首页

> 学术发表知识库

首页 学术发表知识库 问题

柯西中值定理毕业论文

发布时间:

柯西中值定理毕业论文

柯西中值定理是拉格朗日中值定理的推广,是微分学的基本定理之一。 若令u=f(x),v=g(x),这个形式可理解为参数方程,而[f(a)-f(b)]/[g(a)-g(b)]则是连接参数曲线的端点斜率,f'(ξ)/g'(ξ)表示曲线上某点处的切线斜率,在定理的条件下,可理解如下: 用参数方程表示的曲线上至少有一点,它的切线平行于两端点所在的弦。

罗尔定理用连续性证明,柯西中值定理用罗尔定理证明

罗尔定理证明:

令f(x)=e^x-ex, 在【1,x】上用拉格朗日中值定理。

则f(x)-f(0)=f'(u)(x-1), 10 (x>1)。

所以 e^x>ex。

柯西中值定理的证明:

因为函数 f(x) 在闭区间[a,b] 上连续,所以存在最大值与最小值,分别用 M 和 m 表示,分两种情况讨论:

若 M=m,则函数 f(x) 在闭区间 [a,b] 上必为常函数,结论显然成立。

若 M>m,则因为 f(a)=f(b) 使得最大值 M 与最小值 m 至少有一个在 (a,b) 内某点ξ处取得,从而ξ是f(x)的极值点,又条件 f(x) 在开区间 (a,b) 内可导得,f(x) 在 ξ 处取得极值,由费马引理推知:f'(ξ)=0。

另证:若 M>m ,不妨设f(ξ)=M,ξ∈(a,b),由可导条件知,f'(ξ+)<=0,f'(ξ-)>=0,又由极限存在定理知左右极限均为 0,得证。

扩展资料:

柯西中值定理的一个最重要的应用就是可以推导计算待定型的极限最有效的方法——洛必达法则。

洛必达法则是求两个无穷小量或两个无穷大量的比的极限。在满足一定条件下可以化成两个函数的导数的比值极限,这样就有可能使得原待定型变成简便而有效的求非待定型极限的问题。

我们得出下面这个定理(洛必达法则):

⑴两个函数

在开区间

可微,并且在这个开区间上,

的导数不等于0;

⑵存在极限

(或

),其中A为一个有限的常数。则在以下情况下:

(或者

)。那么就有:

(或

)。在区间的另一个端点也存在相类似的结果。这个定理就称之为洛必达法则,能有效地应用于待定型的极限计算。

参考资料来源:百度百科--罗尔定理

参考资料来源:百度百科--柯西中值定理

柯西中值定理最主要的应用是证明带有拉格朗日余项的n阶泰勒公式,只要反复使用柯西中值定理多次就能证明;柯西中值定理粗略地表明,对于两个端点之间的给定平面弧,至少有一个点,使曲线在该点的切线平行于两端点所在的弦。

柯西中值定理其几何意义为,用参数方程表示的曲线上至少有一点,它的切线平行于两端点所在的弦。该定理可以视作在参数方程下拉格朗日中值定理的表达形式,主要应用于证明等式、不等式、求极限等。

扩展资料:

柯西中值定理比罗尔(Rolle) 定理与拉格朗日(Lagrange) 中值定理更具一般性,也具有更广泛的应用性,但大多高等数学的教材中仅介绍了柯西中值定理及其证明,对该定理的应用涉及较少,不利于学生对该定理的理解并发挥其应用价值。

柯西中值定理的一个最重要的应用就是可以推导计算待定型的极限最有效的方法——洛必达法则;在满足一定条件下可以化成两个函数的导数的比值极限,这样就有可能使得原待定型变成简便而有效的求非待定型极限的问题。

积分中值定理毕业论文

论文的题目是论文的眼睛 ,是一篇文章成功的关键。下面我将为你推荐关于数学专业毕业论文题目参考的内容,希望能够帮到你!

1. 圆锥曲线的性质及推广应用

2. 经济问题中的概率统计模型及应用

3. 通过逻辑趣题学推理

4. 直觉思维的训练和培养

5. 用高等数学知识解初等数学题

6. 浅谈数学中的变形技巧

7. 浅谈平均值不等式的应用

8. 浅谈高中立体几何的入门学习

9. 数形结合思想

10. 关于连通性的两个习题

11. 从赌博和概率到抽奖陷阱中的数学

12. 情感在数学教学中的作用

13. 因材施教因性施教

14. 关于抽象函数的若干问题

15. 创新教育背景下的数学教学

16. 实数基本理论的一些探讨

17. 论数学教学中的心理环境

18. 以数学教学为例谈谈课堂提问的设计原则

1. 网络优化

2. 泰勒公式及其应用

3. 浅谈中学数学中的反证法

4. 数学选择题的利和弊

5. 浅谈计算机辅助数学教学

6. 论研究性学习

7. 浅谈发展数学思维的学习方法

8. 关于整系数多项式有理根的几个定理及求解方法

9. 数学教学中课堂提问的误区与对策

10. 中学数学教学中的创造性思维的培养

11. 浅谈数学教学中的“问题情境”

12. 市场经济中的蛛网模型

13. 中学数学教学设计前期分析的研究

14. 数学课堂差异教学

15. 一种函数方程的解法

16. 积分中值定理的再讨论

17. 二阶变系数齐次微分方程的求解问题

18. 毕业设计课题(论文主题等)

