一、克隆技术的科学意义及经济价值 克隆技术的突破,首先标志着人类对生命的认识水平与改造能力的提高,这本身是人类文明的长足进步。作为生物工程的一项重要成果,克隆技术为解决某些日益尖锐的问题和矛盾提供了多种可能的途径和方法。 (一)克隆技术给医学领域带来美好应用前景。在人类基因组的带动下,人们正在进行治疗性克隆试验,旨在生产克隆的或单性生殖的人类胚胎以获取干细胞,为人类研究癌症、艾滋病、老年痴呆、帕金森氏症等疑难病症,从基因层面揭示疾病产生的分子生物学机制,预报人体的机能和病理变化,找到标本兼治的治疗方法。克隆生物工程技术将克服中西药的弊端,将使医学在21世纪发生革命性的变化。治疗性克隆和干细胞研究为人体缺失器官的修复和重建带来希望,不但能治疗或预防器官功能衰竭,而且能防治衰老,解决目前我们面临的寿命延长而生命质量低下的难题。寿终无年、青春常驻的梦想在21世纪有可能会逐步成为现实。 (二)克隆技术有助于加速动植物育种过程。作为人类在生物科学领域取得的一项重大技术突破,克隆技术反映了细胞核分化技术、细胞培养和控制技术的进步,为挽救濒临灭绝物种提供了多种可能和广阔的发展前景。利用优良动物品种的体细胞提供细胞核来克隆动物,可以避免自然条件下育种所受到的动物生育周期和生育效率的限制,缩短育种年限,提高育种效率,按照自己的意愿创造出有更高经济价值的动物新品种来;可以再现物种,保护和拯救濒危动物。同时,运用克隆技术可以超越自然节奏,主动调控生物链及生态环境,减少环境污染,保护地球这一万物共有的家园。 (三)克隆技术将引起制药业和农业生产的革命。利用体细胞克隆技术使外源基因整合到受体细胞中并稳定地遗传到子代,可以用来大量繁殖许多有价值的基因,直接生产出人类适用的医药用蛋白等高效药物。如治疗糖尿病的胰岛素、有希望使侏儒患者重新长高的生长激素和能抗多种疾病感染的干扰素等。克隆山绵羊将会出现人类新的制药厂,生产人类健康需求的应有尽有的药用动物或动物药。据计算,一头转基因山羊一年提供的人凝血因子LX活性蛋白相当于上海全年献血总量所含同类蛋白的总和。人们一旦突破克隆生物技术,就能改变农作物的基因型,产生大量抗病、抗虫、抗盐碱和 遗传性质稳定的新品种,培育动物的优良品种,培育生产奶量高,奶中富含人体所需营养物质的乳牛,以满足人体对营养的需求。 二、克隆技术的负面作用与问题思考 科学技术是一把双刃剑,它对于社会的作用是双重的,克隆技术也不例外。克隆技术的发展伴随着对伦理道德的影响的冲击,其负面作用不容忽视。 自“多莉”羊诞生以来,关于克隆技术的争论日渐激烈。克隆技术的迅速发展,不仅为自然科学领域瞩目,也受到了社会科学领域的科学家的关注。因为,一旦这一技术被应用于人类自身,既克隆人的产生,那将是对人类社会伦理道德的一项严峻挑战。克隆人可能对社会道德、社会伦理产生不可预料的负面影响:第一,它危害了伦理学的不伤害原则。从“多莉”羊的实例可以看出克隆动物的成功率很低,如果在人身上做成功率可能更低,而且很可能会产生出许多畸形的、具有严重缺陷的克隆人,自然会造成对他们的伤害;第二,克隆人违背了伦理学的自主原则。被克隆者作为人所享有的独特性被粗暴的剥夺了;第三,克隆人违背了伦理学的平等原则。克隆人也是人,我们不能将他们仅仅当作为他人的目的服务的手段和工具。 对克隆技术持否定态度的人看到了克隆人可能引发的一系列社会、伦理、法律等问题。从政治角度看,克隆人的出现可能使人类自身的安全受到威胁;从经济角度看,克隆人可能使人的生产劳动发生畸形分化,如让克隆人当奴仆以及作为人的工具;从人类学和社会学角度看,克隆人与供体者的关系将是社会不稳定的潜在因素;从法学角度看,克隆人将给法治社会制造不易化解的困境;从心理学角度看,克隆人有难以逾越的心理障碍;从进化论角度看,克隆人不利于人类的进化;从哲学角度看,克隆人消除人的个性,破坏人类的多样性。在克隆人可能引发的社会性问题中,最大量、最复杂的恐怕还是道德伦理问题。从社会伦理角度看,克隆人对人类发展的干预会影响人种的自然构成和自然发展。克隆人的出现将使两性结合繁殖后代的传统生殖模式被打破、人伦关系模糊以及人口性别比例失调,甚至可能被别有用心的人利用制造人类灾难;从家庭伦理角度看,克隆技术用于人体繁殖,会加剧家庭多元化趋向,还会从根本上改变人的亲系关系,确定人类亲系关系的标准也将发生改变;从性伦理学角度看,它完全改变了人类自然的、基于性爱的生育方式,使人口的生产与性爱分离,破坏人类的情感;从生命伦理学角度看,它破坏了人拥有独特基因的权利,有可能导致人种的退化,还会使正常的生与死的概念发生动摇。
