您当前的位置:首页 > 发表论文>论文发表

五年级数学论文体积

2023-12-11 23:01 来源:学术参考网 作者:未知

五年级数学论文体积

在生活中,各式各样的事情都能从一个普普通通毫不起眼的小事变成一个个既生动又引人深思的数学题。我们常做的应用题,就是在生活中取材,再稍加改编而成的题目。这不,我又在做数学题时发现了一道趣题:
在一个游泳池内,有一艘小船,上面有许多石头,现在把石头全部从船里扔到水中,请问,游泳池内的水位会上升、下降,还是不变?

乍一看题目,我便疑惑不解:这道题似乎和数学沾不上一点关系啊!这下该怎么做呢?我不气馁,努力思考,不一会儿便理出了头绪:当石头扔到水中后,船的重量减轻,便会上浮,水位也会下降,但石头在水中占了一部分空间,水位又要随之上升。因为这都是同一堆石头,所以上升与下降的幅度也应该一致,水位当然保持不变啦!可爸爸看了,却说是下降,我很不服气,决定与他打个赌
可是,用什么来证明我的猜想正确与否呢?这时,抽象的想象就没有真实的操作好了。于是,我便在爸爸的协助下作了一个实验:由于我能力有限,没法从外面搬来一个游泳池,也没法去造一艘小船,只好把题中的条件按比例缩小了。游泳池变成塑料盆,小船变成肥皂盒,石头则变成了五块橡皮。我先在塑料盆里倒进一些水,再把装着五块橡皮的肥皂盒放入水中,然后用直尺量出水位是20厘米。最关键的时刻到了,我把五块橡皮小心翼翼地从肥皂盒中取出,再全部投入水中,最后用直尺量出水位--天哪!竟然只有18厘米,是下降了!我错了!
虽然事实证明,水位是下降了,但我还是丈二和尚--摸不着头脑:这水位怎么会下降呢?
我苦思冥想了好长时间,草稿纸上全是一幅幅演示图,可我还是一筹莫展。我急得团团转,可越急脑子越乱,反而想不出了。就当我即将放弃的时候,我突然想起了数学家陈景润孜孜不倦,夜以继日算题目的故事,血液中仿佛充斥着一股勇往直前的力量,任何困难都挡不住我。果然,不出半小时,这道题我终于想通了:当石头在船上时,上升水的重量=石头的重量,而石头的密度比水大,因此同等重量的水和石头,水的体积大于石头的体积。当石头被投进水中后,水便下降了石头的重量,而石头在水中要占空间,因此,石头扔进水中后,水上升的体积=石头的体积。而同等体积的水和石头,水的重量小于石头的重量。综合以上几点,得到:石头扔下去后,水位下降的重量大于石头的重量,水位上升的重量小于石头的重量,也就是下降的水的重量大于上升的水的重量,于是下降的水的体积便大于上升的水的体积,水位当然下降了。就这样,一道难题便迎刃而解了。
其实,仔细观察,这道题与数学密不可分,其中的体积、重量、密度,都属于数学的范畴之内。你瞧,一个生活中的小事也能变成一道数学题,数学是无处不在的,让我们热爱数学,学好数学吧