19. 浅谈线性变换的对角化问题

1. 浅谈奥数竟赛的利与弊

2. 浅谈中学数学中数形结合的思想

3. 浅谈中学数学中不等式的教学

4. 中数教学研究

5. XXX课程网上教学系统分析与设计

6. 数学CAI课件开发研究

7. 中等职业学校数学教学改革研究与探讨

8. 中等职业学校数学教学设计研究

9. 中等职业学校中外数学教学的比较研究

10. 中等职业学校数学教材研究

11. 关于数学学科案例教学法的探讨

12. 中外著名数学家学术思想探讨

13. 试论数学美

14. 数学中的研究性学习

15. 数字危机

16. 中学数学中的化归方法

17. 高斯分布的启示

毕业论文主要目的是培养学生综合运用所学知识和技能,理论联系实际,独立分析,解决实际问题的能力,你知道本科数学论文题目都有哪些吗?接下来我为你推荐本科数学毕业论文题目,仅供参考。

本科数学毕业论文题目

★浅谈奥数竟赛的利与弊

★浅谈中学数学中数形结合的思想

★浅谈高等数学与中学数学的联系,如何运用高等数学于中学数学教学中 ★浅谈中学数学中不等式的教学

★中数教学研究

★XXX课程网上教学系统分析与设计

★数学CAI课件开发研究

★中等职业学校数学教学改革研究与探讨

★中等职业学校数学教学设计研究

★中等职业学校中外数学教学的比较研究

★中等职业学校数学教材研究

★关于数学学科案例教学法的探讨

★中外著名数学家学术思想探讨

★试论数学美

★数学中的研究性学习

★数字危机

★中学数学中的化归方法

★高斯分布的启示

★a二+b二≧二ab的变形推广及应用

★网络优化

★泰勒公式及其应用

★浅谈中学数学中的反证法

★数学选择题的利和弊

★浅谈计算机辅助数学教学

★论研究性学习

★浅谈发展数学思维的学习方法

★关于整系数多项式有理根的几个定理及求解方法

★数学教学中课堂提问的误区与对策

★怎样发掘数学题中的隐含条件

★数学概念探索式教学

★从一个实际问题谈概率统计教学

★教学媒体在数学教学中的作用

★数学问题解决及其教学

★数学概念课的特征及教学原则

★数学美与解题

★创造性思维能力的培养和数学教学

★教材顺序的教学过程设计创新

★排列组合问题的探讨

★浅谈初中数学教材的思考

★整除在数学应用中的探索

★浅谈协作机制在数学教学中的运用

★课堂标准与数学课堂教学的研究与实践

★浅谈研究性学习在数学教学中的渗透与实践

★关于现代中学数学教育的思考

★在中学数学教学中教材的使用

★情境教学的认识与实践

★浅谈初中代数中的二次函数

★略论数学教育创新与数学素质提高

★高中数学“分层教学”的初探与实践

★在中学数学课堂教学中如何培养学生的创新思维

★中小学数学的教学衔接与教法初探

★如何在初中数学教学中进行思想方法的渗透

★培养学生创新思维全面推进课程改革

★数学问题解决活动中的反思

★数学:让我们合理猜想

★如何优化数学课堂教学

★中学数学教学中的创造性思维的培养

★浅谈数学教学中的“问题情境”

