1、论文题目:要求准确、简练、醒目、新颖。
2、目录:目录是论文中主要段落的简表。(短篇论文不必列目录)
3、提要:是文章主要内容的摘录,要求短、精、完整。字数少可几十字,多不超过三百字为宜。
4、关键词或主题词:关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。 每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。
主题词是经过规范化的词,在确定主题词时,要对论文进行主题,依照标引和组配规则转换成主题词表中的规范词语。
5、论文正文:
(1)引言:引言又称前言、序言和导言,用在论文的开头。 引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。
〈2)论文正文:正文是论文的主体,正文应包括论点、论据、 论证过程和结论。主体部分包括以下内容:
a.提出-论点;
b.分析问题-论据和论证;
c.解决问题-论证与步骤;
d.结论。
6、一篇论文的参考文献是将论文在和写作中可参考或引证的主要文献资料,列于论文的末尾。参考文献应另起一页,标注方式按《GB7714-87文后参考文献著录规则》进行。
中文:标题--作者--出版物信息(版地、版者、版期):作者--标题--出版物信息所列参考文献的要求是:
(1)所列参考文献应是正式出版物,以便读者考证。
(2)所列举的参考文献要标明序号、著作或文章的标题、作者、出版物信息。
还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考!
1、导数在不等式证明中的应用
2、导数在不等式证明中的应用
3、导数在不等式证明中的应用
4、等价无穷小在求函数极限中的应用及推广
5、迪克斯特拉(Dijkstra)算法及其改进
6、第二积分中值定理“中间点”的性态
7、对均值不等式的探讨
8、对数学教学中开放题的探讨
9、对数学教学中开放题使用的几点思考
10、对现行较普遍的彩票发行方案的讨论
11、对一定理证明过程的感想
12、对一类递推数列收敛性的讨论
13、多扇图和多轮图的生成树计数
14、多维背包问题的扰动修复
15、多项式不可约的判别方法及应用
16、多元函数的极值
17、多元函数的极值及其应用
18、多元函数的极值及其应用
19、多元函数的极值问题
20、多元函数极值问题
21、二次曲线方程的化简
22、二元函数的单调性及其应用
23、二元函数的极值存在的判别方法
24、二元函数极限不存在性之研究
25、反对称矩阵与正交矩阵、对角形矩阵的关系
26、反循环矩阵和分块对称反循环矩阵
27、范德蒙行列式的一些应用
28、方阵A的伴随矩阵
29、放缩法及其应用
30、分块矩阵的应用
31、分块矩阵行列式计算的若干方法
32、辅助函数在数学分析中的应用
33、复合函数的可测性
34、概率方法在其他数学问题中的应用
35、概率论的发展简介及其在生活中的若干应用
36、概率论在彩票中的应用
37、概率统计在彩票中的应用
38、概率统计在实际生活中的应用
39、概率在点名机制中的应用
40、高阶等差数列的通项,前n项和公式的探讨及应用
41、给定点集最小覆盖快速近似算法的进一步研究及其应用
42、关联矩阵的一些性质及其应用
43、关于Gauss整数环及其推广
44、关于g-循环矩阵的逆矩阵
45、关于二重极限的若干计算方法
46、关于反函数问题的讨论
47、关于非线性方程问题的求解
48、关于函数一致连续性的几点注记
49、关于矩阵的秩的讨论 _
50、关于两个特殊不等式的推广及应用
51、关于幂指函数的极限求法
52、关于扫雪问题的数学模型
53、关于实数完备性及其应用
54、关于数列通项公式问题探讨
55、关于椭圆性质及其应用地探究、推广
56、关于线性方程组的迭代法求解
57、关于一类非开非闭的商映射的构造
58、关于一类生态数学模型的几点思考
59、关于圆锥曲线中若干定值问题的求解初探
60、关于置信区间与假设检验的研究
61、关于周期函数的探讨
62、函数的一致连续性及其应用
63、函数定义的发展
64、函数级数在复分析中与在实分析中的关系
65、函数极值的求法
66、函数幂级数的展开和应用
67、函数项级数的收敛判别法的推广和应用
68、函数项级数一致收敛的判别
69、函数最值问题解法的探讨
70、蝴蝶定理的推广及应用
71、化归中的矛盾分析法研究
72、环上矩阵广义逆的若干性质
73、积分中值定理的再讨论
74、积分中值定理正反问题‘中间点’的渐近性
75、基于高中新教材的概率学习
76、基于最优生成树的'海底油气集输管网策略分析
77、级数求和的常用方法与几个特殊级数和
78、级数求和问题的几个转化
79、级数在求极限中的应用
80、极限的求法与技巧
81、极值的分析和运用
82、极值思想在图论中的应用
83、几个广义正定矩阵的内在联系及其区别
84、几个特殊不等式的巧妙证法及其推广应用
85、几个重要不等式的证明及应用
86、几个重要不等式在数学竞赛中的应用
87、几种特殊矩阵的逆矩阵求法
椭圆,数学学过中心对称吧。那几道公式去看看喽。
至于天体,那行星轨道都是椭圆的。地球、月亮近地点远地点跟四季的变化,还势能跟动能的关系吧。
我只想到这些了。
如果我的回答对你有帮助,请您帮我踩下百度空间哦
1、首先找你的导师确立课题。2、跟你的直系学长或学姐(课题一致)的要资料或者要论文3、上万方或者其他数据库下载相关论文。4、然后先做论文综述和外文翻译(综述基本就是从各种论文上截取的相关片段,自己稍微润色一下,外文翻译或者找google和金山自己做,或者花钱找人做)5、做论文,根据综述内容扩展论证(我的论文是老师直接给的,我看看就OK了,因为很LUCK的,我的论题是老师论文的一部分)6、把论文整合到一起,修改——老师修改——修改7、做论文PPT8、打印成册9、答辩