您当前的位置:首页 > 发表论文>论文发表

分子生物基因工程论文

2023-12-06 09:37 来源:学术参考网 作者:未知

分子生物基因工程论文

  基因工程是在分子生物学和分子遗传学综合发展基础上于 20 世纪 70 年代诞生的一门崭新的生物技术科学。下面是由我整理的基因工程学术论文,谢谢你的阅读。
  基因工程学术论文篇一
  摘 要:基因工程是在分子生物学和分子遗传学综合发展基础上于 20 世纪 70 年代诞生的一门崭新的生物技术科学。基因工程是一项很精密的尖端生物技术。可以把某一生物的基因转殖送入另一种细胞中,甚至可把细菌、动植物的基因互换。当某一基因进入另一种细胞,就会改变这个细胞的某种功能。这项工程创造出原本自然界不存在的重组基因。它不仅为医药界带来新希望,在农业上提高产量改良作物,并且对环境污染、能源危机提供解决之道,甚至可用在犯罪案件的侦查。基因工程的发展现状和前景是怎么样呢,而又有哪些利弊?

  关键词:基因工程;发展现状;发展前景;基因工程利弊

  一、基因工程

  (一)基因工程的概念及发展

  1.概念

  基因工程又称基因拼接技术和DNA重组技术,是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性、获得新品种、生产新产品。

  2.发展

  生物学家于20 世纪50 年代发现了DNA 的双螺旋结构,从微观层面更进一步认识了人类及其他生物遗传的物质载体,这是人类在生物研究方面的一次重大突破。60 年代以后,科学家开始破译生物遗传基因的遗传密码,简单地说,就是将控制生物遗传特征的每一种基因的核苷酸排列顺序弄清楚。在搞清楚某些单个基因的核苷酸排列顺序基础上,进而进行有计划、大规模地对人类、水稻等重要生物体的全部基因图谱进行测序和诠释。

  (二)基因工程的发展现状及前景

  1.发展现状

  (1)基因工程应用于农业方面。运用基因工程方法,把负责特定的基因转入农作物中去,构建转基因植物,有抗病虫害,抗逆,保鲜,高产,高质的优点。

  下面列举几个代表性方法。

  ①增加农作物产品营养价值如:增加种子、块茎蛋白质含量,改变植物蛋白必需氨基酸比例等。

  ②提高农作物抗逆性能如:抗病虫害、抗旱、抗涝、抗除草剂等性能。

  ③生物固氮的基因工程。若能把禾谷等非豆科植物转变为能同根瘤菌共生,或具固氮能力,将代替无数个氮肥厂。④增加植物次生代谢产物产率。植物次生代谢产物构成全世界药物原料的 25% ,如治疗疟疾的奎宁、治疗白血病的长春新碱、治疗高血压的东莨菪碱、作为麻醉剂的吗啡等。

  ⑤运用转基因动物技术,可培育畜牧业新品种。

  二、基因工程应用于医药方面

  目前,以基因工程药物为主导的基因工程应用产业已成为全球发展最快产业之一,前景广阔。基因工程药物主要包括细胞因子、抗体、疫苗、激素和寡核甘酸药物等。对预防人类肿瘤、心血管疾病、遗传病、糖尿病、包括艾滋病在内的各种传染病、类风湿疾病等有重要作用。我们最为熟悉的干扰素(IFN)就是一类利用基因工程技术研制成的多功能细胞因子,在临床上已用于治疗白血病、乙肝、丙肝、多发性硬化症和类风湿关节炎等多种疾病。 并且应用基因工程研制的艾滋病疫苗已完成中试,并进入临床验证阶段;专门用于治疗肿瘤的“肿瘤基因导弹”也将在不久完成研制,它可有目的地寻找并杀死肿瘤,将使癌症的治愈成为可能。

  三、基因工程应用于环保方面

  工业发展以及其它人为因素造成的环境污染已远远超出了自然界微生物的净化能力,基因工程技术可提高微生物净化环境的能力。美国利用DNA 重组技术把降解芳烃、萜烃、多环芳烃、脂肪烃的4 种菌体基因链接,转移到某一菌体中构建出可同时降解4 种有机物的“超级细菌”,用之清除石油污染,在数小时内可将水上浮油中的2/3 烃类降解完,而天然菌株需 1 年之久。90 年代后期问世的DNA 改组技术可以创新基因,并赋予表达产物以新的功能,创造出全新的微生物,如可将降解某一污染物的不同细菌的基因通过PCR 技术全部克隆出来,再利用基因重组技术在体外加工重组,最后导入合适的载体,就有可能产生一种或几种具有非凡降解能力的超级菌株,从而大大地提高降解效率。

  (一)发展前景

  基因工程应用重组DNA 技术培育具有改良性状的粮食作物的工作已初见成效。重组DNA 技术的一个显著特点是,它注往可以使一个生物获得与之固有性状完全无关的新功能,从而引起生物技术学发生革命性的变革,使人们可以在大量扩增的细胞中生产哺乳动物的蛋白质,其意义无疑是相当重大的。将控制这些药物合成的目的基因克隆出来,转移到大肠杆菌或其它生物体内进行有效的表达,于是就可以方便地提取到大量的有用药物。目前在这个领域中已经取得了许多成功的事例,其中最突出的要数重组胰岛素的生产。 重组DNA 技术还有力地促进了医学科学研究的发展。它的影响所及有疾病的临床诊断、遗传病的基因治疗、新型疫苗的研制以及癌症和艾滋病的研究等诸多科学,并且均已取得了相当的成就。

  (二)基因工程的利与弊

  1.基因工程的利

  遗传疾病乃是由于父或母带有错误的基因。基因筛检法可以快速诊断基因密码的错误;基因治疗法则是用基因工程技术来治疗这类疾病。产前基因筛检可以诊断胎儿是否带有遗传疾病,这种筛检法甚至可以诊断试管内受精的胚胎,早至只有两天大,尚在八个细胞阶段的试管胚胎。做法是将其中之一个细胞取出,抽取DNA,侦测其基因是否正常,再决定是否把此胚胎植入母亲的子宫发育。胎儿性别同时也可测知。 基因筛检并不改变人的遗传组成,但基因治疗则会。目前全世界正重视发展永续性农业,希望农业除了具有经济效益,还要生生不息,不破坏生态环境。基因工程正可帮忙解决这类问题。基因工程可以改良农粮作物的营养成分或增强抗病抗虫特性。可以增加畜禽类的生长速率、牛羊的泌乳量、改良肉质及脂肪含量等。

  2.基因工程的弊

  广泛的基因筛检将会引起一连串的社会问题。虽然基因筛检可帮助医生更早期更有效地治疗病人,但可能妨碍他的未来生活就业。基因工程会产生“杀虫剂”的作物,也可能对大环境有害,它们或许会杀死不可预期的益虫,影响昆虫生态的平衡。转基因食品不同于相同生物来源之传统食品,遗传性状的改变,将可能影响细胞内之蛋白质组成,进而造成成份浓度变化或新的代谢物生成,其结果可能导致有毒物质产生或引起人的过敏症状,甚至有人怀疑基因会在人体内发生转移,造成难以想象的后果。转基因食品潜在危害包括:食物内所产生的新毒素和过敏原;不自然食物所引起其它损害健康的影响;应用在农作物上的化学药品增加水和食物的污染;抗除草剂的杂草会产生;疾病的散播跨越物种障碍;农作物的生物多样化的损失;生态平衡的干扰。

  四、结束语

  随着社会科技的进步,基因工程的发展将成为必然。尽管它会给我们带来一些危害但是仍然为我们带来了很多好处。不仅为我们提供了新的能源而且促进了各国的经济的发展,所以在我们发展基因工程的同时应该尽力避免一些危害,而让有利的方面尽可能应用。

  参考文献:

  [1]陈宏.2004.基因工程原理与应用.北京:中国农业 出版社

  [2]胡银岗.2006.植物基因工程.杨凌.西北农林科技大学出版社

  [3]刘祥林.聂刘旺.2005.基因工程.北京:科学出版社

  [4]陆德如.陈永青.2002.基因工程.北京:化学工业出版社

  [5]王关林.方宏筠.2002.植物基因工程.北京:科学出版社
  基因工程学术论文篇二
  基因工程蛋白药物发展概况

  【摘要】近些年,随着生物技术的发展,基因工程制药产业突飞猛进,本文就一些相关的重要蛋白药物的市场概况和研究进展作一概述。

  【关键词】基因工程 蛋白药物 发展概况

  中图分类号:R97 文献标识码:B 文章编号:1005-0515(2011)6-255-03

  基因工程制药是随着生物技术革命而发展起来的。1980 年,美国通过Bayh-Dole 法案,授予科学家 Herbert Boyer 和 Stanley Cohen 基因克隆专利,这是现代生物制药产业发展的里程碑。1982 年,第一个生物医药产品在美国上市销售,标志着生物制药业从此走入市场[1]。

