柯西不等式非常重要,灵活巧妙地应用它,可以使一些较为困难的问题迎刃而解。柯西不等式在证明不等式、解三角形、求函数最值、解方程等问题的方面得到应用巧拆常数证不等式例:设a、b、c为正数且互不相等。求证:2/(a+b)+2/(b+c)+2/(c+a)>9/(a+b+c)∵a、b、c均为正数∴为证结论正确,只需证:2(a+b+c)[1/(a+b)+1/(b+c)+1/(c+a)]>9而2(a+b+c)=(a+b)+(a+c)+(c+b)又9=(1+1+1)^2∴只需证:2(a+b+c)[1/(a+b)+1/(b+c)+1/(c+a)]=[(a+b)+(a+c)+(b+c)][1/(a+b)+1/(b+c)+1/(c+a)]≥(1+1+1)^2=9又a、b、c互不相等,故等号成立条件无法满足∴原不等式成立求某些函数最值例:求函数y=3√(x-5)+4√(9-x)的最大值。注:“√”表示平方根。函数的定义域为[5,9],y>0y=3√(x-5)+4√(9-x)≤√(3^2+4^2)×√{[√(x-5)]^2+[√(9-x)]^2}=5×2=10函数在且仅在4√(x-5)=3√(9-x),即x=6.44时取到。以上只是柯西不等式的部分示例。更多示例请参考有关文献。
柯西不等式在求某些函数最值中和证明某些不等式时是经常使用的理论根据,我们在教学中应给予极大的重视。巧拆常数证不等式例:设a、b、c为正数且互不相等。求证:2/(a+b)+2/(b+c)+2/(c+a)>9/(a+b+c)∵a、b、c均为正数∴为证结论正确,只需证:2(a+b+c)[1/(a+b)+1/(b+c)+1/(c+a)]>9而2(a+b+c)=(a+b)+(a+c)+(c+b)又9=(1+1+1)^2∴只需证:2(a+b+c)[1/(a+b)+1/(b+c)+1/(c+a)]=[(a+b)+(a+c)+(b+c)][1/(a+b)+1/(b+c)+1/(c+a)]≥(1+1+1)^2=9又a、b、c互不相等,故等号成立条件无法满足∴原不等式成立求某些函数最值例:求函数y=3√(x-5)+4√(9-x)的最大值。注:“√”表示平方根。函数的定义域为[5,9],y>0y=3√(x-5)+4√(9-x)≤√(3^2+4^2)×√{[√(x-5)]^2+[√(9-x)]^2}=5×2=10函数在且仅在4√(x-5)=3√(9-x),即x=6.44时取到。以上只是柯西不等式的部分示例。更多示例请参考有关文献。
到图书馆查资料吧,
论文的构思立意自己动脑吧,可以查阅相关图书及期刊上已发表的文章.
【柯西不等式的简介】 柯西不等式是由大数学家柯西(Cauchy)在研究数学分析中的"留数"问题时得到的.但从历史的角度讲,该不等式应当称为Cauchy-Buniakowsky-Schwarz不等式,因为,正是后两位数学家彼此独立地在积分学中推而广之,并将这一不等式应用到近乎完善的地步。 柯西不等式是一个非常重要的不等式,灵活巧妙的应用它,可以使一些较为困难的问题迎刃而解。可在证明不等式,解三角形相关问题,求函数最值,解方程等问题的方面得到应用。[编辑本段]【柯西不等式的证法】 柯西不等式的一般证法有以下几种: ■①Cauchy不等式的形式化写法就是:记两列数分别是ai, bi,则有 (∑ai^2) * (∑bi^2) ≥ (∑ai *bi)^2. 我们令 f(x) = ∑(ai + x * bi)^2 = (∑bi^2) * x^2 + 2 * (∑ai * bi) * x + (∑ai^2) 则我们知道恒有 f(x) ≥ 0. 用二次函数无实根或只有一个实根的条件,就有 Δ = 4 * (∑ai * bi)^2 - 4 * (∑ai^2) * (∑bi^2) ≤ 0. 于是移项得到结论。 ■②用向量来证. m=(a1,a2......an) n=(b1,b2......bn) mn=a1b1+a2b2+......+anbn=(a1^2+a2^2+......+an^2)^(1/2)乘以(b1^2+b2^2+......+bn^2)^(1/2)乘以cosX. 因为cosX小于等于1,所以:a1b1+a2b2+......+anbn小于等于a1^2+a2^2+......+an^2)^(1/2)乘以(b1^2+b2^2+.....+bn^2)^(1/2) 这就证明了不等式. 柯西不等式还有很多种,这里只取两种较常用的证法.[编辑本段]【柯西不等式的应用】 柯西不等式在求某些函数最值中和证明某些不等式时是经常使用的理论根据,我们在教学中应给予极大的重视。 ■巧拆常数: 例:设a、b、c 为正数且各不相等。 求证: 2/(a+b)+2/(b+c)+2/(c+a)>9/(a+b+c) 分析:∵a 、b 、c 均为正数 ∴为证结论正确只需证:2*(a+b+c)[1/(a+b)+1/(b+c)+1/(c+a)]>9 而2(a+b+c)=(a+b)+(a+c)+(c+b) 又 9=(1+1+1)(1+1+1) 证明:Θ2(a+b+c)[1/(a+b)+1/(b+c)+1/(c+a)]=[(a+b)+(a+c)+(b+c)][1/(a+b)+1/(b+c)+1/(c+a)]≥(1+1+1)(1+1+1)=9 又 a、b 、c 各不相等,故等号不能成立 ∴原不等式成立。 像这样的例子还有很多,词条里不再一一列举,大家可以在参考资料里找到柯西不等式的证明及应用的具体文献.[编辑本段]【柯西简介】 柯西1789年8月21日生于巴黎,他的父亲路易·弗朗索瓦·柯西是法国波旁王朝的官员,在法国动荡的政治漩涡中一直担任公职。由于家庭的原因,柯西本人属于拥护波旁王朝的正统派,是一位虔诚的天主教徒。 他在纯数学和应用数学的功力是相当深厚的,很多数学的定理和公式也都以他的名字来称呼,如柯西不等式、柯西积分公式...在数学写作上,他是被认为在数量上仅次于欧拉的人,他一生一共著作了789篇论文和几本书,其中有些还是经典之作,不过并不是他所有的创作质量都很高,因此他还曾被人批评高产而轻率,这点倒是与数学王子相反,据说,法国科学院''会刊''创刊的时候,由于柯西的作品实在太多,以致于科学院要负担很大的印刷费用,超出科学院的预算,因此,科学院后来规定论文最长的只能够到四页,所以,柯西较长的论文只得投稿到其他地方。 柯西在代数学、几何学、误差理论以及天体力学、光学、弹性力学诸方面都有出色的工作。特别是,他弄清了弹性理论的基本数学结构,为弹性力学奠定了严格的理论基础。
额 可以看一下中等数学2008年第12期和2009年第一期
分析:柯西不等式在求某些函数最值中和证明某些不等式时是经常使用的理论根据,我们在教学中应给予极大的重视。巧拆常数证不等式例:设a、b、c为正数且互不相等。求证:2/(a+b)+2/(b+c)+2/(c+a)>9/(a+b+c) ∵a 、b 、c 均为正数∴为证结论正确,只需证:2(a+b+c)[1/(a+b)+1/(b+c)+1/(c+a)]>9 而2(a+b+c)=(a+b)+(a+c)+(c+b)又9=(1+1+1)^2∴只需证:2(a+b+c)[1/(a+b)+1/(b+c)+1/(c+a)]=[(a+b)+(a+c)+(b+c)][1/(a+b)+1/(b+c)+1/(c+a)]≥(1+1+1)^2=9又a、b 、c互不相等,故等号成立条件无法满足∴原不等式成立求某些函数最值例:求函数y=3√(x-5)+4√(9-x)的最大值。注:“√”表示平方根。 函数的定义域为[5, 9],y>0y=3√(x-5)+4√(9-x)≤√(3^2+4^2)×√{ [√(x-5)] ^2 + [√(9-x)] ^2 }=5×2=10函数在且仅在4√(x-5)=3√(9-x),即x=6.44时取到。