★市场经济中的蛛网模型

★中学数学教学设计前期分析的研究

★数学课堂差异教学

★一种函数方程的解法

★浅析数学教学与创新教育

★数学文化的核心—数学思想与数学方法

★漫话探究性问题之解法

★浅论数学教学的策略

★当前初中数学教学存在的问题及其对策

★例谈用“构造法”证明不等式

★数学研究性学习的探索与实践

★数学教学中创新思维的培养

★数学教育中的科学人文精神

★教学媒体在数学教学中的应用

★“三角形的积化和差”课例大家评

★谈谈类比法

★直觉思维在解题中的应用

★数学几种课型的问题设计

★数学教学中的情境创设

★在探索中发展学生的创新思维

★精心设计习题提高教学质量

★对数学教育现状的分析与建议

★创设情景教学生猜想

★反思教学中的一题多解

★在不等式教学中培养学生的探究思维能力

★浅谈数学学法指导

★中学生数学能力的培养

★数学探究性活动的内容形式及教学设计

★浅谈数学学习兴趣的培养

★浅谈课堂教学的师生互动

★新世纪对初中数学的教材的思考

★数学教学的现代研究

★关于学生数学能力培养的几点设想

★在数学教学中培养学生创新能力的尝试

★积分中值定理的再讨论

★二阶变系数齐次微分方程的求解问题

★浅谈培养学生的空间想象能力

★培养数学能力的重要性和基本途径 ★课堂改革与数学中的创新教育

★如何实施中学数学教学中的素质教育 ★数学思想方法在初中数学教学中的渗透 ★浅谈数学课程的设计

★培养学生学习数学的兴趣

★课堂教学与素质教育探讨

★数学教学要着重培养学生的读书能力 ★数学基础知识的教学和基本能力的培养 ★初中数学创新教育的实施

★浅谈数学教学中培养学生的数学思维能力 ★谈数学教学中差生的转化问题

★谈中学数学概念教学中如何实施探索式教学 ★把握学生心理激发数学学习兴趣

★数学教学中探究性学习策略

★论数学课堂教学的语言艺术

★数学概念的教与学

★优化课堂教学推进素质教育

★数学教学中的情商因素

★浅谈创新教育

★培养学生的数学兴趣的实施途径

★论数学学法指导

★学生能力在数学教学中的培养

★浅论数学直觉思维及培养

★论数学学法指导

★优化课堂教学焕发课堂活力

★浅谈高初中数学教学衔接

★如何搞好数学教育教学研究

★浅谈线性变换的对角化问题

本科数学毕业论文范文:高等数学教学中体现数学建模思想的方法

生产计划是对生产全过程进行合理规划的有效手段,是一个十分繁复的过程,以下是我搜集整理的一篇探究高等数学教学中体现数学建模思想的方法的范文,欢迎阅读参考。

1数学建模在煤矿安全生产中的意义

在瓦斯系统的研究过程中,应用数学建模的手段为矿井瓦斯构建数学模型,可以为采煤方案的设计和通风系统的建设提供很大的帮助;尤其是对于我国众多的中小型煤矿而言,因为资金有限而导致安全设施不完善,有的更是没有安全项目的投入,仅仅建设了极为少量的给风设备,通风系统并不完善。这些煤矿试图依靠通风量来对瓦斯体积分数进行调控,这是十分困难的,对瓦斯体积分数进行预测更是不可能的。很多小煤矿使用的仍旧是十分原始的采煤方法,没有相关的规划;当瓦斯等有害气体体积分数升高之后就停止挖掘,体积分数下降之后又继续进行开采。这种开采方式的工作效率十分低下。

只要设计一个充分合理的通风系统的通风量,与采煤速度处于一个动态的平衡状态,就可以在不延误煤炭开采的同时将矿井内的瓦斯气体体积分数控制在一个安全的范围之内。这样不仅可以保障工人的安全,还可以保证煤炭的开采效率,每个矿井都会存在着这样的一个平衡点,这就对矿井瓦斯涌出量判断的准确性提出更高的要求。

2煤矿生产计划的优化方法

生产计划是对生产全过程进行合理规划的有效手段,是一个十分繁复的过程,涉及到的约束因素很多,条理性很差。为了成功解决这个复杂的问题,现将常用的生产计划分为两个大类。

2.1基于数学模型的方法

(1)数学规划方法这个规划方法设计了很多种各具特点的手段,根据生产计划做出一个虚拟的模型,在这里主要讨论的是处于静止状态下所产生的问题。从目前取得的效果来看,研究的方向正在逐渐从小系统向大系统推进,从过去的单个层次转换到多个层次。

(2)最优控制方法这种方式应用理论上的控制方法对生产计划进行了研究,而在这里主要是针对其在动态情况下的问题进行探讨。

2.2基于人工智能方法

(1)专家系统方法专家系统是一种将知识作为基础的为计算机编程的系统,对于某个领域的繁复问题给出一个专家级别的解决方案。而建立一个专家系统的关键之处在于,要预先将相关专家的知识等组成一个资料库。其由专家系统知识库、数据库和推理机制构成。

(2)专家系统与数学模型相结合的方法常见的有以下几种类型:①根据不同情况建立不同的数学模型,而后由专家系统来进行求解;②将复杂的问题拆分为多个简单的子问题,而后针对建模的子问题进行建模,对于难以进行建模的问题则使用专家系统来进行处理。在整体系统中两者可以进行串行工作。

3煤矿安全生产中数学模型的优化建立

根据相关数据资料来进行模拟,而后再使用系统分析来得出适合建立哪种数学模型。取几个具有明显特征的采矿点进行研究。在煤矿挖掘的过程中瓦斯体积分数每时每刻都在变化,可以通过通风量以及煤炭采集速度来保证矿中瓦斯体积分数处在一个安全的范围之内。假设矿井分为地面、地下一层与地下二层工作面,取地下一层两个矿井分别为矿井A、矿井B,地下二层分别为矿井C、矿井D.然后对其进行分析。

3.1建立简化模型

3.1.1模型构建表达工作面A瓦斯体积分数x·1=a1x1+b1u1-c1w1-d1w2(1)式中x1---A工作面瓦斯体积分数;u1---A工作面采煤进度;w1---A矿井所对应的空气流速;w2---相邻B工作面的空气流速;a1、b1、c1、d1---未知量系数。

很明显A工作面的通风量对自身瓦斯体积分数所产生的影响要显着大于B工作面的风量,从数学模型上反映出来就是要求c1>d1.同样的B工作面(x·2)和工作面A所在的位置很相似,也就应该具有与之接近的数学关系式

式中x2---B工作面瓦斯体积分数;

u2---B工作面采煤进度;

w1---B矿井所对应的空气流速;

w2---相邻A工作面的空气流速;

a2、b2、c2、d2---未知量系数。

CD工作面(x·3、x·4)都位于B2层的位置,其工作面瓦斯体积分数不只受到自身开采进度情况的影响,还受到上层AB通风口开阔度的影响。在这里,C、D工作面瓦斯体积分数就应该和各个通风口的通风量有着密不可分的联系;于是C、D工作面瓦斯体积分数可以表示为【3】

式中x3、x4---C、D工作面的瓦斯体积分数;

e1、e2---A、B工作面的瓦斯体积分数;

a3、b3、c3、d3---未知量系数:

f1、f2---A、B工作面的瓦斯绝对涌出量。

3.1.2系统简化模型的辨识这个简化模型其实就是对于参数的最为初步的求解,也就是在一段时间内的实际测量所得数据作为流通量,对上面方程组进行求解操作。而后得到数学模型,将实际数据和预测数据进行多次较量,再加入相关人员的长期经验(经验公式)。修正之后的模型依旧使用上述的方法来进行求解,因为A、B工作面基本不会受C、D工作面的影响。