  生物制药业有不同于传统制药业的特点:首先,生物制药具有“靶向治疗”作用;其次,生物制药有利于突破传统医药的专利保护到期等困境;再次,生物制药具有高技术、高投入、高风险、高收益特性;此外,生物制药具有较长的产业链[1]。生物制药业这一系列的特点决定了其在21世纪国民经济中的重要地位,历版中国药典收录的生物药物品种也是逐渐增多[2](图一)。

  当前生物制药业的发展趋势在于不断地改进、完善和创新生物技术,在基因工程药物研发投入逐年增加的基础上,我国生物制药的产值及利润增长迅猛, 2006-2008年三年就实现了利润翻番[2](表一)。随着研究的深入,当前生物药的热点逐渐聚焦到通过新技术大量生产一些对医疗有重要意义且成分确定的蛋白上。研究表明,在我国的基因工程药物中,蛋白质类药物超过50%[3]。而这些源自基因工程菌表达的蛋白,如疫苗、激素、诊断工具、细胞因子等在生物医学领域的应用主要包括4个方面:即疾病或感染的预防;临床疾病的治疗;抗体存在的诊断和新疗法的发现。利用基因工程技术(重组DNA技术)生产蛋白主要有三方面的理由:1.需求性,天然蛋白的供应受限制,随需求的不断增加,数量上难以满足,使它得不到广泛应用;2.安全性,一些天然蛋白质的原料可能受到致病性病毒的污染,且难以消除或钝化;3.特异性,来自天然原料的蛋白往往残留污染,会引起诊断试验所不应有的背景[4]。

  以下将介绍一些基因工程产物的市场概况和研究发展。

  1 促红细胞生成素

  是细胞因子的一种,在骨髓造血微环境下促进红细胞的生成。1985年科学家应用基因重组技术,在实验室获得重组人EPO(rhEPO),1989年安进(Amgen)公司的第一个基因重组药物Epogen获得FDA的批准,适应症为慢性肾功能衰竭导致的贫血、恶性肿瘤或化疗导致的贫血、失血后贫血等[5,6]。

  2001年,EPO的全球销售额达21.1亿美元,2002年达26.8亿美元,2003年全世界EPO的年销售额超过50亿美元。创下生物工程药品单个品种之最,是当今最成功的基因工程药物。用过EPO的大多数病人感觉良好,在治疗期间无明显毒副作用或功能失调。重组体CHO细胞可以放大到生产规模以满足对EPO的需求。

  2 胰岛素

  自1921 年胰岛素被Banting 等人成功提取并应用于临床以来,已经挽救了无数糖尿病患者的生命。仅2000年,胰岛素在全球范围内就大约延长了5100万名I型糖尿病病人的寿命。20世纪80年代初,人胰岛素又成为了商业现实;80 年代末利用基因重组技术成功生物合成人胰岛素,大肠杆菌和酵母都被用作胰岛素表达的寄主细胞[7]。

  国内外可工业化生产人胰岛素的企业只有美国的礼来公司、丹麦的诺和诺德公司、法国的安万特公司和中国北京甘李生物技术有限公司等,胰岛素类似物也仅在上述4个国家生产,且每个公司只能生产艮效或速效类似物巾的个品种,主要原因是要达到生物合成人胰岛素产业化的技术难度特别大,若无高精尖的高密度发酵技术、纯化技术和工业化生产经验是无法实现的[8]。

  3 疫苗

  在人类历史上,曾经出现过多种造成巨大生命和财产所示的疫症,而在预防和消除这些疫症的过程中疫苗发挥了十分关键的作用。所以疫苗被评为人类历史上最重大的发现之一。

  疫苗可分为传统疫苗(t raditional vaccine) 和新型疫苗(new generation vaccine)或高技术疫苗( high2tech vaccine)两类,传统疫苗主要包括减毒活疫苗、灭活疫苗和亚单位疫苗,新型疫苗主要是基因工程疫苗。疫苗的作用也从单纯的预防传染病发展到预防或治疗疾病(包括传染病) 以及防、治兼具[2]。

  随着科技的发展,对付艾滋病、癌症、肝炎等多种严重威胁人类生命安全的疫苗开发取得巨大进展,这其中也孕育着巨大的商业机会[9], 2007年全球疫苗销售额就已达到163亿美元,据美林证券公布的一份研究报告显示,全球疫苗市场正以超过13%的符合增长率增长。而我国是疫苗的新兴市场,国内疫苗市场发展潜力巨大,年增长率超过15%。

  在以细胞培养为基础的疫苗、抗体药物生产中,Vero细胞、BHK21细胞、CHO细胞和Marc145细胞是最常用的细胞,这些细胞的反应器大规模培养技术支撑着行业的技术水平[4]。建立细胞培养和蛋白表达技术平台,进一步完善生物反应器背景下的疫苗生产支撑技术是当前国际疫苗产业研究的重点。

  4 抗体

  从功能上划分,抗体可分为治疗性抗体和诊断性抗体;从结构特点上划分,抗体可分为单克隆抗体和多克隆抗体。抗体可有效地治疗各种疾病,比如自身免疫性疾病、心血管病、传染病、癌症和炎症等[10,11]。抗体药物的一大特点在于其较低甚至几乎可以忽略的毒性。另外一个优势是,抗体本身也许既可被当作一种治疗武器,也可被用作传递药物的一种工具。除了全人源化抗体以外,与小分子药物、毒素或放射性有效载荷有关的结合性抗体也已经在理论上显示出了强大的潜力,尤其是在癌症治疗方面[12]。

  治疗性抗体是世界销售额最高的一类生物技术药物,2008 年治疗性抗体销售额超过了300 亿美元,占了整个生物制药市场40%。在美国批准的99 种生物技术药物中,抗体类药物就占了30 种;在633 种处于临床研究的生物技术药物中, 有192 种为抗体药物,而在抗癌及自身免疫性疾病的治疗研究中,治疗性抗体占了一半[2]。截止2007年,美国FDA批准上市的抗体药物见表二[13]。

  参考文献

  [1] 章江益, 孙瑜, 王康力. 美国生物制药产业发展及启示[J]. 江苏科技信息. 2011, 1(5): 11-14.

  [2] 王友同, 吴梧桐, 吴文俊. 我国生物制药产业的过去、现在和将来. 药物生物技术[J]. 2010, 17(1): 1-14.

  [3] 吴梧桐, 王友同, 吴文俊. 21世纪生物工程药物的发展与展望[J]. 药物生物技术. 2000, 7(2): 65-70.

  [4] 储炬, 李友荣. 现代工业发酵调控学(第二版)[M]. 化学工业出版社.

  [5] Koury MJ, Bondurant MC. Maintenance by erythropoietin of viability and maturation of murine erythroid precursor cell[J]. Cell Physiol, 1988, 137(1):65.

  [6] Cuzzole M, Mercurial F, Brugnara C. Use of recombinant human Erthro-poietin outside the setting of uremia[J]. Blood, 1997, 89(12): 4248-4267.

  [7] 李萍, 刘国良. 最新胰岛素制剂的研究进展概述[J]. 中国实用内科杂志. 2003, 23(1): 19-20.

  [8] 张石革, 梁建华. 胰岛素及胰岛素类似物的进展与应用[J]. 药学专论. 2005, 14(11): 21-23.

  [9] 徐卫良. 生物制品供应链优化与供货提前期缩短问题研究――基于葛兰素史克(中国)疫苗部的实例分析(硕士学位论文). 上海交通大学, 2005.

  [10] Presta LG. Molecular engineering and design of therapentic antilodies[J]. Curr Opin Immunol, 2008, 20(4): 460.

  [11] Liu XY, Pop LM, Vitetta ES. Engineering therapeutic monoclonal antibodies[J]. Immunol Rev, 2008, 222: 9.

  [12] 陈志南. 基于抗体的中国生物制药产业化前景. 中国医药生物技术[J]. 2007, 1(1): 2.

  [13] 于建荣, 陈大明, 江洪波. 抗体药物研发现状与发展态势[J]. 生物产业技术. 2009, 1(3): 49.

  看了"基因工程学术论文"的人还看:

1. 高中生物选修三基因工程知识点总结

2. 高二生物基因工程知识点梳理

3. 浅谈基因工程在农业生产中的应用

4. 植物叶绿体基因工程发展探析

5. 关于蔬菜种植的学术论文

急需一篇关于分子生物学的论文,不要所有百度,新浪 ,soso问上的现成的论文,悬赏 100分!!!