基因克隆(gene cloning)
是70年代发展起来的一项具有革命性的研究技术,可概括为∶分、切、连、转、选。"分"是指分离制备合格的待操作的DNA,包括作为运载体的DNA和欲克隆的目的DNA;"切"是指用序列特异的限制性内切酶切开载体DNA,或者切出目的基因;"连"是指用DNA连接酶将目的DNA同载体DNA连接起来,形成重组的DNA分子;"转"是指通过特殊的方法将重组的DNA分子送入宿主细胞中进行复制和扩增;"选"则是从宿主群体中挑选出携带有重组DNA分子的个体。基因工程技术的两个最基本的特点是分子水平上的操作和细胞水平上的表达,而分子水平上的操作即是体外重组的过程,实际上是利用工具酶对DNA分子进行"外科手术"。
编辑本段基因克隆-基因
基因是细胞内DNA分子上具有遗传效应的特定核苷酸序列的总称,是具有遗传效应的DNA分子片段。基因控制蛋白质合成,是不同物种以及同一物种的不同个体表现出不同的性状的根本原因,即所谓"种瓜得瓜,种豆得豆","一母生九子,九子各不同"。基因通过DNA复制及细胞分裂把遗传信息传递给下一代,并通过控制蛋白质的合成使遗传信息得到表达。
编辑本段基因克隆-基因克隆技术
基因克隆技术包括了一系列技术,它大约建立于70年代初期。美国斯坦福大学的伯格(P.Berg)等人于1972年把一种猿猴病毒的DNA与λ噬菌体DNA用同一种限制性内切酶切割后,再用DNA连接酶把这两种DNA分子连接起来,于是产生了一种新的重组DNA分子,从此产生了基因克隆技术。1973年,科恩(S.Cohen)等人把一段外源DNA片段与质粒DNA连接起来,构成了一个重组质粒,并将该重组质粒转入大肠杆菌,第一次完整地建立起了基因克隆体系。 一般来说,基因克隆技术包括把来自不同生物的基因同有自主复制能力的载体DNA在体外人工连接,构建成新的重组DNA,然后送入受体生物中去表达,从而产生遗传物质和状态的转移和重新组合。因此基因克隆技术又称为分子克隆、基因的无性繁殖、基因操作、重组DNA技术以及基因工程等。 采用重组DNA技术,将不同来源的DNA分子在体外进行特异切割,重新连接,组装成一个新的杂合DNA分子。在此基础上,这个杂合分子能够在一定的宿主细胞中进行扩增,形成大量的子代分子,此过程叫基因克隆。
编辑本段克隆过程概述
DNA的克隆是指在体外将含有目的基因或其它有意义的DNA片段同能够自我复制的载体DNA连接,然后将其转入宿主细胞或受体生物进行表达或进一步研究的分子操作的过程,因此DNA克隆又称分子克隆,基因操作或重组DNA技术。DNA克隆涉及一系列的分子生物学技术,如目的DNA片段的获得、载体的选择、各种工具酶的选用、体外重组、导入宿主细胞技术和重组子筛选技术等等。 一 目的DNA片段的获得 DNA克隆的第一步是获得包含目的基因在内的一群DNA分子,这些DNA分子或来自于目的生物基因组DNA或来自目的细胞mRNA逆转录合成的双链 cDNA分子。由于基因组DNA较大,不利于克隆,因此有必要将其处理成适合克隆的DNA小片段,常用的方法有机械切割和核酸限制性内切酶消化。若是基因序列已知而且比较小就可用人工化学直接合成。如果基因的两端部分序列已知,根据已知序列设计引物,从基因组DNA 或cDNA中通过PCR技术可以获得目的基因。 二 载体的选择 基因工程的载体应具有一些基本的性质:1)在宿主细胞中有独立的复制和表达的能力,这样才能使外源重组的DNA片段得以扩增。