以上只是柯西不等式的部分示例。更多示例请参考有关文献。[编辑本段]【柯西简介】柯西(Cauchy, Augustin-Louis, 1789-1857),法国数学家,8月21日生于巴黎,他的父亲路易·弗朗索瓦·柯西是法国波旁王朝的官员,在法国动荡的政治漩涡中一直担任公职。由于家庭的原因,柯西本人属于拥护波旁王朝的正统派,是一位虔诚的天主教徒。他在纯数学和应用数学的功底是相当深厚的,很多数学的定理、公式都以他的名字来称呼,如柯西不等式、柯西积分公式。在数学写作上,他被认为在数量上仅次于欧拉的人,他一生一共著作了789篇论文和几本书,以《分析教程》(1821年)和《关于定积分理论的报告》(1827年)最为著名。不过并不是他所有的创作质量都很高,因此他还曾被人批评“高产而轻率”,这点倒是与数学王子相反。据说,法国科学院《会刊》创刊的时候,由于柯西的作品实在太多,以致于科学院要负担很大的印刷费用,超出科学院的预算,因此,科学院后来规定论文最长的只能够到四页。柯西较长的论文因而只得投稿到其它地方。柯西在代数学、几何学、误差理论以及天体力学、光学、弹性力学诸方面都有出色的工作。特别是,他弄清了弹性理论的基本数学结构,为弹性力学奠定了严格的理论基础
柯西不等式非常重要,灵活巧妙地应用它,可以使一些较为困难的问题迎刃而解。柯西不等式在证明不等式、解三角形、求函数最值、解方程等问题的方面得到应用巧拆常数证不等式例:设a、b、c为正数且互不相等。求证:2/(a+b)+2/(b+c)+2/(c+a)>9/(a+b+c)∵a、b、c均为正数∴为证结论正确,只需证:2(a+b+c)[1/(a+b)+1/(b+c)+1/(c+a)]>9而2(a+b+c)=(a+b)+(a+c)+(c+b)又9=(1+1+1)^2∴只需证:2(a+b+c)[1/(a+b)+1/(b+c)+1/(c+a)]=[(a+b)+(a+c)+(b+c)][1/(a+b)+1/(b+c)+1/(c+a)]≥(1+1+1)^2=9又a、b、c互不相等,故等号成立条件无法满足∴原不等式成立求某些函数最值例:求函数y=3√(x-5)+4√(9-x)的最大值。注:“√”表示平方根。函数的定义域为[5,9],y>0y=3√(x-5)+4√(9-x)≤√(3^2+4^2)×√{[√(x-5)]^2+[√(9-x)]^2}=5×2=10函数在且仅在4√(x-5)=3√(9-x),即x=6.44时取到。以上只是柯西不等式的部分示例。更多示例请参考有关文献。
按照自己内容的研究方向和进度写,具体如下:
20xx-3-01~20xx-3-19:确定论文方向,写出开题报告。
20xx-3-22~20xx-3-26:实习准备工作,搜集相关资料。
20xx-3-29~20xx-4-04:完成论文第一章。
20xx-4-05~20xx-4-18:完成论文第二章。
20xx-4-19~20xx-5-02:完成论文第三章。
20xx-5-02~20xx-5-09:完成论文第四、五章。
20xx-5-10~20xx-5-16:检查修改完成一次论文初稿。
20xx-5-17~20xx-5-29:根据指导老师的讲评及意见,修改并提交二次论文草稿。
20xx-5-30~20xx-5-31:讲评第二次论文草稿、集中解决有关论文漏洞问题并及时修改 20xx-6-01~20xx-6-11:基本完成论文大纲要求,论文成型,指导老师讲评修改并定稿 20xx-6-12~20xx-6-18:整理打印论文、装订论文。
20xx-6-19~20xx-6-30:准备参加答辩。
毕业论文开题报告内容:
一、制作开题报告封面。