  给楼主论文:

  分子细胞基因组的研究

  随着结构分析技术的发展,现在已有几千个蛋白质的化学结构和几百个蛋白质的立体结构得到了阐明。70年代末以来,采用测定互补DNA顺序反推蛋白质化学结构的方法,不仅提高了分析效率,而且使一些氨基酸序列分析条件不易得到满足的蛋白质化学结构分析得以实现。
  发现和鉴定具有新功能的蛋白质,仍是蛋白质研究的内容。例如与基因调控和高级神经活动有关的蛋白质的研究现在很受重视。
  蛋白质-核酸体系 生物体的遗传特征主要由核酸决定。绝大多数生物的基因都由 DNA构成。简单的病毒,如λ噬菌体的基因组是由 46000个核苷酸按一定顺序组成的一条双股DNA(由于是双股DNA,通常以碱基对计算其长度)。细菌,如大肠杆菌的基因组,含4×106碱基对。人体细胞染色体上所含DNA为3×109碱基对。
  遗传信息要在子代的生命活动中表现出来,需要通过复制、转录和转译。复制是以亲代 DNA为模板合成子代 DNA分子。转录是根据DNA的核苷酸序列决定一类RNA分子中的核苷酸序列;后者又进一步决定蛋白质分子中氨基酸的序列,就是转译。因为这一类RNA起着信息传递作用,故称信使核糖核酸(mRNA)。由于构成RNA的核苷酸是4种,而蛋白质中却有20种氨基酸,它们的对应关系是由mRNA分子中以一定顺序相连的 3个核苷酸来决定一种氨基酸,这就是三联体遗传密码。
  基因在表达其性状的过程中贯串着核酸与核酸、核酸与蛋白质的相互作用。DNA复制时,双股螺旋在解旋酶的作用下被拆开,然后DNA聚合酶以亲代DNA链为模板,复制出子代 DNA链。转录是在 RNA聚合酶的催化下完成的。转译的场所核糖核蛋白体是核酸和蛋白质的复合体,根据mRNA的编码,在酶的催化下,把氨基酸连接成完整的肽链。基因表达的调节控制也是通过生物大分子的相互作用而实现的。如大肠杆菌乳糖操纵子上的操纵基因通过与阻遏蛋白的相互作用控制基因的开关。真核细胞染色质所含的非组蛋白在转录的调控中具有特殊作用。正常情况下,真核细胞中仅2~15%基因被表达。这种选择性的转录与转译是细胞分化的基础。
  蛋白质-脂质体系 生物体内普遍存在的膜结构,统称为生物膜。它包括细胞外周膜和细胞内具有各种特定功能的细胞器膜。从化学组成看,生物膜是由脂质和蛋白质通过非共价键构成的体系。很多膜还含少量糖类,以糖蛋白或糖脂形式存在。
  高等植物的性状主要由核基因控制,其遗传遵循孟德尔规律。1900年Coorence和Baut等人就已发现影响质体表型的一些突变不符合孟德尔遗传规律;1962年里斯(Ris)和Plont证明植物叶绿体中存在遗传物质DNA。现已证明,植物细胞质中的叶绿体和线粒体都含有自己的DNA及整套的转录和翻译系统,能够合成蛋白质。高等植物的叶绿体和线粒体基因组,多数在有性杂交过程中表现为母性遗传。其机制有两种解释:一是认为雄配子不含有细胞质,因而没有胞质基因;另一种观点是雄配子含有少量的细胞质,其细胞器在受精前即已解体,失去功能。胞质基因组的母性遗传,大大限制了胞质基因的遗传研究,利用有性杂交方法难以知晓当胞质基因处于杂合状态时的遗传和生理效应及其对表型的影响。近年来发展起来的体细胞杂交技术为胞质基因的研究开辟了一条新途径。本文拟对植物体细胞杂交后代胞质基因重组的多样性,创制胞质杂种的可能途径及胞质基因组的传递等问题加以说明。
  1 植物体细胞杂交后代胞质基因组重组的多样性
  体细胞杂交时,核基因组、线粒体基因组和叶绿体基因组三者均既可以单亲传递又可以双亲传递,因而可以产生许多有性杂交难以产生的核-质基因组的新组合类型。Kumar等人根据已有的实验结果结合理论推导提出,植物体细胞杂交一代理论上可以产生48种类型,而相应的有性杂交一代只能产生两种类型。48种类型可分为亲型、核杂种和胞质杂种3类。胞质杂种即是具有一个亲本的细胞核和双亲细胞质的植株或愈伤组织,它是研究胞质基因组的好材料。
  2 创制胞质杂种的方法
  2.1 “供体-受体”原生质体融合技术 这是目前最为可行的方法,由Zelcer等(1987)提出。其原理基于生理代谢互补,利用高于致死剂量的电离辐射处理供体原生质体使其核解或完全失活,细胞质完整无损;再用碘乙酸或碘乙酚胺处理受体原生质体以使其受到暂时抑制而不分裂,这样双亲原生质体融合后,只有融合体能够实现代谢上的补偿,进行持续分裂,形成愈伤组织或再生植株,这些融合体就是各种各样的胞质杂种。此技术的优点是双亲不需任何选择标记,适用范围广,可行性强,缺点是适宜的辐射剂量难以掌握。
  2.2 “胞质体-原生质体”融合法 所谓胞质体是指去核后的原生质体。该法由Maliga提出。优点是避免了电离辐射可能产生的不利影响,缺点是制备胞质体尚存在一些技术性的困难。最近Lesney等人提出了一种能够从悬浮系原生质体制备大量胞质体的方法。
  2.3 其它的可能途径
  (1)根据双亲原生质体形态上的差异或通过荧光染料标记来机械分离融合体,然后进行微培养。(2)利用分别由核基因组和质基因组编码的抗药性状,通过双重抗性选择获得胞质杂种。(3)原生质体直接摄取外缘细胞器。(4)通过显微注射或电激法实现细胞器转移。
  3 胞质杂种中双亲胞质基因的传递遗传学
  3.1 叶绿体基因组 胞质杂种中,叶绿体基因组的传递分为单亲传递和双亲传递两种。单亲传递是指胞质杂种愈伤组织及由之再生的植株只含有亲本之一的叶绿体基因组。这种分离机制目前尚不清楚。关于叶绿体基因组的分离是否随机的问题,由于研究者们采用的试验材料不同得出两种结论:一种是叶绿体基因组的随机分离,这在品种间、种间及属间原生质体融合中都被观察到;另一种是叶绿体基因组的非随机分离(即亲本之一的叶绿体基因组优先保留),如弗利克(Flick)和埃文(Evens,1982)在烟草的研究中表明,所有的N.nesophila和N.tabacum体细胞杂种都只具有N.nesophila叶绿体基因组,类似的例子很多。双亲传递是指胞质杂种中,同时含有双亲的叶绿体基因组,其在体细胞杂种以后的有性繁殖过程中能够保持稳定,既然双亲叶绿体能够共存,理论上二者就有可能发生重组。事实上,叶绿体基因组重组现象已被观察到,但频率很低。
  3.2 线粒体基因组 胞质杂种中,线粒体基因组的传递方式是双亲传递,且发生活跃的重组,产生丰富的新类型。然而在分析线粒体基因组重组类型时不可忽视由于离体培养而诱发的线粒体基因组分子内重组(突变)的可能性,因为离体培养过程中不仅使核基因组产生大量变异,而且对于某些植物,也可诱发线粒体基因组发生变异。
  4 植物胞质基因组控制的重要性状
  目前已基本阐明的由叶绿体基因组编码的性状主要是一些抗药性状。如:链霉素抗性、林肯霉素抗性等。在与线粒体基因组有关的性状中,研究最多的是胞质型雄性不育性状。许多学者在不同植物上研究发现,雄性不育系与其同型保持系之间在线粒体DNA内切图谱或其编码的蛋白上存在明显差异。如在玉米上已发现T型雄性不育植株的线粒体基因组发生了多至7次重组,且主要发生于26s rRAN基因附近,产生一个嵌合基因,因此导致转录时阅读框架发生了改变,如果这个嵌合基因发生了缺失或小段插入,则阅读框架恢复正常,育性也随之恢复。
  总之,植物体细胞杂交是胞质基因组及其所控制性状研究的有效途径,关于胞质性状的研究对于某些植物已从分子水平上深入到了与雄性不育相关的特异线粒体DNA片段及相应的特殊蛋白,但仍有许多问题有待深入研究。这些问题的阐明将会使得从分子水平上改良雄性不育性状成为可能。

关于基因工程的发展、现状、应用的论文!