3.2模型的转型及其离散化

因为这个项目是一个矿井安全模拟系统,要对数学模型进行离散型研究,这是使用随机数字进行试数求解的关键步骤。离散化之后的模型为【1】

在使用原始数据来对数学模型进行辨识的过程中,ui表示开采进度,以t/d为单位,相关风速单位是m/s,k为工作面固定系数,h为4个工作面平均深度。为了便于将该系统转化为计算机语言,把开采进度ui从初始的0~1000t/d范围,转变为0~1,那么在数字化采煤中进度单位1即表示1000t/d,如果ui=0.5就表示每日产煤量500t.诸如此类,工作面空气流通速度wi的原始取值范围是0~4m/s,对其进行数字化,其新数值依旧是0~1,也就表示这wi取1时表示风速为4m/s,若0.5表示通风口的开通程度是0.5,也就是通风口打开一半(2m/s),wi如果取1则表示通风口开到最大。

依照上述分析来进行数字化转换,数据都会产生变化,经过计算之后可以得到新的参数数据,在计算的过程之中使用0~1的数据是为了方便和计算机语言的转换,在进行仿真录入时在0~1之间的一个有效数字就会方便很多。开采进度ui的取值范围0~1表示的是每日产煤数量区间是0~1000t,而风速wi取值0~1所表示的是风速取值在0~4m/s这个区间之内。

3.3模型的应用效果及降低瓦斯体积分数的措施

以上对煤矿生产中的常见问题进行了相关分析,发现伴随着时间的不断增长瓦斯涌体积分数等都会逐渐衰减,一段时间后就会变得微乎其微,这就表明这类资料存在着一个衰减周期,经过长期观测发现衰减周期T≈18h.而后,又研究了会对瓦斯涌出量产生影响的其他因素,发现在使用炮采这种方式时瓦斯体积分数会以几何数字的速度衰减,使用割煤手段进行采矿时瓦斯会大量涌出,其余工艺在采煤时并不会导致瓦斯体积分数产生剧烈波动。瓦斯的涌出量伴随着挖掘进度而提升,近乎于成正比,而又和通风量成反比关系。因为新矿的瓦斯体积分数比较大,所以要及时将煤运出,尽量缩短在煤矿中滞留的时间,从而减小瓦斯涌出总量。

综上所述,降低工作面瓦斯体积分数常用手段有以下几种:①将采得的煤快速运出,使其在井中停留的时间最短;②增大工作面的通风量;③控制采煤进度,同时也可以控制瓦斯的涌出量。

4结语

应用数学建模的手段对矿井在采矿过程中涌出的瓦斯体积分数进行了模拟及预测,为精确预测矿井瓦斯体积分数提供了一个新的思路,对煤矿安全高效生产提供了帮助,有着重要的现实意义。

参考文献:

[1]陈荣强,姚建辉,孟祥龙.基于芯片控制的煤矿数控液压站的设计与仿真[J].科技通报,2012,28(8):103-106.

[2]陈红,刘静,龙如银.基于行为安全的煤矿安全管理制度有效性分析[J].辽宁工程技术大学学报:自然科学版,2009,28(5):813-816.

[3]李莉娜,胡新颜,刘春峰.煤矿电网谐波分析与治理研究[J].煤矿机械,2011,32(6):235-237.

柯西准则毕业论文

柯西准则:在大于某个特定的项数n之后,任选两个项的绝对值总会小于一个数(该数值不确定,但恒大于零),则这个数列就是基本数列(收敛数列)。

应用方面

柯西极限存在准则,又称柯西收敛准则,是用来判断某个式子是否收敛的充要条件(不限于数列),主要应用在以下方面:

(1)数列。

(2)数项级数。

(3)函数。

(4)反常积分。

(5)函数列和函数项级数。

每个方面都对应一个柯西准则,因此下文将按照不同的方面对准则进行说明。

逻辑学中

定义:如果有事物情况A,则必然有事物情况B;如果没有事物情况A,则必然没有事物情况B,A就是B的充分必要条件。

充分必要条件是逻辑学在研究假言命题及假言推理时引出的。

陈述某一事物情况是另一件事物情况的充分必要条件的假言命题叫做充分必要条件假言命题。充分必要条件假言命题的一般形式是:p当且仅当q。符号为:p←→q(读作“p等值q”)。