每个学校提供的格式可能不一样,一般包括学校标记、论文题目、指导老师、学生姓名、学号、专业、学院、完成时间等信息。
二、介绍课程来源。
课题来源主要有导师提供,学生自选,科研项目等等。这个并不重要,实在不知道怎么写,可以写学校自主命题。
三、说明选题的背景及意义。
这其实是开题报告中最重要的部分,也是学生最应该花时间去思考的。这部分主要说明为什么要研究、研究它有什么价值。而写开题报告的目的,其实就是要请导师来评判自己这个选题有没有研究价值、是否适合研究。
四、说明文献综述。
有些学校要求写文献综述,有些学校只要求写国内外研究现状。其实就是说说别人已经做了什么,是对参考文献的高度概括和综合阐述。写作思路包括简要介绍自己的研究课题是关于什么问题的。
国内、国外的专家学者们已经就相关课题取了哪些成果、还存在哪些问题;自己的课题的必要性及价值,可以解决上述提到的问题。
柯西准则:在大于某个特定的项数n之后,任选两个项的绝对值总会小于一个数(该数值不确定,但恒大于零),则这个数列就是基本数列(收敛数列)。
应用方面
柯西极限存在准则,又称柯西收敛准则,是用来判断某个式子是否收敛的充要条件(不限于数列),主要应用在以下方面:
(1)数列。
(2)数项级数。
(3)函数。
(4)反常积分。
(5)函数列和函数项级数。
每个方面都对应一个柯西准则,因此下文将按照不同的方面对准则进行说明。
逻辑学中
定义:如果有事物情况A,则必然有事物情况B;如果没有事物情况A,则必然没有事物情况B,A就是B的充分必要条件。
充分必要条件是逻辑学在研究假言命题及假言推理时引出的。
陈述某一事物情况是另一件事物情况的充分必要条件的假言命题叫做充分必要条件假言命题。充分必要条件假言命题的一般形式是:p当且仅当q。符号为:p←→q(读作“p等值q”)。
例如:“三角形等边当且仅当三角形等角。”是一个充分必要条件假言命题。
根据充分必要条件假言命题的逻辑性质进行的推理叫充分必要条件假言推理。
欧拉 (Leonhard Euler 公元1707-1783年)欧拉1707年出生在瑞士的巴塞尔(Basel)城,13岁就进巴塞尔大学读书,得到当时最有名的数学家约翰·伯努利(Johann Bernoulli,1667-1748年)的精心指导. 欧拉渊博的知识,无穷无尽的创作精力和空前丰富的著作,都是令人惊叹不已的!他从19岁开始发表论文,直到76岁,半个多世纪写下了浩如烟海的书籍和论文.到今几乎每一个数学领域都可以看到欧拉的名字,从初等几何的欧拉线,多面体的欧拉定理,立体解析几何的欧拉变换公式,四次方程的欧拉解法到数论中的欧拉函数,微分方程的欧拉方程,级数论的欧拉常数,变分学的欧拉方程,复变函数的欧拉公式等等,数也数不清.他对数学分析的贡献更独具匠心,《无穷小分析引论》一书便是他划时代的代表作,当时数学家们称他为"分析学的化身". 欧拉是科学史上最多产的一位杰出的数学家,据统计他那不倦的一生,共写下了886本书籍和论文,其中分析、代数、数论占40%,几何占18%,物理和力学占28%,天文学占11%,弹道学、航海学、建筑学等占3%,彼得堡科学院为了整理他的著作,足足忙碌了四十七年. 欧拉著作的惊人多产并不是偶然的,他可以在任何不良的环境中工作,他常常抱着孩子在膝上完成论文,也不顾孩子在旁边喧哗.他那顽强的毅力和孜孜不倦的治学精神,使他在双目失明以后,也没有停止对数学的研究,在失明后的17年间,他还口述了几本书和400篇左右的论文.19世纪伟大数学家高斯(Gauss,1777-1855年)曾说:"研究欧拉的著作永远是了解数学的最好方法." 欧拉的父亲保罗·欧拉(Paul Euler)也是一个数学家,原希望小欧拉学神学,同时教他一点教学.由于小欧拉的才人和异常勤奋的精神,又受到约翰·伯努利的赏识和特殊指导,当他在19岁时写了一篇关于船桅的论文,获得巴黎科学院的奖的奖金后,他的父亲就不再反对他攻读数学了. 