2)分子量尽可能小,以利于在宿主细胞中有较多的拷贝,便于结合更大的外源DNA片段。同时在实验操作中也不易被机械剪切而破坏。 3)载体分子中最好具有两个以上的容易检测的遗传标记(如抗药性标记基因),以赋予宿主细胞的不同表型特征(如对抗生素的抗性)。4)载体本身最好具有尽可能多的限制酶单一切点,为避开外源DNA片段中限制酶位点的干扰提供更大的选择范围。若载体上的单一酶切位点是位于检测表型的标记基因之内可造成插入失活效应,则更有利于重组子的筛选。 DNA克隆常用的载体有:质粒载体(plasmid),噬菌体载体(phage),柯斯质粒载体(cosimid),单链DNA噬菌体载体(ssDNA phage ),噬粒载体(phagemid)及酵母人工染色体(YAC)等。从总体上讲,根据载体的使用目的,载体可以分为克隆载体,表达载体,测序载体,穿梭载体等。 三 体外重组 体外重组即体外将目的片断和载体分子连接的过程。大多数核酸限制性内切酶能够切割DNA分子形成有粘性末端,用同一种酶或同尾酶切割适当载体的多克隆位点便可获得相同的粘性末端,粘性末端彼此退火,通过T4 DNA连接酶的作用便可形成重组体,此为粘末端连接。当目的DNA片断为平端,可以直接与带有平端载体相连,此为平末端连接,但连接效率比粘端相连差些。有时为了不同的克隆目的,如将平端DNA分子插入到带有粘末端的表达载体实现表达时,则要将平端DNA分子通过一些修饰,如同聚物加尾,加衔接物或人工接头,PCR法引入酶切位点等,可以获得相应的粘末端,然后进行连接,此为修饰粘末端连接。各种连接策略间的关系总结如下: 四 导入受体细胞 载体DNA分子上具有能被原核宿主细胞识别的复制起始位点,因此可以在原核细胞如大肠杆菌中复制,重组载体中的目的基因随同载体一起被扩增,最终获得大量同一的重组DNA分子。 将外源重组DNA分子导入原核宿主细胞的方法有转化(transformation),转染(transfection),转导(transduction)。重组质粒通过转化技术可以导入到宿主细胞中,同样重组噬菌体DNA可以通过转染技术导入。转染效率不高,因此将重组噬菌体 DNA或柯斯质粒体外包装成有浸染性的噬菌体颗粒,借助这些噬菌体颗粒将重组DNA分子导入到宿主细胞转导技术,这种转导技术的导入效率要比转染的导入效率高。 五 重组子的筛选 从不同的重组DNA分子获得的转化子中鉴定出含有目的基因的转化子即阳性克隆的过程就是筛选。目前发展起来的成熟筛选方法如下: (一)插入失活法 外源DNA片段插入到位于筛选标记基因(抗生素基因或β-半乳糖苷酶基因)的多克隆位点后,会造成标记基因失活,表现出转化子相应的抗生素抗性消失或转化子颜色改变,通过这些可以初步鉴定出转化子是重组子或非重组子。目前常用的是β-半乳糖苷酶显色法即蓝白筛选法。 (二)PCR筛选和限制酶酶切法 提取转化子中的重组DNA分子作模板,根据目的基因已知的两端序列设计特异引物,通过PCR技术筛选阳性克隆。PCR法筛选出的阳性克隆,用限制性内切酶酶切法进一步鉴定插入片段的大小。 (三)核酸分子杂交法 制备目的基因特异的核酸探针,通过核酸分子杂交法从众多的转化子中筛选目的克隆。目的基因特异的核酸探针可以是已获得的部分目的基因片段,或目的基因表达蛋白的部分序列反推得到的一群寡聚核苷酸,或其它物种的同源基因。 (四)免疫学筛选法 获得目的基因表达的蛋白抗体,就可以采用免疫学筛选法获得目的基因克隆。这些抗体即可是从生物本身纯化出目的基因表达蛋白抗体,也可从目的基因部分ORF片段克隆在表达载体中获得表达蛋白的抗体。 上述方法获得的阳性克隆最后要进行测序分析,以最终确认目的基因。
1、提取DNA基因组或则mRNA(可用试剂盒完成,一般问题都能解决)。
2、设计引物,PCR扩增目的片段。
3、选择合适质粒载体,进行酶连接,构建亚克隆子(有商品化质粒可供选择)。
4、用构建好的质粒转化感受态细胞(方法生物技术实验书中有详细介绍)。
5、筛选阳性克隆。