小学五年级数学论文

抓好基础知识,重视培养思维能力
一、基础知识必须让学生切实学好
1.从学生已有的知识和经验出发进行教学
数学具有严密的逻辑性,前后知识联系紧密,某一新的知识点往往是前一部分知识的发
展和延伸,同时又 是后一部分知识的基础。就课本上新知识点来说,一般包含着许多旧有
知识。因此,充分利用学生已有知识和 经验学习新知识,能激发学生学习兴趣,提高学习
积极性,又能形成良好的知识结构。如分数乘法中分数乘以 整数的意义没有变,仍是求几
个相同加数的和的简便算法。教学时通过对原有知识的复习,学生是容易理解的 。在讲例
1前我们可以提出:4个2是多少?用加法如何计算?用乘法如何计算?此时我们可以提问:
整数乘法的 意义是什么?在此基础上,我们进一步提出:4个2/9是多少?用加法如何列
式?用乘法又如何列式?学生列出(2/9)+(2/9)+(2/9)+(2/9),(2/9)×4。因为做分数加法时是以
原来的分母做分母,分子部分是相同加数求和, 所以(2/9)×4=(2×4)/9=8/9;引导学生观
察算式得出:分数乘以整数的方法是用分数的分子和整数相乘的积 作分子,分母不变。本
册分数除法中分数除以整数的意义与整数除法意义相同,教学时可通过学生已有知识引 入,
使学生掌握新知识。
2.通过实物、教具、学具或者实际事例使学生在理解的基础上掌握知识
小学阶段是儿童从形象思维向抽象逻辑思维发展的转变阶段,仍应重视运用实物、教具、
学具进行教学, 增加感性认识,促进学生对知识的理解和掌握。如长方体和正方体是学生
第一次接触的立体图形,如果空间观 念不强,在计算长方体的表面积与体积时就会混淆。
教师要重视实物、教具的演示作用,教学时可分为以下三 步:一是让学生搜集大小不同、
形状各异的长方体实物,引导学生观察,使学生对长方体的特征有一个初步的 感性认识。
二是用“切土豆”的方式使学生认识长方体的特征,如取一个较大的土豆,切一刀切出一个
平面, 切两刀出来两个面、一条棱,切三刀出来三个面、三条棱和一个顶点……切六刀就
成为六个面、十二条棱、八 个顶点的长方体(注意面与面要成直角)。三是出示长方体的框
架模型,让学生指出长方体的面、棱和顶点, 并画出长方体的直观图,引导学生对照长方
体框架模型指出相对应的面、棱和顶点。这样才能使学生牢固掌握 长方体的特征,形成长
方体的概念。

二、引导学生参与获取知识的思维过程,培养思维能力
1.计算教学要让学生参与探究法则和算理的形成
法则和算理是计算的根据,掌握法则和算理对于提高计算能力会起到重要作用。因此在
计算教学时要让学 生参与探究法则和算理的形成,从而帮助学生熟练地掌握、使用算理和
法则。
教学分数乘以分数的计算法则时,教师先出示例题:“一台拖拉机每小时耕地3/5公顷,
3/4小时耕地多少 公顷?提问:如果把已知条件换成整数或小数应怎样计算?接着让学生根
据整数和小数乘除法的算理给例题列 式,这样学生就能明白,分数乘除法的算理和计算法
则是从整数和小数的计算法则中演绎过来的。然后教师出 示下列三幅图,引导学生观察、
分析、思考,并演示计算过程,最后让学生讨论归纳出分数乘以分数的计算法 则,这样,
学生得到的不仅仅是法则。
引导学生得出:任何物体都占有一定的空间,“物体所占空间的大小叫做物体的体积”。这样
教学,学生得到的绝不仅仅是一个文字概念。

2.几何教学让学生参与公式的推导过程
长方体的体积公式:长方体的体积=长×宽×高,学生记住这个公式并不难,但是要理
解为什么计算长方 体的体积要这样计算是比较困难的,为此,我们必须让学生参与公式的
推导过程。教学时可这样进行:
(1)把一个土豆(或萝卜及其他容易切开的物体)切成一个长4厘米、宽3厘米、高2
厘米的长方体,引导学 生观察后指导学生把这个长方体切成1立方厘米的小正方体,再让
学生数一数这个长方体切成了多少个1立方厘 米的小正方体,并说明小正方体的总和就是
这个长方体的体积,每个小正方体都是这个长方体的体积单位。然 后组织学生讨论:是怎
么切的,长方体的体积应如何计算?
(2)让学生把24块1立方厘米的正方体,摆成体积是24立方厘米的长方体,进行操作
实验,然后整理出如下 的摆法: 每排块数 排数 层数 总块数(体积) 4 3 224 6 4 1 24 6 2
2 24 8 3 1 24 12 2 1 24
引导学生从上面实验得出:长方体的体积=长×宽×高。
为了全面提高教学质量,着眼于学生素质的提高,数学教学还应注重学生的操作和实践
活动,在操作和实践活动中培养学生解决简单实际问题的能力。

五年级数学小论文500字!!!