1725年约翰·伯努利的儿子丹尼尔·伯努利赴俄国,并向沙皇喀德林一世推荐了欧拉,这样,在1727年5月17日欧拉来到了彼得堡.1733年,年仅26岁的欧拉担任了彼得堡科学院数学教授.1735年,欧拉解决了一个天文学的难题(计算慧星轨道),这个问题经几个著名数学家几个月的努力才得到解决,而欧拉却用自己发明的方法,三天便完成了.然而过度的工作使他得了眼病,并且不幸右眼失明了,这时他才28岁.1741年欧拉应普鲁士彼德烈大帝的邀请,到柏林担任科学院物理数学所所长,直到1766年,后来在沙皇喀德林二世的诚恳敦聘下重回彼得堡,不料没有多久,左眼视力衰退,最后完全失明.不幸的事情接踵而来,1771年彼得堡的大火灾殃及欧拉住宅,带病而失明的64岁的欧拉被围困在大火中,虽然他被别人从火海中救了出来,但他的书房和大量研究成果全部化为灰烬了. 沉重的打击,仍然没有使欧拉倒下,他发誓要把损失夺回来.在他完全失明之前,还能朦胧地看见东西,他抓紧这最后的时刻,在一块大黑板上疾书他发现的公式,然后口述其内容,由他的学生特别是大儿子A·欧拉(数学家和物理学家)笔录.欧拉完全失明以后,仍然以惊人的毅力与黑暗搏斗,凭着记忆和心算进行研究,直到逝世,竟达17年之久. 欧拉的记忆力和心算能力是罕见的,他能够复述年青时代笔记的内容,心算并不限于简单的运算,高等数学一样可以用心算去完成.有一个例子足以说明他的本领,欧拉的两个学生把一个复杂的收敛级数的17项加起来,算到第50位数字,两人相差一个单位,欧拉为了确定究竟谁对,用心算进行全部运算,最后把错误找了出来.欧拉在失明的17年中;还解决了使牛顿头痛的月离问题和很多复杂的分析问题.欧拉的风格是很高的,拉格朗日是稍后于欧拉的大数学家,从19岁起和欧拉通信,讨论等周问题的一般解法,这引起变分法的诞生.等周问题是欧拉多年来苦心考虑的问题,拉格朗日的解法,博得欧拉的热烈赞扬,1759年10月2日欧拉在回信中盛称拉格朗日的成就,并谦虚地压下自己在这方面较不成熟的作品暂不发表,使年青的拉格朗日的工作得以发表和流传,并赢得巨大的声誉.他晚年的时候,欧洲所有的数学家都把他当作老师,著名数学家拉普拉斯(Laplace)曾说过:"欧拉是我们的导师." 欧拉充沛的精力保持到最后一刻,1783年9月18日下午,欧拉为了庆祝他计算气球上升定律的成功,请朋友们吃饭,那时天王星刚发现不久,欧拉写出了计算天王星轨道的要领,还和他的孙子逗笑,喝完茶后,突然疾病发作,烟斗从手中落下,口里喃喃地说:"我死了",欧拉终于"停止了生命和计算". 欧拉的一生,是为数学发展而奋斗的一生,他那杰出的智慧,顽强的毅力,孜孜不倦的奋斗精神和高尚的科学道德,永远是值得我们学习的. 欧拉在数学上的建树很多,对著名的哥尼斯堡七桥问题的解答开创了图论的研究。欧拉还发现 ,不论什么形状的凸多面体,其顶点数v、棱数e、面数f之间总有v-e+f=2这个关系。v-e+f被称为欧拉示性数,成为拓扑学的基础概念。在数论中,欧拉首先引进了重要的欧拉函数φ(n),用多种方法证明了费马小定理。以欧拉的名字命名的数学公式、定理等在数学书籍中随处可见, 与此同时,他还在物理、天文、建筑以至音乐、哲学方面取得了辉煌的成就。〔欧拉还创设了许多数学符号,例如π(1736年),i(1777年),e(1748年),sin和cos(1748年),tg(1753年),△x(1755年),∑(1755年),f(x)(1734年)等.柯西柯西,A.L.(Cauchy,Augustin-Louis)1789年8月21日生于法国巴黎;1857年5月22日卒于法国斯科。数学、数学物理、力学。数学分析严格化的开拓者分析严格化的需要柯西怀着严格化的明确目标,为数学分析建立了一个基本严谨的完整体系。