例如:“三角形等边当且仅当三角形等角。”是一个充分必要条件假言命题。

根据充分必要条件假言命题的逻辑性质进行的推理叫充分必要条件假言推理。

欧拉 (Leonhard Euler 公元1707-1783年)欧拉1707年出生在瑞士的巴塞尔(Basel)城,13岁就进巴塞尔大学读书,得到当时最有名的数学家约翰·伯努利(Johann Bernoulli,1667-1748年)的精心指导. 欧拉渊博的知识,无穷无尽的创作精力和空前丰富的著作,都是令人惊叹不已的!他从19岁开始发表论文,直到76岁,半个多世纪写下了浩如烟海的书籍和论文.到今几乎每一个数学领域都可以看到欧拉的名字,从初等几何的欧拉线,多面体的欧拉定理,立体解析几何的欧拉变换公式,四次方程的欧拉解法到数论中的欧拉函数,微分方程的欧拉方程,级数论的欧拉常数,变分学的欧拉方程,复变函数的欧拉公式等等,数也数不清.他对数学分析的贡献更独具匠心,《无穷小分析引论》一书便是他划时代的代表作,当时数学家们称他为"分析学的化身". 欧拉是科学史上最多产的一位杰出的数学家,据统计他那不倦的一生,共写下了886本书籍和论文,其中分析、代数、数论占40%,几何占18%,物理和力学占28%,天文学占11%,弹道学、航海学、建筑学等占3%,彼得堡科学院为了整理他的著作,足足忙碌了四十七年. 欧拉著作的惊人多产并不是偶然的,他可以在任何不良的环境中工作,他常常抱着孩子在膝上完成论文,也不顾孩子在旁边喧哗.他那顽强的毅力和孜孜不倦的治学精神,使他在双目失明以后,也没有停止对数学的研究,在失明后的17年间,他还口述了几本书和400篇左右的论文.19世纪伟大数学家高斯(Gauss,1777-1855年)曾说:"研究欧拉的著作永远是了解数学的最好方法." 欧拉的父亲保罗·欧拉(Paul Euler)也是一个数学家,原希望小欧拉学神学,同时教他一点教学.由于小欧拉的才人和异常勤奋的精神,又受到约翰·伯努利的赏识和特殊指导,当他在19岁时写了一篇关于船桅的论文,获得巴黎科学院的奖的奖金后,他的父亲就不再反对他攻读数学了. 1725年约翰·伯努利的儿子丹尼尔·伯努利赴俄国,并向沙皇喀德林一世推荐了欧拉,这样,在1727年5月17日欧拉来到了彼得堡.1733年,年仅26岁的欧拉担任了彼得堡科学院数学教授.1735年,欧拉解决了一个天文学的难题(计算慧星轨道),这个问题经几个著名数学家几个月的努力才得到解决,而欧拉却用自己发明的方法,三天便完成了.然而过度的工作使他得了眼病,并且不幸右眼失明了,这时他才28岁.1741年欧拉应普鲁士彼德烈大帝的邀请,到柏林担任科学院物理数学所所长,直到1766年,后来在沙皇喀德林二世的诚恳敦聘下重回彼得堡,不料没有多久,左眼视力衰退,最后完全失明.不幸的事情接踵而来,1771年彼得堡的大火灾殃及欧拉住宅,带病而失明的64岁的欧拉被围困在大火中,虽然他被别人从火海中救了出来,但他的书房和大量研究成果全部化为灰烬了. 沉重的打击,仍然没有使欧拉倒下,他发誓要把损失夺回来.在他完全失明之前,还能朦胧地看见东西,他抓紧这最后的时刻,在一块大黑板上疾书他发现的公式,然后口述其内容,由他的学生特别是大儿子A·欧拉(数学家和物理学家)笔录.欧拉完全失明以后,仍然以惊人的毅力与黑暗搏斗,凭着记忆和心算进行研究,直到逝世,竟达17年之久. 欧拉的记忆力和心算能力是罕见的,他能够复述年青时代笔记的内容,心算并不限于简单的运算,高等数学一样可以用心算去完成.有一个例子足以说明他的本领,欧拉的两个学生把一个复杂的收敛级数的17项加起来,算到第50位数字,两人相差一个单位,欧拉为了确定究竟谁对,用心算进行全部运算,最后把错误找了出来.欧拉在失明的17年中;还解决了使牛顿头痛的月离问题和很多复杂的分析问题.欧拉的风格是很高的,拉格朗日是稍后于欧拉的大数学家,从19岁起和欧拉通信,讨论等周问题的一般解法,这引起变分法的诞生.等周问题是欧拉多年来苦心考虑的问题,拉格朗日的解法,博得欧拉的热烈赞扬,1759年10月2日欧拉在回信中盛称拉格朗日的成就,并谦虚地压下自己在这方面较不成熟的作品暂不发表,使年青的拉格朗日的工作得以发表和流传,并赢得巨大的声誉.他晚年的时候,欧洲所有的数学家都把他当作老师,著名数学家拉普拉斯(Laplace)曾说过:"欧拉是我们的导师." 欧拉充沛的精力保持到最后一刻,1783年9月18日下午,欧拉为了庆祝他计算气球上升定律的成功,请朋友们吃饭,那时天王星刚发现不久,欧拉写出了计算天王星轨道的要领,还和他的孙子逗笑,喝完茶后,突然疾病发作,烟斗从手中落下,口里喃喃地说:"我死了",欧拉终于"停止了生命和计算". 欧拉的一生,是为数学发展而奋斗的一生,他那杰出的智慧,顽强的毅力,孜孜不倦的奋斗精神和高尚的科学道德,永远是值得我们学习的. 欧拉在数学上的建树很多,对著名的哥尼斯堡七桥问题的解答开创了图论的研究。欧拉还发现 ,不论什么形状的凸多面体,其顶点数v、棱数e、面数f之间总有v-e+f=2这个关系。v-e+f被称为欧拉示性数,成为拓扑学的基础概念。在数论中,欧拉首先引进了重要的欧拉函数φ(n),用多种方法证明了费马小定理。以欧拉的名字命名的数学公式、定理等在数学书籍中随处可见, 与此同时,他还在物理、天文、建筑以至音乐、哲学方面取得了辉煌的成就。〔欧拉还创设了许多数学符号,例如π(1736年),i(1777年),e(1748年),sin和cos(1748年),tg(1753年),△x(1755年),∑(1755年),f(x)(1734年)等.柯西柯西,A.L.(Cauchy,Augustin-Louis)1789年8月21日生于法国巴黎;1857年5月22日卒于法国斯科。数学、数学物理、力学。