数学日记[圆柱 数学日记 圆柱] 圆柱古槐街小学 六(2)班 邢思淼 不知不觉中,两周都已过去了,做为一名快要毕业的毕业生,我不禁 感慨万千。大家都在坚持不懈、锲而不舍地做一件事——坚持写周记!这 对大家来说,都是非常有益的,它不但可以帮助大家巩固所学的学习内容, 而且可以锻炼写作能力。 回顾前几天的学习生活,我不禁受益匪浅。 经过一个星期的学习,我们学习了求圆柱的侧面积、表面积、体积和 容积等知识。让我们再来回忆回忆我们所学的内容吧!首先想想圆柱有什么 名称:圆柱上下两个面叫圆柱的底面,围成圆柱的面还有一个曲面,叫做 圆柱的侧面,圆柱两个底面之间的距离叫做圆柱的高。 把圆柱的侧面 展开,可得到一个长方形,这个长方形的长等于圆柱的底面周长,长方形 的宽等于圆柱的高。这样我们很容易看出圆柱的侧面积等于底面周长乘高。 怎样求圆柱的表面积呢?把圆柱的表面全部展开,那么我们就看出它 像一个除号,圆柱的表面积等于圆柱的侧面积加上两个底面积。接下来又 要做题了,而且还是要求很麻烦的圆柱体表面积。唉,求表面积还真不容 易。需要求出底面积和侧面积,还得相加,稍不留神就会算错,有没有什 么好办法可以一块求完呢?我思考着。看看底面积和侧面积的公式吧! S 底=πr2,有两个底面,也就是 2πr2,再看看侧面积公式:S 侧=2πrh, 将它们两个相加在一起,提取同类项:2πr,利用乘法结合律,组成一个新 的公式:S 表=2πr(r+h)。一个新的公式从此诞生。有了这个公式只用相 乘一次就万事 ok 啦! 以前我曾经求过环形面积,运用了一个公式:S 环=π(R2-r2),仔细想想, 其实这也是公式的组合啊! 由两个圆相减, 提取共同的 π, 得到了新的公式。 这些新的公式的诞生都得归功于灵活的偷懒!如果不是觉得太麻烦, 其实也不会有这样的公式。其实,灵活的运用公式也是很重要的,有时候, 出题的人偷了一个懒,少说了一个条件,那么我们就可以多求一下。但是, 有的地方需要我们偷懒,不偷懒都不可以。 有这么一道题:在一个大正方形里有一个内切圆,大正方形的面积是 20 平 方厘米,求圆的面积。 如果按照常理,我们应该先求出大正方形的边长,也就是 d。然后再求 出 r,最后求出面积。可是,在这道题里,怎么才可以求出 r 和 d 呢?除非 开方,可是这样是很麻烦的,而且肯定求不尽,怎么办呢?这时候就需要 灵活的运用公式了。既然圆的面积公式是 πr2 那么求不出 r 求 r2 也可以呀! 这时候我们可以把它看作整体 a,也就是说,我们只用求出 aπ 就可以了。a 怎么求呢?正方形的面积应该是(2r)2,化简之后就是 4r2,也就是 4a 这 样呢我们就可以用 20÷4=5(cm2)求出 a,再用 5×π≈15.7(cm2)。圆的面 积就约为 15.7cm2。这样,不用开方,也可以求出圆的面积 aπ。 有很多公式相互结合就可以组成一个简单方便的实用新公式。 只要创新,其实在把巨人们吃过的馒头揉在一起,做成一个新的花卷,那 不也是很好吗?

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页