他说:“至于方法,我力图赋予……几何学中存在的严格性,决不求助于从代数一般性导出的推理。这种推理……只能认为是一种推断,有时还适用于提示真理,但与数学科学的令人叹服的严谨性很不相符。”他说他通过分析公式成立的条件和规定所用记号的意义,“消除了所有不确定性”,并说:“我的主要目标是使严谨性(这是我在《分析教程》中为自己制定的准绳)与基于无穷小的直接考虑所得到的简单性和谐一致。”极限与无穷小柯西规定:“当一个变量相继取的值无限接近于一个固定值,最终与此固定值之差要多小就有多小时,该值就称为所有其他值的极限。”“当同一变量相继取的数值无限减小以至降到低于任何给定的数,这个变量就成为人们所称的无穷小或无穷小量。这类变量以零为其极限。”“当同一变量相继取的数值越来越增加以至升到高于每个给定的数,如果它是正变量,则称它以正无穷为其极限,记作∞;如果是负变量,则称它以负无穷为其极限,记作-∞。”从字面上看,柯西的定义与在此以前达朗贝尔、拉克鲁瓦所给的定义差别不大,但实际上有巨大改进。首先,柯西常常把他的定义转述为不等式。在讨论复杂表达式的极限时,他用了ε-δ论证法的雏型。其次,他首次放弃了过去定义中常有的“一个变量决不会超过它的极限”这类不必要的提法,也不提过去定义中常涉及的一个变量是否“达到”它的极限,而把重点放在变量具有极限时的性态。最后,他以极限为基础定义无穷小和微积分学中的基本概念,建立了级数收敛性的一般理论。函数及其连续性柯西以接近于现代的方式定义单元函数:“当一些变量以这样的方式相联系,即当其中之一给定时,能推知所有其他变量的值,则通常就认为这些变量由前一变量表示,此变量取名为自变量,而其余由自变量表示的变量,就是通常所说的该自变量的一些函数。”他以类似方式定义多元函数,并区别了显函数和隐函数,用他建立的微分方程解的存在性定理在较强条件下证明了隐函数的局部存在性。柯西给出了连续的严格定义:“函数f(x)是处于两个指定界限之间的变量x的连续函数,如果对这两个界限之间的每个值x,差f(x+a)-f(x)的数值随着a无限减小。换言之,……变量的无穷小增量总导致函数本身的无穷小增量。”在一个附录中,他给出了闭区间上连续函数介值性质的严格证明,其中用到了“区间套”思想。微分学柯西按照前人方式用差商的极限定义导数,但在定义中多了一句:“当这个极限存在时,……用加撇符号y'或f'(x)表示。”这表明他已用崭新的方式考虑问题。他把导数定义转述为不等式,由此证明有关的各种定理。柯西以割线的极限位置切线,用中值定理证明极限点处切线的水平性。他证明了f'(x0)=……=f(n-1)(x0)=0时用f(n)(x0)的符号判断极大、极小的命题。他由自己的中值定理推导出洛必达法则。这样,他就为微分学的应用奠定了严格的理论基础。积分学他既给出了连续函数定积分的定义,又证明了它的存在性。他还指出这种定义对于不能把被积函数转化为原函数的一般情形也适用。他给出了现在通用的广义积分的定义。柯西简洁而严格地证明了微积分学基本定理即牛顿-莱布尼茨公式。他利用定积分严格证明了带余项的泰勒公式,还用微分与积分中值定理表示曲边梯形的面积,推导了平面曲线之间图形的面积、曲面面积和立体体积的公式。柯西的定义是从仅把积分看作微分逆运算走向现代积分理论的转折点,他坚持先证明存在性则是从依赖直觉到严格分析的转折点。级数论柯西是第一个认识到无穷级数论并非多项式理论的平凡推广而应当以极限为基础建立其完整理论的数学家。他以部分和有限定义级数收敛并以此极限定义收敛级数之和。18世纪中许多数学家都隐约地使用过这种定义,柯西则明确地陈述这一定义,并以此为基础比较严格地建立了完整的级数论。他给出所谓“柯西准则”,证明了必要性,并以理所当然的口气断定充分性。