定积分就是求函数f(X)在区间[a,b]中图线下包围的面积。即由y=0,x=a,x=b,y=f(X)所围成图形的面积。这个图形称为曲边梯形,特例是曲边三角形。几何,就是研究空间结构及性质的一门学科。它是数学中最基本的研究内容之一,与分析、代数等等具有同样重要的地位,并且关系极为密切。几何学发展历史悠长,内容丰富。它和代数、分析、数论等等关系极其密切。
对于任何几何图形上下限的确定,要根据函数所求的是什么,一般没有方向要求的,由你自己来定,只是保证所求的面积和体积是正数就可以了。
如果函数的积分区间[-a,b](a>0,b>0) ,如果f(-a)<0,f(b)>0, 一定要找出f(x)=0的点,进行分段积分,如果函数在这一区间与x轴只有一个交点为c,你可以把区间分为[-a,c]和[c,b], 对于采取下限c、上限分别为-a 和b 的方法 f(x)dx+f(x)dx的两段积分。
这就保证了你所求的面积值都是正数。
对于有方向的函数求积分,需要确定哪个方向为正,比如求水槽中侧壁的压力,因为水的压强越往深处压力越大,如果用正常坐标,上限选小的数值,下限选大的数值。
除非你改变y轴坐标的方向向下,下限才可以选小的数值。对于周期函数,最好能避开整个周期的积分,因为周期函数的积分往往会出现0现象,一个周期的函数值相等。