容也是难点,不太容易和双曲线联系起来。其实,这就是所谓的“经验”,它是概念学习的影响因素之一。
其次,有关用二次平方法化简方程。
在推导椭圆和双曲线的标准方程时,“化简”是必须要过的一关,在这一过程中,用到“二次平方法”以达到去除根号的目的。这种方法应该是学生必备的一种数学技能。
数学技能是从数学知识掌握到数学能力形成和发展的中心环节,它分为“智慧技能”和“动作技能”,而“运算技能”是指能正确运用各种概念、公式、法则进行数学运算,做代数变换等。在此过程中正确运用“数学符号语言”也是必不可少的。在数学学习过程中,数学技能的形成非常重要,数学技能以数学知识的学习为载体,通过实际操作获得动作经验而逐渐形成。
根据学生的学习经历,以往接触比较多的是一次方程,比较复杂的二次函数也只是在一个字母中出现了二次方。但椭圆的方程中,x、y的次数都是二次,从形式上看就比较难,学生在心理接受程度上难。加之,学生虽然会用平方法去根式,但局限在一次平方,像这样的二次平方法不太适应,甚至怀疑自己做错了。另外,由于我们学校是自治区重点中学,生源相对来说比较好,教师在授课时对学生的基础和能力估计过高也是一个不容忽视的因素。
最后,椭圆与双曲线的相关性质。
在教学中我发现,因为椭圆和双曲线的第一定义、第二定义都有类似的部分,学生已经能够感觉到二者的几何性质应该也有相似的地方。我也试图用椭圆的几何性质引导学生类比得出双曲线的相关性质,引导学生的思维自发的“迁移”,但对于那些比较简单的、一般的性质学生可以自行推出。比如:椭圆中的特殊三角形、椭圆的焦半径、椭圆的通径等。而对于稍微复杂一些的性质,学生就有些束手无策了。
通过数学教育心理学的学习,我发现数学学习的迁移不是自动发生的,它受制于许多因素,其中最主要的有数学学习材料的因素、数学活动经验的概括水平以及数学学习定势。
1、迁移需要对新旧学习中的经验进行分析、抽象,概括其中共同的经验成分才能实现,因此,数学学习材料在客观上要有相似性。心理学的研究表明,相似程度的大小决定着迁移效果和范围的大小。
例如:椭圆和双曲线的定义中都有两个定点和一个定长,由这些条件推导出的有关椭圆特殊三角形和焦半径公式的相关性质,学生就比较容易类推到双曲线的,还有可能在焦半径的公式中发现:椭圆的焦半径公式只有一个,而双曲线要根据具体情况(左、右支;上、下支)区别对待。
又如:椭圆的几何性质中有一条是:设过椭圆焦点F作直线与椭圆相交P、Q两点,A为椭圆长轴上一个顶点,连结AP和AQ分别交相应于焦点F的椭圆准线于M、N两点,则MF⊥NF;这条性质从叙述上比较长,学生可能直觉上认为推不出双曲线的类似性质。实际上,只要教师给学生一些勇气,鼓励他们大胆猜想,容易得出:设过双曲线焦点F作直线与双曲线相交P、Q两点,A为双曲线长轴上一个顶点,连结AP和AQ分别交相应于焦点F的双曲线准线于M、N两点,则MF⊥NF。再作出图形证明即可。可以说,椭圆和双去想的这条性质相似程度极高。 2、数学学习的迁移是一种学习中习得的数学活动经验对另一种学习的影响,也就是已有经验的具体化与新课题的类化过程或新、旧经验的协调过程。因此,概括水平越低,迁移范围越小,效果越差;反之,迁移的可能性就越大,效果也越好。
例如:在探究椭圆的几何性质中有一条是:以焦点弦PQ为直径的圆必与对应准线相离;学生类比这条性质,可以得到双曲线以焦点弦PQ为直径的圆可能必与对应准线存在着某种关系。而圆与直线的位置关系不外乎有三种:相交、相离、相切。判断圆与直线的位置关系有两种常用的方法:一是用点到直线的距离判断;一种是用方程的根的情况判断。这些知识和技能学生是具备的,因此不难得出双曲线的相关性质,即:以焦点弦PQ为直径的圆必与对应准线相交。
3、定势现象是一种预备性反应或反应的准备,它是在连续活动中发生的。在活动过程中,先前活动经验为后面的活动形成一种准备状态。它使学生倾向于在学习时以一种特定的方式进行反应。由于定势是关于选择活动方向的一种倾向性,因此对迁移来说,定势的影响既可以起促进作用也可以起阻碍作用。
例如:在椭圆的概念中说的是到两定点的距离之和为定长的点的轨迹,而双曲线则是到两定点的距离之差的绝对值为定长的点的轨迹。由于思维定势,容易把“绝对值”忘掉,从而丢失一支双曲线。
鉴于本人所学有限,分析的可能不是很准确,我会在今后的教学中反复思考,逐步改进。
通过以上的分析,我认为:椭圆和双曲线的相关知识有许多共同的切入点,根据学生的学习特点,要抓准这些相似点,教师除了丰富的教学经验外,如果还能运用一定的心理学知识,找到学生学习时的心理活动,可能会带来更好的教学效果。
在全国推进素质教育的今天,在新一轮国家基础教育课程改革实施之际,只关注教师“如何教”的问题显然已经远远不够,于是,对新的教材与学生新的学习方式的研究与探讨就显得十分迫切与必要。只有充分发挥数学教育的功能,全面提高年轻一代的数学素养,每一位数学教师才能为提高全民族素质,造就一代高质量的新型人才贡献自己的一份力量。
参考文献
[1]曹才翰,章建跃.数学教育心理学[M].北京:北京师范大学出版社,2007.