对于正项级数,他严格证明了比率判别法和他创造的根式判别法;指出∑Un与∑2nU2n同时收敛或发散,由此推出一些常用级数的敛散性;证明两个收敛级数∑的积级数∑收敛。对于一般项级数,他引进了绝对收敛概念,指出绝对收敛级数必收敛;收敛级数之和收敛,但积不一定收敛,并举出反例对于幂级数,柯西得到了收敛半径公式,他以例子f(x)=e-1/x2表明,一个函数可为它的泰勒级数代替只当后者收敛且其和等于所给函数。影响在柯西手里,微积分构成了由定义、定理及其证明和有关的各种应用组成的逻辑上紧密联系的体系。他的分析教程成为严格分析诞生的起点。复变函数论的奠基人19世纪,复变函数论逐渐成为数学的一个独立分支,柯西为此作了奠基性的工作。复函数与复幂级数《分析教程》中有一半以上篇幅讨论复数与初等复函数,这表明柯西早就把建立复变函数论作为分析的一项重要工程。他以形式方法引进复数(“虚表示式”),定义其基本运算,得到这些运算的性质。他比照实的情形定义复无穷小与复函数的连续性。复积分柯西写于1814年的关于定积分的论文是他创立复变函数论的第一步。文中给出了所谓柯西-黎曼方程;讨论了改变二重积分的次序问题,提出了被积函数有无穷型间断点时主值积分的观念并计算了许多广义积分。柯西写于1825年的关于积分限为虚数的定积分的论文,是一篇力作。文中提出了作为单复变函数论基础的“柯西积分定理”。柯西本人用变分方法证明了这条定理,证明中曲线连续变形的思想,可以说是“同伦”观念的萌芽。文中还讨论了被积函数出现一阶与m阶极点时广义积分的计算。残数演算术语“残数”首次出现于柯西在1826年写的一篇论文中。他认为残数演算已成为“一种类似于微积分的新型计算方法”,可以应用于大量问题。复变函数论的建立C.A.布里奥于1859年出版了《双周期函数论》,阐明了柯西理论的对象,系统阐述了复变函数论,对于把柯西的观念传播到全欧洲起了决定性作用,标志着单复变函数论正式形成。
数学,起源于人类早期的生产活动,为中国古代六艺之一,亦被古希腊学者视为哲学之起点。数学的希腊语μαθηματικ??(mathematikós)意思是“学问的基础”,源于μ?θημα(máthema)(“科学,知识,学问”)。 数学的演进大约可以看成是抽象化的持续发展,或是题材的延展。第一个被抽象化的概念大概是数字,其对两个苹果及两个橘子之间有某样相同事物的认知是人类思想的一大突破。 除了认知到如何去数实际物质的数量,史前的人类亦了解了如何去数抽象物质的数量,如时间-日、季节和年。算术(加减乘除)也自然而然地产生了。古代的石碑亦证实了当时已有几何的知识。 更进一步则需要写作或其他可记录数字的系统,如符木或于印加帝国内用来储存数据的奇普。历史上曾有过许多且分歧的记数系统。 从历史时代的一开始,数学内的主要原理是为了做税务和贸易等相关计算,为了了解数字间的关系,为了测量土地,以及为了预测天文事件而形成的。这些需要可以简单地被概括为数学对数量、结构、空间及时间方面的研究。 到了16世纪,算术、初等代数、以及三角学等初等数学已大体完备。17世纪变量概念的产生使人们开始研究变化中的量与量的互相关系和图形间的互相变换。在研究经典力学的过程中,微积分的方法被发明。随着自然科学和技术的进一步发展,为研究数学基础而产生的集合论和数理逻辑等也开始慢慢发展。 数学从古至今便一直不断地延展,且与科学有丰富的相互作用,并使两者都得到好处。数学在历史上有着许多的发现,并且直至今日都还不断地发现中。依据Mikhail B. Sevryuk于美国数学会通报2006年1月的期刊中所说,“存在于数学评论数据库中论文和书籍的数量自1940年(数学评论的创刊年份)现已超过了一百九十万份,而且每年还增加超过七万五千份的细目。此一学海的绝大部份为新的数学定理及其证明。”
这都不会???丢人!百度一下全都有了
不等式的解法
所谓不等式,是指用符号“>”“<”表示大小关系的式子,叫作不等式。用“≠”表示不等关系的式子。