数学分析严格化的开拓者分析严格化的需要柯西怀着严格化的明确目标,为数学分析建立了一个基本严谨的完整体系。他说:“至于方法,我力图赋予……几何学中存在的严格性,决不求助于从代数一般性导出的推理。这种推理……只能认为是一种推断,有时还适用于提示真理,但与数学科学的令人叹服的严谨性很不相符。”他说他通过分析公式成立的条件和规定所用记号的意义,“消除了所有不确定性”,并说:“我的主要目标是使严谨性(这是我在《分析教程》中为自己制定的准绳)与基于无穷小的直接考虑所得到的简单性和谐一致。”极限与无穷小柯西规定:“当一个变量相继取的值无限接近于一个固定值,最终与此固定值之差要多小就有多小时,该值就称为所有其他值的极限。”“当同一变量相继取的数值无限减小以至降到低于任何给定的数,这个变量就成为人们所称的无穷小或无穷小量。这类变量以零为其极限。”“当同一变量相继取的数值越来越增加以至升到高于每个给定的数,如果它是正变量,则称它以正无穷为其极限,记作∞;如果是负变量,则称它以负无穷为其极限,记作-∞。”从字面上看,柯西的定义与在此以前达朗贝尔、拉克鲁瓦所给的定义差别不大,但实际上有巨大改进。首先,柯西常常把他的定义转述为不等式。在讨论复杂表达式的极限时,他用了ε-δ论证法的雏型。其次,他首次放弃了过去定义中常有的“一个变量决不会超过它的极限”这类不必要的提法,也不提过去定义中常涉及的一个变量是否“达到”它的极限,而把重点放在变量具有极限时的性态。最后,他以极限为基础定义无穷小和微积分学中的基本概念,建立了级数收敛性的一般理论。函数及其连续性柯西以接近于现代的方式定义单元函数:“当一些变量以这样的方式相联系,即当其中之一给定时,能推知所有其他变量的值,则通常就认为这些变量由前一变量表示,此变量取名为自变量,而其余由自变量表示的变量,就是通常所说的该自变量的一些函数。”他以类似方式定义多元函数,并区别了显函数和隐函数,用他建立的微分方程解的存在性定理在较强条件下证明了隐函数的局部存在性。柯西给出了连续的严格定义:“函数f(x)是处于两个指定界限之间的变量x的连续函数,如果对这两个界限之间的每个值x,差f(x+a)-f(x)的数值随着a无限减小。换言之,……变量的无穷小增量总导致函数本身的无穷小增量。”在一个附录中,他给出了闭区间上连续函数介值性质的严格证明,其中用到了“区间套”思想。微分学柯西按照前人方式用差商的极限定义导数,但在定义中多了一句:“当这个极限存在时,……用加撇符号y'或f'(x)表示。”这表明他已用崭新的方式考虑问题。他把导数定义转述为不等式,由此证明有关的各种定理。柯西以割线的极限位置切线,用中值定理证明极限点处切线的水平性。他证明了f'(x0)=……=f(n-1)(x0)=0时用f(n)(x0)的符号判断极大、极小的命题。他由自己的中值定理推导出洛必达法则。这样,他就为微分学的应用奠定了严格的理论基础。积分学他既给出了连续函数定积分的定义,又证明了它的存在性。他还指出这种定义对于不能把被积函数转化为原函数的一般情形也适用。他给出了现在通用的广义积分的定义。柯西简洁而严格地证明了微积分学基本定理即牛顿-莱布尼茨公式。他利用定积分严格证明了带余项的泰勒公式,还用微分与积分中值定理表示曲边梯形的面积,推导了平面曲线之间图形的面积、曲面面积和立体体积的公式。柯西的定义是从仅把积分看作微分逆运算走向现代积分理论的转折点,他坚持先证明存在性则是从依赖直觉到严格分析的转折点。级数论柯西是第一个认识到无穷级数论并非多项式理论的平凡推广而应当以极限为基础建立其完整理论的数学家。他以部分和有限定义级数收敛并以此极限定义收敛级数之和。18世纪中许多数学家都隐约地使用过这种定义,柯西则明确地陈述这一定义,并以此为基础比较严格地建立了完整的级数论。他给出所谓“柯西准则”,证明了必要性,并以理所当然的口气断定充分性。对于正项级数,他严格证明了比率判别法和他创造的根式判别法;指出∑Un与∑2nU2n同时收敛或发散,由此推出一些常用级数的敛散性;证明两个收敛级数∑的积级数∑收敛。对于一般项级数,他引进了绝对收敛概念,指出绝对收敛级数必收敛;收敛级数之和收敛,但积不一定收敛,并举出反例对于幂级数,柯西得到了收敛半径公式,他以例子f(x)=e-1/x2表明,一个函数可为它的泰勒级数代替只当后者收敛且其和等于所给函数。影响在柯西手里,微积分构成了由定义、定理及其证明和有关的各种应用组成的逻辑上紧密联系的体系。他的分析教程成为严格分析诞生的起点。复变函数论的奠基人19世纪,复变函数论逐渐成为数学的一个独立分支,柯西为此作了奠基性的工作。复函数与复幂级数《分析教程》中有一半以上篇幅讨论复数与初等复函数,这表明柯西早就把建立复变函数论作为分析的一项重要工程。他以形式方法引进复数(“虚表示式”),定义其基本运算,得到这些运算的性质。他比照实的情形定义复无穷小与复函数的连续性。复积分柯西写于1814年的关于定积分的论文是他创立复变函数论的第一步。文中给出了所谓柯西-黎曼方程;讨论了改变二重积分的次序问题,提出了被积函数有无穷型间断点时主值积分的观念并计算了许多广义积分。柯西写于1825年的关于积分限为虚数的定积分的论文,是一篇力作。文中提出了作为单复变函数论基础的“柯西积分定理”。柯西本人用变分方法证明了这条定理,证明中曲线连续变形的思想,可以说是“同伦”观念的萌芽。文中还讨论了被积函数出现一阶与m阶极点时广义积分的计算。残数演算术语“残数”首次出现于柯西在1826年写的一篇论文中。他认为残数演算已成为“一种类似于微积分的新型计算方法”,可以应用于大量问题。复变函数论的建立C.A.布里奥于1859年出版了《双周期函数论》,阐明了柯西理论的对象,系统阐述了复变函数论,对于把柯西的观念传播到全欧洲起了决定性作用,标志着单复变函数论正式形成。