基因工程技术的现状和前景发展

【摘要】从20世纪70年代初发展起来的基因工程技术,经过30多年来的进步与发展,已成为生物技术的核心内容。许多科学家预言,生物学将成为21世纪最重要的学科,基因工程及相关领域的产业将成为21世纪的主导产业之一。基因工程研究和应用范围涉及农业、工业、医药、能源、环保等许多领域。
【关键词】基因工程技术;前景;现状
一、基因工程应用于植物方面
农业领域是目前转基因技术应用最为广泛的领域之一。农作物生物技术的目的是提高作物产量,改善品质,增强作物抗逆性、抗病虫害的能力。基因工程在这些领域已取得了令人瞩目的成就。
由于植物病毒分子生物学的发展,植物抗病基因工程也也已全面展开。自从发现烟草花叶病毒(TMV)的外壳蛋白基因导入烟草中,在转基因植株上明显延迟发病时间或减轻病害的症状,通过导入植物病毒外壳蛋白来提高植物抗病毒的能力,已用多种植物病毒进行了试验。在利用基因工程手段增强植物对细菌和真菌病的抗性方面,也已取得很大进展。植物对逆境的抗性一直是植物生物学家关心的问题。由于植物生理学家、遗传学家和分子生物学家协同作战,耐涝、耐盐碱、耐旱和耐冷的转基因作物新品种(系)也已获得成功。植物的抗寒性对其生长发育尤为重要。科学家发现极地的鱼体内有一些特殊蛋白可以抑制冰晶的增长,从而免受低温的冻害并正常地生活在寒冷的极地中。将这种抗冻蛋白基因从鱼基因组中分离出来,导入植物体可获得转基因植物,目前这种基因已被转入番茄和黄瓜中。
随着生活水平的提高,人们越来越关注口味、口感、营养成分、欣赏价值等品质性状。实践证明,利用基因工程可以有效地改善植物的品质,而且越来越多的基因工程植物进入了商品化生产领域,近几年利用基因工程改良作物品质也取得了不少进展,如美国国际植物研究所的科学家们从大豆中获取蛋白质合成基因,成功地导入到马铃薯中,培育出高蛋白马铃薯品种,其蛋白质含量接近大豆,大大提高了营养价值,得到了农场主及消费者的普遍欢迎。在花色、花香、花姿等性状的改良上也作了大量的研究。
二、基因工程应用于医药方面
目前,以基因工程药物为主导的基因工程应用产业已成为全球发展最快的产业之一,发展前景非常广阔。基因工程药物主要包括细胞因子、抗体、疫苗、激素和寡核甘酸药物等。它们对预防人类的肿瘤、心血管疾病、遗传病、糖尿病、包括艾滋病在内的各种传染病、类风湿疾病等有重要作用。在很多领域特别是疑难病症上,基因工程工程药物起到了传统化学药物难以达到的作用。我们最为熟悉的干扰素(IFN)就是一类利用基因工程技术研制成的多功能细胞因子,在临床上已用于治疗白血病、乙肝、丙肝、多发性硬化症和类风湿关节炎等多种疾病。
目前,应用基因工程研制的艾滋病疫苗已完成中试,并进入临床验证阶段;专门用于治疗肿瘤的“肿瘤基因导弹”也将在不久完成研制,它可有目的地寻找并杀死肿瘤,将使癌症的治愈成为可能。由中国、美国、德国三国科学家及中外六家研究机构参与研制的专门用于治疗乙肝、慢迁肝、慢活肝、丙肝、肝硬化的体细胞基因生物注射剂,最终解决了从剪切、分离到吞食肝细胞内肝炎病毒,修复、促进肝细胞再生的全过程。经4年临床试验已在全国面向肝炎患者。此项基因学研究成果在国际治肝领域中,是继干扰素等药物之后的一项具有革命性转变的重大医学成果。
三、基因工程应用于环保方面
工业发展以及其它人为因素造成的环境污染已远远超出了自然界微生物的净化能力,已成为人们十分关注的问题。基因工程技术可提高微生物净化环境的能力。美国利用DNA重组技术把降解芳烃、萜烃、多环芳烃、脂肪烃的4种菌体基因链接,转移到某一菌体中构建出可同时降解4种有机物的“超级细菌”,用之清除石油污染,在数小时内可将水上浮油中的2/3烃类降解完,而天然菌株需1年之久。也有人把Bt蛋白基因、球形芽孢杆菌、且表达成功。它能钉死蚊虫与害虫,而对人畜无害,不污染环境。现已开发出的基因工程菌有净化农药的DDT的细菌、降解水中的染料、环境中有机氯苯类和氯酚类、多氯联苯的工程菌、降解土壤中的TNT炸药的工程菌及用于吸附无机有毒化合物(铅、汞、镉等)的基因工程菌及植物等。90年代后期问世的DNA改组技术可以创新基因,并赋予表达产物以新的功能,创造出全新的微生物,如可将降解某一污染物的不同细菌的基因通过PCR技术全部克隆出来,再利用基因重组技术在体外加工重组,最后导入合适的载体,就有可能产生一种或几种具有非凡降解能力的超级菌株,从而大大地提高降解效率。
四、前景展望
由于基因工程运用DNA分子重组技术,能够按照人们预先的设计创造出许多新的遗传结合体,具有新奇遗传性状的新型产物,增强了人们改造动植物的主观能动性、预见性。而且在人类疾病的诊断、治疗等方面具有革命性的推动作用,对人口素质、环境保护等作出具大贡献。所以,各国政府及一些大公司都十分重视基因工程技术的研究与开发应用,抢夺这一高科技制高点。其应用前景十分广阔。我国基因工程技术尚落后于发达国家,更应当加速发展,切不可坐失良机。
但是,任何科学技术都是一把“双刃剑”,在给人类带来利益的同时,也会给人类带来一定的灾难。比如基因药物,它不仅能根治遗传性疾病、恶性肿瘤、心脑血管疾病等,甚至人的智力、体魄、性格、外表等亦可随意加以改造;还有,克隆技术如果不加限制,任其自由发展,最终有可能导致人类的毁灭。还有,尽管目前的转基因动植物还未发现对人类有什么危害,但不等于说转基因动植物就是十分安全的,毕竟这些东西还是新生事物,需要实践慢慢地检验。转基因生物和常规繁殖生长的品种一样,是在原有品种的基础上对其部分性状进行修饰或增加新性状,或消除原来的不利性状,但常规育种是通过自然选择,而且是近缘杂交,适者生存下来,不适者被淘汰掉。而转基因生物远远超出了近缘的范围,人们对可能出现的新组合、新性状会不会影响人类健康和环境,还缺乏知识和经验,按目前的科学水平还不能完全精确地预测。所以,我们要在抓住机遇,大力发展基因工程技术的同时,需要严格管理,充分重视转基因生物的安全性。
【参考文献】
[1]楼士林,杨盛昌,龙敏南,等.基因工程[M].北京:科学出版社,2002.
[2]李庆军,董艳桐,施冰.植物抗虫基因的研究进展[J].林业科技,2002,27(2):22 26.