不同类型的不等式,有不同的解法。
方法/步骤
含绝对值不等式(关键是去掉绝对值)
在不等式应用中,经常涉及质量、面积、体积等,也涉及某些数学对象(如实数、向量)的大小或绝对值。它们都是通过非负数来度量的。
公式:||a|-|b|| ≤|a±b|≤|a|+|b|
整式不等式
整式不等式两边都是整式(即未知数不在分母上)。
一元一次不等式:含有一个未知数(即一元),并且未知数的次数是1次(即一次)的不等式。如3-x>0
同理,二元一次不等式:含有两个未知数(即二元),并且未知数的次数是1次(即一次)的不等式。
根轴法(零点分段法)
1) 化简(将不等式化为不等号右边为0,左边的最高次项系数为正);
2) 分解因式;
3) 标根(令每个因式为0,求出相应的根,并将此根标在数轴上。注意:能取的根打实心点,不能去的打空心);
4)穿线写解集(从右到左,从上到下依次穿线。注意:偶次重根不能穿过);
一元二次不等式解法步骤:
1) 化简(将不等式化为不等号右边为0,左边的最高次项系数为正);
2) 首先考虑分解因式;不易分解则判断,当时解方程(利用求根公式)
3) 画图写解集(能取的根打实心点,不能去的打空心)
分式不等式
与分式方程类似,像f(x)/g(x)>0或f(x)/g(x)<0(其中f(x)、g(x)为整式且g(x)不为0)这样,分母中含有未知数的不等式
指数、对数不等式对数不等式是一种两边由对数构成的不等式
指数不等式是指数中含有未知数的不等式叫指数不等式。
不等式组的口诀解法
(一)同大取大
如果两个不等式的解集都是大于某数时,那么不等式的解集就是大于大数
(二)同小取小
如果两个不等式的解集都是小于某数时,那么不等式组的解集就是小于小数
(三)大小小大中间
如果不等式组中的一个不等式的解集是大于小数,另一个不等式的解集是小于大数,那么这个不等式组的解集就是小数与大数之间的部分
(四)大大小小找不到
如果不等式组中的一个不等式的解集是大于大数,另一个不等式的解集是小于小数,那么不等式组就是无解
不等式的解法:1、找出未知数的项、常数项,该化简的化简。2、未知数的项放不等号左边,常数项移到右边。3、不等号两边进行加减乘除运算。4、不等号两边同除未知数的系数,注意符号的改变。1.符号:不等式两边都乘以或除以一个负数,要改变不等号的方向。2.确定解集:比两个值都大,就比大的还大;比两个值都小,就比小的还小;比大的大,比小的小,无解;比小的大,比大的小,有解在中间。三个或三个以上不等式组成的不等式组,可以类推。3.另外,也可以在数轴上确定解集:把每个不等式的解集在数轴上表示出来,数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集。有几个就要几个。带=号的,数轴上的点是实心的,反之,就是空心的。用符号“>”“<”表示大小关系的式子,叫作不等式。用“≠”表示不等关系的式子也是不等式。通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,……,z)≤G(x,y,……,z )(其中不等号也可以为 中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。一般地,用纯粹的大于号“>”、小于号“<”表示大小关系的式子,叫作不等式。用“≠”表示不等关系的式子也是不等式。其中,两边的解析式的公共定义域称为不等式的定义域。整式不等式两边都是整式(即未知数不在分母上)。一元一次不等式:含有一个未知数(即一元),并且未知数的次数是1次(即一次)的不等式。如3-x>0同理,二元一次不等式:含有两个未知数(即二元),并且未知数的次数是1次(即一次)的不等式。①如果x>y,那么y