[2]朱文芳.中学生数学学习心理学[M].浙江教育出版社,2005.
[3] ISBN978-7-107-18662-2,数学[S].人民教育出版社,2008.
高中数学圆锥曲线论文篇三:浅谈高考圆锥曲线中的存在性问题
摘 要:在新课标、新考纲和新考试说明的精神指导下,高考数学科解析几何试题与以往大纲课程背景下考查形式和内容,有了显著的变化,这些试题不论在考试评价、命题研究还是高考复习,都成为专家、教师探讨的重点、热点,也是高考命题改革的一块试验田.本文通过对近几年高考数学解析几何试题存在性问题的探究来揭示这些试题是如何贯彻课程标准,反应考试说明的意图,进而思考教师在解析几何的教学与高三复习策略。
关键词:课程标准 数学高考 解析几何 存在性问题 思考
前言
最近几年的高考试题中,存在性问题出现的频率非常高,存在性问题是一种具有开放性和发散性的问题,此类题目的条件和结论不完备,要求学生结合已有的条件进行观察、分析、比较和概括,它对数学思想、数学意识及综合运用数学方法的能力有较高的要求,特别是在解析几何第二问中经常考到“是否存在这样的点”的问题,也就是是否存在定值定点定直线定圆的问题。希望能够为老师的教学、高考复习提供有益的思考.[1]
一、是否存在这样的常数
例1:(2009福建理)已知AB分别为曲线 与轴的左、右两个交点,直线I过点B,且与X轴垂直,S为I上异于点B的一点,连结AS交曲线C于点T.
(Ⅰ)若曲线C为半圆,点T为圆弧AB的三等分点,试求出点S的坐标;
(II)如图,点M是以SB为直径的圆与线段TB的交点,试问:是否存在a,使得O,M,S三点共线?若存在,求出a的值,若不存在,请说明理由.
二、是否存在这样的点
【命题立意】:第二问难度较大,是一个探究性的开放试题,判断是否存在满足题设的定点.解决此题要突破两个关键:一是由图形的几何特征,判断出若定点存在,则必在 轴上,二是,题设要求“以PQ为直径的圆恒过点M”应转化为“ 对满足一定关系的m,k恒成立”,这里一定关系是指l与椭圆相切 . 本题主要考查运算求解能力、推理论证力,考查化归与转化思想、数形结合思想、特殊与一般的思想.本题的亮点是体现代数方法对解决几何问题的作用,同时体现图形的几何性质对代数运算的方向和运算量的减小的作用,在推理论证上,体现不同思维方式引发不同的解题方法,对区分不同数学思维层次的学生有很好的作用.
三、是否存在这样的直线
【命题立意】:第二问是开放性问题,判断满足题设的直线是否存在从逻辑思维的角度考虑,假设直线l存在,则l应满足三个条件① (可求k);②l与椭圆有公共点(可建立k与b的不等关系);③l与OA的距离等于4(可建立k与b的相等关系),而确定一条直线只需两个条
件即可.因此,可利用l满足其中两个条件求出,再检验是否满足第三个条件,从而得出l是否存在.这样,本题有多种不同的解法.本题主要考查运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想、化归与转化思想.本题的亮点是,背景学生熟悉,试题入口宽,可以用不同的想法和解法解决,使不同思维方式的学生都能做题,提供给学生充分展示自己的平台.[3]
四、是否存在这样的圆
【命题立意】:本题属于探究是否存在的问题,主要考查了椭圆的标准方程的确定,直线与椭圆的位置关系直线与圆的位置关系和待定系数法求方程的方法,能够运用解方程组法研究有关参数问题以及方程的根与系数关系
结束语:1.从教学的角度思考:在教学中要扎扎实实地讲好直线、圆、圆锥曲线及其几何性质等基础知识.教学中要学生先通过画图,直观地理解要解决的几何问题的几何意义,再转化为代数问题求解,通过这个过程学生很容易体会数形结合的思想,体会解析几何的方法;在研究圆锥曲线时,弄清楚曲线方程和参变量的几何意义是第一位的,在此基础上,运用代数方程的方法解决几何问题,在解决几何问题之后,要回到几何意义的理解上.几何是解决问题的出发点也是问题解决之后的落脚点,要避免让学生陷入代数的恒等变形而不理解其几何含义.在分析问题、解决问题中要突出几何要素,注重几何要素的代数化,要在几何要素的引导下进行代数的恒等变形,要让几何图形帮助我们思考问题、确定恒等变形的方向、简化计算,体会几何直观给我们带来的好处.
2.从高三复习备考的角度思考:①认真研读《考试大纲》、《考试说明》明确高考对解析几何基础知识、基本技能、基本思想、基本方法的要求,使复习工作有的放矢;②重视解决解析几何问题通法的训练.从试题分析中可以看出,直线方程、圆的方程,圆锥曲线的方程和基本性质(基本量)是重点考查的知识点,一定要熟悉基本方法,而直线与圆锥曲线的位置关系及其引发的各类问题是主观题的考查热点,要通过典型例题的操作、讲解,帮助学生总结解题思路,思考策略和通行通法,此外,要注意解析几何与其他数学内容的交汇,加强知识整体性的认知,锻炼学生在对参数的运算处理和面对繁杂的数学式子变形时应有的沉着心理和坚强毅力;
参考文献:
[1]中华人民共和国教育部制订.普通高中数学课程标准(实验)[M].北京:人民教育出版社2003
[2福建省教育考试院编.2012年普通高等学校招生全国统一考试福建省数学考试说明[M].福建:福建教育出版社2012
[3]王尚志.数学教学研究与案例[M].北京:高等教育出版社2006