这还有一篇

分子生物学技术在动物营养学上的应用及其发展前景的论文

扫描版(部分文字乱码)
分子生物学技术在动物营养学上
的应用及其发展前景(上)
摘要:本文从营养与基因表达调控、基因工
程、转基因等三个方面综述了分子生物学技术在
动物营养学中应用的最新进展,并对动物营养学
的发展前景作了展望。
自从发现双螺旋结构以来,分子生物学取得了飞跃性的发展,
形成了以基因工程为主要内容的的现代分子生物
学技术@在生物学、医学等研究中得到广泛的应用,
几乎渗透到生命科学的每一个领域,成为研究和
揭示生命现象本质和规律的一种重要工具。当前,
世界各国都将分子生物学纳入本国科技发展的重
点,可以预见,"21世纪将是生命科学的世纪,全世
界所共同面临的许多重大问题,诸如饥饿与营养、
疾病、能源与环境污染等问题的根本解决,在很大
程度上将依赖于分子生物学技术的发展和应用。
及时全面的了解和掌握分子生物学理论和技术的
发展动态及研究热点,将具有重要的意义。
就目前来看,我国动物营养学方面的研究工
作基本尚处在机体水平:即在机体水平上研究各
种营养素对机体的作用、在机体内的代谢与平衡、
影响机体吸收营养素的因素等问题。分子水平方
面的研究还刚刚起步,尚处于初级阶段。动物机体
的生理病理变化,如生长发育、新陈代谢、遗传变
异、免疫与疾病等,就本质而言,都是动物基因的
表达调控发生了改变的结果,许多生理现象的彻
底阐明,最终需要在基因水平上进行解释,所以动
物营养学的各方面研究应与分子生物学技术,尤
其是基因工程技术相结合,从分子水平上来解释
各种营养素对机体的作用机制、动物机体的生理
病理变化等问题,这也是动物营养学今后发展的
必然趋势之一。
*营养与基因的表达调控
随着分子生物学技术不断发展,越来越多与
代谢有关的动物基因被克隆和鉴定,人们对营养
与基因调控的关系越来越感兴趣。营养与动物基
因表达调控的研究已成为当今动物营养学研究的
一个热点领域;如何通过改变日粮组成成分来调
节体内相关基因的表达,从而使动物体处于最佳
生长状况已成为现代动物营养学研究的重点;通
过营养对动物基因表达的调控途径及其机制的研
究,将为人们如何更加有效地对某些特定有益基
因的表达提供理论依据。已有大量证据表明,主要
的营养物质如糖、脂肪酸、氨基酸以及一些微量元
素(如锌)对动物体内许多基因的表达都有影响。
!"!营养对磷酸烯醇式丙酮酸激酶
基因表达的调控
PEPCK是动物肝和肾中糖元异生作用的关
键酶,目前较为研究清楚的是日粮中糖含量对
PEPCK基因表达的调控。
糖类对PEPCK的调控主要是通过对其启动
子的作用,当动物进食含有大量糖类的饲料时,
PEPCK的启动了就会关闭,从而导致ABA8C水平
大幅度下降,而当禁食或饲喂高蛋白质低糖的饲
料时,PEPCK的启动子就会处于打开状态,从而
PEPCK水平得到大幅度提高,其具体调控机制大
致如下:?556D4(*0)#)等通过对大鼠ABA8C基因
的分析表明,ABA8C基因启动子位于1 E+.至F
#,之间,其中包含了大多数激素调控基因转录所
必需的组织特异性调控元件。日粮中糖的含量水
平会影响胰岛素、;?GA等激素的相对水平,而胰
岛素与;?GA等激素相对水平又会影响到特异性!"#!
转录因子的活性,特异性转录因子与$%$&’启动
子上的相应调控元件结合与否,又会影响$%$&’
基因的表达(,)。现有大量证据表明,$%$&’基因
一系列复杂的调控元件中,有包括胰岛素、甲状腺
激素、糖皮质激素、视黄酸对$%$&’基因转录的
正调控元件和胰岛素对$%$&’基因转录的负控
调元件,在上述调控元件中,*+,$调控元件-&.
%/和$(-0/调控元件是最重要的两种,*+,$对
$%$&’基因的诱导和胰岛素对$%$&’基因的抑
制作用就是通过这两个调控元件来进行调控的。
因此,当进食含大量糖类的饲料时,由于*+,$水
平的急剧下降以及胰岛素水平的急剧上升,从而
抑制$%$&’基因的表达,导致肝中$%$&’水平
大幅度下降,当禁食或饲喂高蛋白低糖的饲料时,
则情况恰好相反。
!"#营养对脂肪酸合成酶($%&)基因表达的
调控
1+2是脂肪酸合成的主要限制酶,存在于脂
肪、肝脏及肺等组织中,在动物体内起催化丙二酰
&3+连续缩合成长链脂肪酸的反应,其活性高低
将直接控制着体内脂肪合成的强弱,从而影响整
个机体中脂肪的含量。有关营养与1+2基因的表
达调控,2!4!&56789-:;;(/曾报道:糖类能诱导1
+2基因的转录,而脂肪则抑制这种诱导的表达。
&3<=9等(:;;>)试验研究也表明,当给禁食后的
成年鼠饲喂含高糖低脂肪的饲料时,1+2基因的
表达就增强,而且相应的?.@+含量的增加幅度
与碳水化合物的摄入量也成正比。
糖类对1+2基因表达的影响。为区分活体中
激素水平变化的协同作用,13<A9559-:;;B/通过体
外细胞培养的方法研究葡萄糖和胰岛素等激素的
作用效果。研究表明,加入葡萄糖和胰岛素的脂肪
细胞培养组织中,1+2的?$@+水平相对于对照
组提高"#C;单独添加葡萄糖相对于对照组则提
高了DC,而单独添加胰岛素则没有效果。因此我
们可以得出结论,葡萄糖对1+2基因的表达调控
可以通过与胰岛素的协同作用而得到显著提高。
另外,有关研究表明,(E F E甲基葡萄糖(一种葡
萄糖类似物,不能被已糖激酶磷酸化)不能激发1
+2基因的表达,这表明葡萄糖必须通过中间代谢
环节才能对1+2基因的表达调控起作用,因此对
于弄清楚是由葡萄糖哪个代谢产物来作为启动基
因的表达信号尤为重要。13<A9559-:;;"/认为,G E
磷酸E"E脱氧葡萄糖在脂肪组织中有类似葡萄
糖的作用,能激发1+2基因的表达,且:?,的作
用效果等同于">?,葡萄糖的作用效果。最近
H3I73J等-:;;G/试验研究也表明,在成年大鼠肝
细胞培养物中G E磷酸E"E脱氧葡萄糖水平与
1+2的?.@+含量呈正相关。因此G E磷酸E"E
脱氧葡萄糖极有可能是参与1+2基因表达的重
要中间代谢物。
脂肪对1+2基因表达的影响。&56789-:;;(/
的研究表明,脂肪抑制1+2基因表达主要与脂肪
抑制1+2基因转录的能力和脂肪中脂肪酸的碳
链长度、双键位置和双键的数量有关,饱和脂肪酸
和(J E;)族脂肪酸不能抑制1+2基因的表达,多
不饱和脂肪酸($K1+)中的-J E G/和-J E(/族脂
肪酸是1+2基因的有效抑制剂,研究表明,日粮中
$K1+可使1+2?.@+的水平降低D>C E;>C。
蛋白质对1+2基因表达的影响。,I5LJ97
-:;;:/研究表明,高蛋白饲粮将抑制猪脂肪组织
中1+2基因的表达,脂肪组织中1+2基因的?.M
@+的含量会显著下降:用蛋白质含量分别为:)C、
:#C、")C的日粮饲喂G>E::>8N的肥育猪,其脂
肪组织中1+2?.@+的含量分别下降了#!:)C、