数学,起源于人类早期的生产活动,为中国古代六艺之一,亦被古希腊学者视为哲学之起点。数学的希腊语μαθηματικ??(mathematikós)意思是“学问的基础”,源于μ?θημα(máthema)(“科学,知识,学问”)。 数学的演进大约可以看成是抽象化的持续发展,或是题材的延展。第一个被抽象化的概念大概是数字,其对两个苹果及两个橘子之间有某样相同事物的认知是人类思想的一大突破。 除了认知到如何去数实际物质的数量,史前的人类亦了解了如何去数抽象物质的数量,如时间-日、季节和年。算术(加减乘除)也自然而然地产生了。古代的石碑亦证实了当时已有几何的知识。 更进一步则需要写作或其他可记录数字的系统,如符木或于印加帝国内用来储存数据的奇普。历史上曾有过许多且分歧的记数系统。 从历史时代的一开始,数学内的主要原理是为了做税务和贸易等相关计算,为了了解数字间的关系,为了测量土地,以及为了预测天文事件而形成的。这些需要可以简单地被概括为数学对数量、结构、空间及时间方面的研究。 到了16世纪,算术、初等代数、以及三角学等初等数学已大体完备。17世纪变量概念的产生使人们开始研究变化中的量与量的互相关系和图形间的互相变换。在研究经典力学的过程中,微积分的方法被发明。随着自然科学和技术的进一步发展,为研究数学基础而产生的集合论和数理逻辑等也开始慢慢发展。 数学从古至今便一直不断地延展,且与科学有丰富的相互作用,并使两者都得到好处。数学在历史上有着许多的发现,并且直至今日都还不断地发现中。依据Mikhail B. Sevryuk于美国数学会通报2006年1月的期刊中所说,“存在于数学评论数据库中论文和书籍的数量自1940年(数学评论的创刊年份)现已超过了一百九十万份,而且每年还增加超过七万五千份的细目。此一学海的绝大部份为新的数学定理及其证明。”

