现已知BC=EF,AF=DC,AB=DE,请证明∠EFD=∠BCA(在同一平面内) 证明: 因为AF= DC ( 已知)
所以AF+ FC=DC+ FC
所以 DF= AC
在 △DEF和△ABC
因为 AC=DF (已证)
因为 AB=DE (已知)
有因为 DC=EF (已知)
所以△ABC≌△DEF (SSS)
因为∠EFD=∠BCA ( 全等三角形的对应角相等)
这是比较基础的一道几何证明题。。
以上证明是用“边边边”来证明的,这是全等三角形证明的最简单的方法。
(一) 本节内容在教材中的地位与作用。 对于全等三角形的研究,实际是平面几何中对封闭的两个图形关系研究的第一步。它是两三角形间最简单、最常见的关系。本节《探索三角形全等的条件》是学生在认识三角形的基础上,在了解全等图形和全等三角形以后进行学习的,它既是前面所学知识的延伸与拓展,又是后继学习探索相似形的条件的基础,并且是用以说明线段相等、两角相等的重要依据。因此,本节课的知识具有承上启下的作用。同时,苏科版教材将“边角边”这一识别方法作为五个基本事实之一,说明本节的内容对学生学习几何说理来说具有举足轻重的作用。(二) 教学目标在本课的教学中,不仅要让学生学会“边角边”这一全等三角形的识别方法,更主要地是要让学生掌握研究问题的方法,初步领悟分类讨论的数学思想。同时,还要让学生感受到数学来源于生活,又服务于生活的基本事实,从而激发学生学习数学的兴趣。为此,我确立如下教学目标:(1)经历探索三角形全等条件的过程,体会分析问题的方法,积累数学活动的经验。(2)掌握“边角边”这一三角形全等的识别方法,并能利用这些条件判别两个三角形是否全等,解决一些简单的实际问题。(3)培养学生勇于探索、团结协作的精神。(三) 教材重难点 由于本节课是第一次探索三角形全等的条件,故我确立了以“探究全等三角形的必要条件的个数及探究边角边这一识别方法作为教学的重点,而将其发现过程以及边边角的辨析作为教学的难点。同时,我将采用让学生动手操作、合作探究、媒体演示的方式以及渗透分类讨论的数学思想方法教学来突出重点、突破难点。(四)教学具准备,教具:相关多媒体课件;学具:剪刀、纸片、直尺。画有相关图片的作业纸。二、教法选择与学法指导本节课主要是“边角边”这一基本事实的发现,故我在课堂教学中将尽量为学生提供“做中学”的时空,让学生进行小组合作学习,在“做”的过程中潜移默化地渗透分类讨论的数学思想方法,遵循“教是为了不教”的原则,让学生自得知识、自寻方法、自觅规律、自悟原理。三、教学流程(一)创设情景,激发求知欲望首先,我出示一个实际问题:问题:皮皮公司接到一批三角形架的加工任务,客户的要求是所有的三角形必须全等。质检部门为了使产品顺利过关,提出了明确的要求:要逐一检查三角形的三条边、三个角是不是都相等。技术科的毛毛提出了质疑:分别检查三条边、三个角这6个数据固然可以。但为了提高我们的效率,是不是可以找到一个更优化的方法,只量一个数据可以吗?两个呢?……然后,教师提出问题:毛毛已提出了这么一个设想,同学们是否可以和毛毛一起来攻克这个难题呢?这样设计的目的是既交代了本节课要研究和学习的主要问题,又能较好地激发学生求知与探索的欲望,同时也为本节课的教学做好了铺垫。(二)引导活动,揭示知识产生过程数学教学的本质就是数学活动的教学,为此,本节课我设计了如下的系列活动,旨在让学生通过动手操作、合作探究来揭示“边角边”判定三角形全等这一知识的产生过程。活动一:让学生通过画图或者举例说明,只量一个数据,即一条边或一个角不能判断两个三角形全等。 活动二:让学生就测量两个数据展开讨论。先让学生分析有几种情况:即边边、边角、角角。再由各小组自行探索。同样可以让学生举反例说明,也可以通过画图说明。活动三:在两个条件不能判定的基础上,只能再添加一个条件。先让学生讨论分几种情况,教师在启发学生有序思考,避免漏解。
奇妙的全等三角形判定
三角形,一个既熟悉又陌生的名字,到底它身上有着一种怎样的力量使人们对它的探索如此之多呢?今天,我们就来谈谈全等三角形的判定条件(2)吧。
在全等三角形判定条件(1)中,我们学到了一个判定两个三角形是否全等的“捷径”:三边对应相等的两个三角形全等,简写成“边边边”或“SSS” 。当然这个条件是建立在得知两个三角形的所有边,即三条对应边都相等的情况下两个三角形才全等的。那么如果只知道两对对应边相等和一对夹角相等呢?能判定他们全等吗?今天,我们学习了全等三角形的条件(2),终于能将此问题迎刃而解了,通过实验我们可以很容易得到:有一个角和夹这个角的两边对应相等的两个三角形全等即“边角边”或“SAS” 。
但如果是“SSA” 呢?能作为两个三角形全等的判定条件吗?不妨让我们也来动手实验吧!
首先设这两条线段分别是1cm 和2cm ,另一个角为900 ,画图(如图1和图
如果规定这个直角三角形的一条直角边为1cm,另一条直角边为2cm ,或一条直角边为1cm,另一条斜边为2cm,那么“SSA”成立,如果没有规定相等的两边的位置,就不一定成立了。
二、设两条线段分别是1cm,1.1cm,另一个角为300 .(如图3,4)
∵⊿A′B′C′不能重合于 ⊿ABC
∴“SSA”不一定能判定两个三角形全等了。
但是,如果给这个问题加一个条件就可以了,比如1.1cm的边为300角所对的边就可以了!
全等三角形的判定真是挺有意思的,有时多了一个条件就“柳暗花明又一村了”!
在这个学期我们学习了新的内容,实数,一次函数,三角形,全等三角形,数据的描述。
在刚学习的时候,看到第一章实数,感到很普通,不过是一些定义,概念,和较少的较为简单的计算而已,但是往后学才知道第一章的内容对第二章起了很大的作用,如果第一章没学好,第二章学起来有些困难。在第二章里我认为最困难的就是在实际问题中的函数,它需要把一些实际问题中的情况考虑清楚,在进行一系列的计算。如果没把这点考虑清楚,就很容易出错误。
在第三章三角形中我认为不会很难,应为在小学到应该学过三角形,哪怕是一点皮毛,都用该有一些基础。
但是第四章全等三角形对我们是一个很大的挑战在从前没有遇到过的知识,尤其到了最后,全等三角形辅助线问题时更是晕头转向了,完全打不开思路,但是做这种题是最有成就感的,因为但凡你自己做出一道题来,经过不懈努力的求证,你会非常高兴的。
最后一章应该说是非常简单的,都是一些作图题,很容易。
在这一学期中学习到了很多知识,我会将它融入到下一学年的学习中,将下一学年的知识学得更好。