::!D(C和)#!"C。由此可见日粮蛋白质将会影响
脂肪组织中1+2基因的表达,但这种调控具体发
生在哪个水平及其作用机理目前还不清楚。
!"’营养对()*+,*基因表达的影响
长期以来,我国商品猪的瘦肉率较国际优良
品种低,而目前常规的育种方法已很难使之有大
幅度的提高。因此OP6JN等(:;;))小鼠3Q基因的
克隆成功为这方面的研究提供了新的思路。由于
R9=SIJ基因具有可以大大降低动物体脂含量这一
特性,因此通过营养对R9=SIJ基因表达调控的研
究,将有助于深入了解R9=SIJ对动物体重的调控
机制。王方年等(:;;;)研究表明,浓度从B??35 T
R到:>??35 T R葡萄糖可以显著地促进脂肪细胞
中59=SIJ基因的表达。
!"-营养与神经肽.(/0.)基因表达的影响
@$U是一种含(G个氨基酸残基的生物活性
多肽,在体内具有收缩血管、影响激素分泌、调节
生物节律及摄食行为等多种生物学功能,其中促进动
物采食是@$U最主要的功能之一。试验研究表
广东饲料第;卷第G期">>>年:"月综述广东饲料第#卷第$期"%%%年&"月综述
明,限饲特别是限制能量采食将会显著提高’()
在下丘脑中的表达量,*+,-.等(#/)在限饲、低
碳水化合物、低脂肪、低蛋白质日粮组成的试验条
件下,发现下丘脑中’()0 1’2显著提高345。
!"#微量元素对基因表达的调控
&!4!&锌对基因表达的调控
锌作为动物体的一种必需微量元素,具有增
强机体免疫功能、促进细胞增值分化、参与核酸蛋
白质代谢、维持细胞周期正常进行等生物学功
能。上述作用以前曾被认为主要是由于含锌酶活
性的改变以及对细胞信号传导系统产生影响的结
果,但近年来的研究表明,事实并不如此,锌主要
是通过对基因的转录和表达的影响而产生一系列
的生物学效应。6,7+.89.:;#<=认为,锌离子是
>’2聚合酶的一个重要组成成分,锌对于维持>
’2聚合酶的活性具有相当的重要性;另外锌通过
影响1’2聚合酶活性及转录因子的作用,能够导
致基因转录异常,从而使蛋白质表达也发生变化;
还有饲料中锌的含量,可以通过影响金属调节蛋
白的转录活性而影响金属硫蛋白(6?)基因的表
达,@A88,BC:等(#3)认为可将6?基因的表达量
作为体内锌状况的重要衡量指标。67’C88;#4=
发现低锌日粮限制动物生长的直接原因是由于低
锌抑制了体内DEF G D、EH受体、EH结合蛋白等
基因的表达。
&!4!"其他微量元素对基因表达的调控
镉、铜、汞等元素的增加将显著提高6?基因
的表达量。I+JA;#/=研究表明高铜将显著提高
体内EH基因的表达水平。IC+K,:L.K等(M$)认
为铁可以通过控制01’2的稳定性和翻译过程,
调节铁蛋白的水平。
"基因工程技术
所谓基因工程,就是按照人们的意愿在体外
获得目的基因,再按预先的设计,在体外将目的基
因进行酶切连接,构建成适当的表达裁体,然后导
入细菌或动物细胞或机体内,以研究该目的基因
的结构与功能、表达的调控机制、或者获得该基因
的表达产物。分子生物学技术的核心就是基因工
程,而基因克隆和表达是基因工程的核心技术。下
面就抗菌肽、植酸酶,甜菜碱等,对基因工程技术
在动物营养学领域中的应用作一简单阐述。
$"!抗菌肽基因工程
自从NJ0C:等(M&)首次从美国惜古比天
蚕;HOC8JP+JKC 7.7KJP,:=中成功地分离到两种抗
菌肽蚕素(7.7KJP,:)2和N后,国内外很多科学家
对这一类抗菌肽进行了深入细致的研究,发现在
许多昆虫、植物、哺乳动物中均有这样的多肽存
在,它们由<%多个氨基酸残基组成,不同来源的
多肽的氨基酸序列具有较强的保守性且共同具有
如下特点:(&)’端由碱性氨基酸残基组成;(")Q
端均酰胺化;(<)绝大多数多肽在第二位均为?KP,
它对杀菌活性至关重要;(/)它们都有较广的杀菌
谱。其抗菌机制大致如下:抗菌肽作用于细菌的细
胞膜,破坏膜的完整性,造成离子通道,最终导致
细胞内含物的泄漏。由于抗菌肽具有广谱杀菌作
用、相对分子量较小、热稳定、水溶性好等优点,更
为重要的是抗菌肽对真核细胞几乎没有作用,仅
仅作用于原核细胞和发生病变的真核细胞,在目
前不少病原菌对原有抗生素逐步产生耐药性,尤
其是肉用动物长期使用抗生素受到严格检查和批
评时,对畜禽体内自然产生的抗菌肽功能的了解
以及设计一种方法来调节动物体内自然抗菌肽的
功能便显得极为重要,其中通过抗菌肽基因的克
隆与表达而大量生产抗菌肽是一种较为直接而有
效的方法。目前昆虫和植物抗菌肽基因工程,在国
内外已有不少成功的报道,但就畜禽抗菌肽基因工
程国内外尚未见报道。因此,运用基因工程技术,通
过对畜禽抗菌肽的研究,对提高畜禽的抗病能力、减
少甚至替代抗生素的使用将起积极的促进作用。
目前,猪抗菌肽((1 G<#)已被发现(8..等,
M#),它是一个分子量为/3道尔顿的肽,从猪
肠中分离,属于富含(KJ G 2KL的肽家族,不裂解野
生型大肠杆菌,但对突变型R&"有作用,其作用机
制是通过阻断蛋白质和>’2的合成,从而导致这
些成分的降解。(1 G<#在一个单层囊泡中可以诱
导钙的降低和电流的线性增加,此诱导与肽浓度
和膜上甘油磷酸脂(带负电荷)有关。另外在猪小
肠中,还发现另一种抗菌肽7.7KJP,:(&,它是以裂
解细菌来完成杀菌作用的。2:S.K99J:;#4=运用
基因工程技术从猪骨髓1’2中克隆到一种新型
的7>’2,其编码一个3M残基的抗菌肽’R G 8O9,
:,有三个分子内二硫键,这种肽对’R G敏感型的
肿瘤细胞株)2Q G&有裂解活性,但不裂解红血
球细胞。;
!"#!
分子生物学技术在动物营养学上
的应用及其发展前景$下%
郑家茂赵国芬许梓荣
!"!植酸酶的基因工程
植酸酶的研究已有近.’年的历史,植酸酶作
为一种单胃动物的饲料添加剂,其饲喂效果已在
世界范围内得到广泛的确证,随着饲料工业的发
展和分子生物学的兴起,从(’年代开始的植酸酶
的分子生物学研究,已成为世界性的研究热点之
一。目前国内外研究的主要思路集中在通过基因
工程这一手段解决饲用植酸酶的两个主要问题:
一个是植酸酶在天然材料中表达水平太低,这造
成植酸酶难以大量生产及生产成本过高的问题,
通过基因工程技术,利用生物反应器则有望成百
上千倍地提高它的表达量;另一个问题是天然植
酸酶的一些酶学性质,如耐温性,/0适性、催化活
性等不能完全适合饲料加工业和养殖业的要求,
利用基因工程手段在分子水平上对植酸酶基因进
行改造,从而提高其在饲料中使用的有效性。
#!#!&在微生物中高效表达植酸酶基因
目前,植酸酶基因表达的研究主要集中在来
源于曲霉的植酸酶基因/123和/425上。06789
:;<=>?4@8等$&(("%将来源于3!A:BCDDEFFG"&"-
的/123基因导回原菌株,使/12基因的拷贝数增
加到&-个以上,从而使植酸酶的表达量提高到
,H’’C I D4。J174:B1等(&((-)在3!K72L6?中表达来
源于酵母的植酸酶基因和来源于3!;:<?7,H#的
/125基因,其结果也是使表达量分别提高到M.’
C I D4和,-’C I D4,将植酸酶基因/123置于来源
于3!;:<?7的淀粉葡萄糖甘酶$3N%启动子之下,
信号肽序列分别用3N信号肽的&M个氨基酸序
列、3N信号肽的#.个氨基酸序列及植酸酶原来
的信号肽序列"种构建,将植酸酶基因重组到3
;:<?7基因组中而获得植酸酶基因的阳性克隆子
在这"种构建中其植酸酶在重组菌株中的表达量
分别达到了&!&O’!-O#!M P&’-C I D4,比原植酸酶
产生菌株的表达量高约&’’’Q"’’’倍左右。
#!#!#植酸酶热稳定性
加工饲料都需要一个制粒工艺,在制粒过程
中有一个短暂的高温过程,温度一般在,-
("R,一般植酸酶在此高温下会大幅度地丧失活
性,因此,能在饲料中真正推广利用的植酸酶必须
具有良好的热稳定性;然而另一方面饲料中的植
酸酶最终的作用场所却是动物正常体温(",R)的
肠胃中,植酸酶同时又必须在常温下具有较高活
性,因此,如何解决在制粒高温和在动物正常体温
下同时具有较高酶活性这一对矛盾是目前饲用植
酸酶应用的关键性技术环节,通过基因工程技术
对植酸酶基因在分子水平上进行改造将是一个强
有力的手段。近年来,已从嗜温微生物中发现多种
高温植酸酶,对它们的结构与热稳定性的研究将
为植酸酶基因的分子改造提供理论依据。
#!#!"植酸酶基因工程的一个新突破点
假设在一些植物性饲料$如玉米、大麦、大豆
等%中本身就含有足量的植酸酶,如果在饲喂过程
中,植酸酶在动物的肠胃中释放出来降解饲料中
的植酸磷,这岂不是一举两得,即省去了植酸酶添
加剂的生产,又省去了在饲料中植酸酶的添加,这
无疑是植酸酶应用的最佳方法。随着分子生物学
技术的发展,这一“天方夜谭”的假设将成为现
实。目前,科学家们已经开始尝试这一方面的研究
并取得了阶段性的进展,其主要思维路线如下:将
植酸酶基因通过基因工程技术转化到用作饲料的
玉米、大豆、大麦中,培养出高含植酸酶的大豆、玉
米、大麦。目前国外许多研究机构都在尝试此项工
)中图分类号*SM&H!")文献标识码*5)文章编号*&’’-!MH&"$#’’&%’&!’’"#!’#作,预计近期内会取得突破性进展。
#!"甜菜碱基因工程
甜菜碱$%&’()*&+是广泛存在于动植物体内的
季铵型生物碱。近年的研究表明,甜菜碱是一种高
效、安全的营养再分配剂,添加于饲料中,可以显
著提高畜、禽胴体瘦肉率、减少脂肪沉积,并可改
善肉质,在养殖工业上应用前景广阔。但就甜菜碱
本身而言,目前国内的甜菜碱生产均是通过化工
工艺合成,通过基因工程手段来获得甜菜碱方面
还是空白,国外近年来已开始这方面的研究。
许多细菌和植物中由胆碱经两步氧化而成甜
菜碱,合成代谢途径已经阐明,催化两步反应的酶
蛋白已经分离和纯化,已克隆其基因并测定了碱
基顺序。,-.’/01研究室已完成大肠杆菌的%&’
操纵元全序列分析,发现%&’操纵元由四个基因
组成,其中%&’,编码胆碱脱氢酶(23 4 567(),
%&’%编码甜菜碱醛脱氢酯(8#4 567(),%&’9编
码胆碱转移系统(:8 4;67(),%&’<编码%&’基因
的调节中作为阻遏物的#3!;67(蛋白。
目前已有一些报道认为细菌9&’操纵元和
=&>操纵元能在烟草中表达,因此将.’/01研究室
得到的%&’操纵元;!:?@7A,片段导入烟草,探
讨甜菜碱是否能表达是一个诱人的研究领域。
"转基因技术
转基因技术是指用实验手段,将外源基因导
入动物细胞或动物受精卵中,由此稳定整合到动
物基因组,并能遗传给子代。目前常用的转基因技
术主要有:显微注射法;胚胎多能干细胞虫;精子
裁体法;反转录病毒载体法以及电转移技术等等,
其中显微注射法是最常用、最有效的基因导入技
术。目前培育成功的转基因动物绝大部分是采用
该方法获得的。最早的转基因动物是将疱疹病毒
基因与BCDE早期启动子联在一起,用显微注射
法导入小鼠受精卵获得的转基因小鼠。目前,在动
物营养领域转基因技术的研究主要包括:
"!3提高动物生长性能
生长激素$FG+在动物生产中基本上采用注
射方法,虽然有一定的促生长作用,但程序复杂繁
琐,解决思路之一就是采用转基因技术。G(11&/
等$35;8+人生长激素$HFG+转基猪研究成功,这
种转基因猪的生长速度比对照组高出38I,日增
重可达3#:"J,饲料利用率提高#3I,采食量减少
#EI,陈永福$3553+用自己构建的融合基因
KL9 M NFG获得了转基猪,其生长速度提高
33!;I O 3D!#I,饲料利用率提高3EI。另外,转
基因羊、转基因鸡、转基因兔、转基因牛、转基因鱼
等研究也相继获得成功。
"!#改变动物体内的代谢途径
动物营养研究表明,有些生长发育和维持所
必需的营养物质必须由外界供给,例如赖氨酸,但
是否可以不必由外界供给呢?可行的方案不外乎
这么两种:一种是重建动物体内某些丢失的代谢
途径;另一种是导入目前在动物体内尚未发现的
代谢途径。转基因技术的出现提供了通过改变动
物代谢途径从而让动物自身合成赖氨酸的可能
性。-&&.等$355E+已经清楚大肠杆菌合成赖氨酸
途径中的酶基因编码,运用基因转移技术也证明
了在细胞中施行这些途径的可行性,因此-&&.等
提出设想:把赖氨酸在微生物中生物合成的途径
导入动物体内,使动物自身就能合成赖氨酸。
"!"提高动物产毛性能
由于胱氨酸在羊瘤胃中降解,所以饲料中加
入胱氨酸并不能提高产毛量。因此能够得到一种
自身合成胱氨酸的转基因羊,将会大大提高羊毛
产量。P(/Q$3553+发现某些细菌能将硫固定并转
化为胱氨酸,他们分别在大肠杆菌和沙门氏菌中
分离到了丝氨酸乙酸转移酶基因和K 4乙酰丝氨
硫化氢解酶基因,并且将这两种基因与金属硫蛋
白$L9+基因启动子联接;并在"R端装上FG基因
的序列,然后将这组调控序列通过转基因技术导
入羊体内而得到高产羊毛转基因绵羊。
D展望
综上所述,以基因工程为核心的分子生物学
技术应用于动物营养学研究领域,具有很大的潜
力,它不仅为动物营养学研究提供了一套全新的
技术和方法,而且可在基因水平上解决许多动物
机体生理病理变化、营养素的代谢调节机制以及
其与机体的相互关系等问题。我们可以设想,基因
工程抗菌肽完全可以减少甚至替代抗生素的使
用;随着转基因技术的日益完善,各种生长性能优
越的动物新品种将层出不穷;用转基因动物来大
量生产各种生理活性物质,也将成为现实。无可置
疑,#3世纪是高新技术畜牧业应用大发展的时
期,以基因工程为主导的分子生物学技术将会为
我国的畜牧业的发展开辟广阔前景。

生物技术工程 论文

  基因工程制药------浅谈

  摘要: 主要介绍基因工程的概念、基因工程技术开发药物的一般过程及基因工程药物,同时探讨了今后利用基因工程技术进行药物开发、研究的发展方向。
  正文:
  1 基因工程概述
  所谓的基因工程是指在体外将核酸分子插入病毒、质粒或其它载体分子,构成遗传物质的新组合,并使之参入到原先没有这类分子的寄主细胞内,而能持续稳定地繁殖。
  基因工程的第一个重要特征是跨越天然物种屏障的能力,即把来自任何一种生物的基因放置在与其毫无亲缘关系的新寄主生物细胞中去的能力。这表明人们有可能按照主观愿望创造出自然界中不存在的新物种。第二个特征是,它强调了一种确定的DNA小片段在新寄主细胞中进行扩增的事实.才能制备到大是纯化的DNA片断,从而拓宽了分子生物学的领域,使之在生物制药领域有巨大的应用。
  基因工程自从20世纪70年代初期问世以来,无论是在基础理论研究领域,还是在生产实际应用方面.都已经取得了惊人的成绩。基因组核苷酸全序列的测定与分析,是基因工程技术促进基础生物学研究的一个出色范例。2001年2月12 日,由6国的科学家共同参与的国际人类基因组公布了人类基因组图谱及初步分析结果,这结果为人们提供了约3000 多个基因可用来制药,将推进基因制药产业的快速发展。由于基因克隆技术的发展,已使得基因工程技术在工业生产尤其是制药生产中发挥了重要作用。以前人们利用微生物自身生产有用的产品,如利用青霉菌生产青霉素、利用链霉菌生产链霉素等。但是从这些生物体中分离纯化这些药物,不仅成本昂贵,而且技术上也相当困难。如今将编码这些药物的基因克隆并转移到合适的生物体内进行有效的表达,就可以方便地提取到大量的有用药物。
  2 基因工程技术开发药物的一般过程
  利用基因工程技术开发一个药物,一般要经过以下几个步骤:①目的基因片断的获得:可以通过化学合成的方法来合成已知核苷酸序列的DNA片段;也可以通过从生物组织细胞中提取分离得到,对于真核生物则需要建立cDNA文库。 ②将获得的目的基因片断扩增后与适当的载体连接后,再导入适当的表达系统。③在适宜的培养条件下,使目的基因在表达系统中大量表达目的药物。④将目的药物提取、分离、纯化,然后制成相应的制剂。
  以上方法大部分是以微生物或组织细胞作为表达系统.通过微生物发酵或组织细胞培养来进行药物生产。近年来,通过转基因动物来进行药物生产的"生物药厂"成为目前转基因动物研究的最活跃的领域,也是基因工程制药中最富有诱人前景的行业。转基因动物制药具有生产成本低、投资周期短、表达量高、与天然产物完全一致、容易分离纯化等优势,尤其是适合于一些用量大、结构复杂的血液因子,如人血红蛋白(Hb)、人血白蛋白(HSA)、蛋白C(Protein C)等。英国的爱丁堡制药公司通过转基因羊生产α1-抗胰蛋白酶(α1-AAT)用于治疗肺气肿,每升羊奶中产16g AAT,占奶蛋白含量的 30%,估计每只泌乳期母羊可产70g AAT。另外,转基因植物制药比转基因动物制药更为安全,因为后者有可能污染人类的病原体。目前,已经开发出许多转基因植物药物,例如脑啡肽、α-干扰素和人血清蛋白,以及两种最昂贵的药物即葡萄糖脑苷脂酶和粒细胞-巨噬细胞群集落因子等。
  3 基因工程药物
  基因工程药物自20世纪70年代末期以来,有了飞跃的发展。1978年首次通过大肠杆菌生产由人工合成基因表达的人脑激素和人胰岛素,1980年美国联邦最高法院裁定微生物基因工程可以获得专利.1982年第一个由基因工程菌生产的药物--胰岛素.在美国和英国获准使用以来,各种基因工程药物犹如雨后春笋,得到了蓬勃发展。我国的医药技术的研发和产业化也取得了长足的进展。
  (1) 抗生素类 传统的抗生素生产,主要利用化学合成或微生物发酵来获得,其生产过程中菌种的表达水平比较低,生产成本比较高,而且在使用过程中容易产生耐药菌群。而利用基因工程技术可以对生产菌种进行基因改造,得到表达水平高、产品目的性强的菌株,如大肠杆菌生产青霉素酞胺酶。德国一个科研小组对生产半合成青霉素的材料6APA.用基因工程来增强大肠杆菌的青霉素酰胺酶活性。将大肠杆菌的基因 PBR322的质粒克隆化所形成的菌株,其酶活力比原株提高 50倍.从而提高6APA生产能力。我国王以光利用基因重组技术对螺旋霉素产生菌进行改造,增强了丙酰基转移酶的基因在螺旋霉素产生菌中的表达,并提高了丙酰螺旋霉素的产量。
  (2) 活性多肽类 在人体中存在一系列含量较低,但生理活性很高,而且在人体代谢过程中起着重要的调节作用的活性多肽类物质如激素等,这些物质在临床上可以作为药物来治疗相应的因此类物质失衡而造成的疾病。此类药物的制剂多来源于各种动物的脏器,生产方法复杂,成本高,个别产品还必须从动物的尸体中进行提取,无法进行大规模工业化生产,自基因工程技术问世以来,通过基因重组技术,可以由微生动进行生产,这是基因工程技术的最大成就之一,以下是这类药物中比较典型的两个。
  胰岛素: Genentech公司在1978年,由Goeddel等学者应用基因重组技术开发出使用大肠杆菌生产人胰岛素。随着基因工程技术的不断发展,生产胰岛素的工艺和技术也不断得到完善,在临床上已经完全取代了由动物脏器提取得到的产品。目前,我国新疆转基因羊已能够成功表达人胰岛素原,为胰岛素的生产开发了新途径。
  生长素: 人类生长素临床用于治疗侏儒症和肌肉萎缩症.传统制造方法是由人脑下垂体抽提精制而得,其原料来源困难,产量受到极大限制。全世界侏儒症患者中仅有1%可以得到治疗,原因是生长素价格极其昂贵,达每克5000美元。1979年Genentech公司由Goeddel等学者应用基因重组技术首先开发出使用大肠杆菌生产人生长素.近年来还开发了以酵母菌来生产生长素,其产量可达到1.4×106~4.7× 106分子/细胞。目前,我国基因工程人生长素已研制成功,并投入市场和用于临床使用。
  除上述药物外,运用基因工程技术生产的这类药物还有神经生长因子(PDGH)、人基底成纤维细胞生长因子、绒毛膜促性腺激素等。
  (3) 细胞免疫调节因子 基因工程技术用于细胞免疫调节因子的产品较多,临床广泛应用于抗肿瘤和免疫调节等。近年来,由于基因重组和细胞融合两大技术的进步,加上高压液相层析技术、氨基酸序列分拆装置以及蛋白质的精制和解析技术的改进,使一些调节细胞免疫活性物质的研究和开发得到快速发展,如干扰素(INF)、白介素(IL)、集落刺激因子(CSF)和肿瘤坏死因子(TNF)等。
  干扰素是其中研究较为广泛,技术比较成熟,产业化较早的一个产品。第一代干扰素是从血液中进行提取而得到。据芬兰的K Canted报道,处理23000L血液,所得纯度1%以下的干扰素不足100mg.所以产量很低。而且由于血源质量不能保证,可能造成血源性传染病的传播。第二代干扰素是采用基因工程技术进行生产的,其生产水平可达250000分子/细胞,每升可含2.5亿单位,成本显著下降,产品纯度很高,含量可达90%以上。目前,已经商品化的基因工程干扰素有α、 β、γ三种,而且生产技术也在不断完善。俄罗斯科学家构建了以假单胞菌为载体的表达系统来生产基因工程干扰素.与传统的大肠杆菌表达系统相比其培养周期短,细胞易于破碎便于提取。随着基因重组技术的不断发展,一些研究人员对干扰素基因进行改造,构建靶向干扰素基因及表达载体。夏小兵等利用限制性内切酶分别从含有抗乙型肝炎S抗原(HbSAg)人源单链抗体与人干扰素α质粒中切出目的基因,连接到 pET22b质粒中,构建成单链抗体靶向干扰素表达载体,在大肠杆菌中表达成功。
  (4) 疫苗传统的疫苗是病源微生物的减毒或灭活物质,但这些疫苗都不理想,有可能发生回复突变,恢复毒性;或者因为灭活不适当引起疾病流行。利用基因工程技术生产的新型疫苗,可以克服传统疫苗价格昂贵、安全性能差等缺点,能为目前尚无有效疫苗的某些特殊疾病如艾滋病,提供有效的治疗手段。
  第一个商品化的基因工程疫苗是抗人乙型肝炎病毒(HBV)的疫苗。我国大约有10% 的人口受到HBV的侵害, HBV的感染通常还与特殊的肝癌(HCC)有着密切的关系,每年全世界死于HCC的病人有30万左右。HBV具有高度的寄主专一性,只能感染人类和黑猩猩,这意味着只能从肝炎患者身上才能获得有限数量的病毒,供做疫苗使用,而且从患者血液中提取制备的疫苗,还有传染艾滋病的可能。利用基因工程技术生产的抗HBV疫苗克服了传统疫苗的缺点,质量和安全性高,用量极少,一般剂量为10mg以下,接种3次,为普通药品用量的千分之一。1982年P Valenzuela等人将S基因(HBV表面抗原基因)的一个片段克隆在一种载体上,结果在酵母中合成出来HBV表面抗原(HbsAg)颗粒,其产量达25 μg/L,酵母表达系统现在已经能够大规模生产供给人类使用的重组肝炎疫苗。
  大约20年前,人们发现"裸露"DNA注入体内能够诱发免疫反应,科学家们进行了大量研究,开发出了新型的核酸疫苗。所谓核酸疫苗,是指将编码某种抗原蛋白的外源基因(DNA或RNA)直接转移到动物体内,通过宿主表达系统合成抗原蛋白,诱导宿主对该抗原蛋白产生免疫应答,以达到预防和治疗疾病的目的。现已开发出多种核酸疫苗,例如:流感核酸疫苗、艾滋病疫苗、狂犬病疫苗、结核病疫苗和乙型肝炎疫苗和戊肝疫苗等。
  (5) 基因治疗制品 基因治疗在1990年开始进行实验, 1993年美国FDA给人类基因治疗下的定义为:"基于对活性细胞遗传物质的改变而进行的医学治疗,这种改变可以在活体外进行,然后应用于人体,或者直接在人体内进行"。因此,基因治疗存在两种方式,即间接体内法和体内法。间接体内法主要是通过在体外进行基因转移,筛选可表达外源基因的细胞,然后再转移到体内;体内法则是直接在体内改变与修复遗传物质。随着分子生物学、基因重组技术的发展,有关目的基因的获得方法已趋成熟,但是,目的基因的转移传递系统、目的基因的表达调控以及疗效和安全性还需进一步研究证实。目前,基因转移系统主要是两类:一类是由病毒介导的基因转移系统,主要包括逆转录病毒(Rt)、腺病毒(Ad)、疱疹病毒(HSV)和腺病毒相关病毒(AAV)载体等。Nnldini等开发出一种基于HIV的重组Rt载体,不需要辅助细胞,能广泛感染各种非分裂细胞,同时保留了能整合在宿主染色体上的特点。世界上第一例基因治疗所采用的载体即是Rt载体,治疗腺苷酸脱羧酶缺乏所致的严重联合免疫缺乏症(ADA-SCID)。另外一类是非病毒介导的基因转移系统,包括脂质体、分子偶联载体、基因枪和裸DNA等。
  另外,反义核苷酸技术也应用于基因治疗,尤其在抗乙肝病毒的基因治疗方面,包括反义DNA、反义RNA和核酶 RNA等。2001年,Robaczewska等首次通过静脉给予反义 DNA,选择性抑制北京鸭HBV在鸭肝脏中的复制和表达,证明了反义DNA在动物实验中的有效性。美国Viagene公司研究出一种被称为"艾滋病毒免疫制剂",该药为一种鼠逆病毒与核心蛋白编码的基因序列和HIV表面抗原RNA结合产物,在小鼠和灵长类动物试验中确定该药能诱导出强的 HIV-特异性杀伤细胞。
  4 结束语
  基因工程技术使药品开发发生了根本性的转变。传统的药品开发方式是在大量的化学合成物质和微生物代谢产物中进行随机筛选,得到其中的有效成分作为新的药物。采用基因工程技术开发新药,是通过对致病机理的研究,找到那些可用于治疗目的的有效成分以及其编码基因,经过基因重组将其转入适当的载体,大量表达其有效成分作为治疗药物。同时,基因工程技术给药品生产技术带来了革命性变化。过去一些生产困难的产品,如激素、酶、抗体等一些生物活性物质,通过基因工程手段可以高质量、高收率地付诸生产,同时生产成本也大幅度降低,提高了患者的用药水平和生活质量。
  基因工程技术在传统医药不能有效治疗的一些疾病,如癌症、艾滋病、遗传病等的诊断、治疗和预防等方面提供了有效的新手段,并取得了一些重大的突破。如发现了致癌基因,可使癌症的早期诊断和治疗药物的开发成为可能。随着分子生物学和基因重组技术的发展,我们相信这些严重危害人类生命的疾病,在不久的将来会得到有效的预防和治疗。

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页