这都不会???丢人!百度一下全都有了

均值定理毕业论文

数学在生活中的应用 数学是一门很有用的学科。早在远古时代,就有原始人“涉猎计数”与“结绳记事” 如今,数学知识和数学思想在工农业生产和人们日常生活中有极其广泛的应用。譬如,人们 购物后须记账,以便年终统计查询;去银行办理储蓄业务;查收各住户水电费用等,这些便 利用了算术及统计学知识。此外,社区和机关大院门口的“推拉式自动伸缩门” ;运动场跑 道直道与弯道的平滑连接;底部不能靠近的建筑物高度的计算;隧道双向作业起点的确定; 折扇的设计以及黄金分割等,则是平面几何中直线图形的性质及解 Rt 三角形有关知识的应 用。 因此我们的研究性课题是数学在生活中的运用,希望通过这次小研究,提高我们的数 学能力,能够在生活中自觉地运用数学知识。 结合高中知识:函数、不等式、数列等方面,我们上网查了资料相关资料,并结合自身生活 实际思考,整理归纳如下。 第一部分 函数的应用 我们所学过的函数有:一元一次函数、一元二次函数、分式函数、无理函数、幂、指、 对数函数及分段函数等八种。这些函数从不同角度反映了自然界中变量与变量间的依存关 系,因此代数中的函数知识是与生产实践及生活实际密切相关的。 一、一元一次函数的应用 一元一次函数在我们的日常生活中应用十分广泛。 当人们在社会生活中从事买卖特别是 消费活动时,若其中涉及到变量的线性依存关系,则可利用一元一次函数解决问题。 例如,当我们购物、租用车辆、入住旅馆时,经营者为达到宣传、促销或其他目的,往 往会为我们提供两种或多种付款方案或优惠办法。 这时我们应三思而后行, 深入发掘自己头 脑中的数学知识,做出明智的选择。俗话说: “从南京到北京,买的没有卖的精。 ”我们切不 可盲从,以免上了商家设下的小圈套,吃了眼前亏。 过年这几天和家人上街购物, 商家纷纷采取各种优惠措施, 我就运用自己的数学函数知 识精打细算了一次。 我去“好日子”超市购物,一块醒目的牌子吸引了我,上面说购买茶壶、茶杯可以优惠, 这似乎很少见。更奇怪的是,居然有两种优惠方法: (1)卖一送一(即买一只茶壶送一只茶 杯)(2)打九折(即按购买总价的 90% 付款) ; 。其下还有前提条件是:购买茶壶 3 只以上 (茶壶 20 元/个,茶杯 5 元/个) 。由此,我不禁想到:这两种优惠办法有区别吗?到底哪种 更便宜呢?我便很自然的联想到了函数关系式, 决心应用所学的函数知识, 运用解析法将此 问题解决。 我在纸上写道: 设某顾客买茶杯 x 只,付款 y 元,(x>3 且 x∈N),则 用第一种方法付款 y1=4×20+(x-4)×5=5x+60; 用第二种方法付款 y2=(20×4+5x)×90%=4.5x+72. 接着比较 y1y2 的相对大小. 设 d=y1-y2=5x+60-(4.5x+72)=0.5x-12. 然后便要进行讨论: 当 d>0 时,0.5x-12>0,即 x>24; 当 d=0 时,x=24; 当 d<0 时,x<24. 综上所述,当所购茶杯多于 24 只时,法(2)省钱;恰好购买 24 只时,两种方法价格相等; 购买只数在 4—23 之间时,法(1)便宜. 可见,利用一元一次函数来指导购物,即锻炼了数学头脑、发散了思维,又节省了钱财、杜 绝了浪费,真是一举两得啊! 二、一元二次函数的应用 在企业进行诸如建筑、饲养、造林绿化、产品制造及其他大规模生产时, 其利润随投资的变化关系一般可用二次函数表示。 企业经营者经常依据这方面的知识预计企 业发展和项目开发的前景。他们可通过投资和利润间的二次函数关系预测企业未来的效益, 从而判断企业经济效益是否得到提高、 企业是否有被兼并的危险、 项目有无开发前景等问题。 常用方法有:求函数最值、某单调区间上最值及某自变量对应的函数值。 三、三角函数的应用 三角函数的应用极其广泛,最简的也是最常见的一类——锐角三角函数的应用: “山林 绿化”问题。 在山林绿化中, 须在山坡上等距离植树,且山坡上两树之间的距离投影到平地上须同平地 树木间距保持一致。 (如左图)因此,林业人员在植树前,要计算出山坡上两树之间的距离。 这便要用到锐角三角函数的知识。 第二部分 不等式的应用 日常生活中常用的不等式有:一元一次不等式、一元二次不等式和平均值不等式。前两 类不等式的应用与其对应函数及方程的应用如出一辙, 而平均值不等式在生产生活中起到了 不容忽视的作用。下面,我们主要谈一下均值不等式和均值定理的应用。 在生产和建设中, 许多与最优化设计相关的实际问题通常可应用平均值不等式来解决。 平均 值不等式知识在日常生活中的应用, 均值不等式和极值定理通常可有如下几方面的极其重要 的应用: (表后重点分析“包装罐设计”问题) 实践活动 已知条件 最优方案 解决办法 设计花坛绿地 周长或斜边 面积最大 极值定理一 经营成本 各项费用单价及销售量 成本最低 函数、极值定理二 车船票价设计 航行里程、限载人数、 票价最低 用极值定理二求出 速度、各项费用及相应 最低成本,再由此 比例关系 计算出最低票价 (票价=最低票价+ +平均利润) 包装罐设计 (见表后) (见表后) (见表后) 包装罐设计问题 1、 “白猫”洗衣粉桶 “白猫”洗衣粉桶的形状是等边圆柱(如右图所示) , 若容积一定且底面与侧面厚度一样,问高与底面半径是 什么关系时用料最省(即表面积最小)? 分析:容积一定=>лr h=V(定值) =>S=2лr +2лrh=2л(r +rh)= 2л(r +rh/2+rh/2) ≥2л3 (r h) /4 =3 2лV (当且仅当 r =rh/2=>h=2r 时取等号), ∴应设计为 h=d 的等边圆柱体. 2、 “易拉罐”问题 圆柱体上下第半径为 R,高为 h,若体积为定值 V,且上下底 厚度为侧面厚度的二倍,问高与底面半径是什么关系时用料最 省(即表面积最小)? 分析:应用均值定理,同理可得 h=2d∴应设计为 h=2d 的圆柱体. 事实上, 不等式特别是均值不等式在生产实践中的应用远不止这些, 在这里就不一一列 举了。 第二部分 第二部分 数列的应用 在实际生活和经济活动中,很多问题都与数列密切相关。如分期付款、个人投资理财以及人 口问题、资源问题等都可运用所学数列知识进行分析,从而予以解决。 重点分析等差数列、等比数列在实际生活和经济活动中的应用。 (一)按揭货款中的数列问题 随着中央推行积极的财政政策,购置房地产按揭货款(公积金贷款)制度的推出,极大 地刺激了人们的消费欲望,扩大了内需,有效地拉动了经济增长。 众所周知, 按揭货款 (公积金贷款) 中都实行按月等额还本付息。 这个等额数是如何得来的, 此外若干月后,还应归还银行多少本金,这些人们往往很难做到心中有数。下面就来寻求这 一问题的解决办法。 若贷款数额 a0 元,贷款月利率为 p,还款方式每月等额还本付息 a 元.设第 n 月还款后的本 金为 an,那么有: a1=a0(1+p)-a, a2=a1(1+p)-a, a3=a2(1+p)-a, ...... an+1=an(1+p)-a,.........................(*) 将(*)变形,得 (an+1-a/p)/(an-a/p)=1+p. 由此可见,{an-a/p}是一个以 a1-a/p 为首项,1+p 为公比的等比数列。日常生活中一切有关 按揭货款的问题,均可根据此式计算。 研究总结 第三部分 研究总结这次研究运用数学知识解决实际问题给我们带来了许多发现和思考的愉快,这也正验证 了苏霍姆林斯基所说的: “在人的心灵深处,都有一种根深蒂固的需要,这就是希望自己是 一个发现者 、研究者、探索者。 ”这也正是研究性学习的意义所在。作为中学生,我们不仅 要学会数学知识,而且要会应用数学知识去分析、解决生活中遇到的问题.这样才能更好地 适应社会的发展和需要。 但这次研究性学习也有不足之处, 首先寒假大家联系不便, 也较难取得辅导老师的帮助, 我们想,毕竟高中所学数学知识有限,如果能在数学老师指导下,学习一些大学深入研究的 数学应用知识,可以更好的拓宽知识面,加深理解。其次,我们的生活和经济理财打交道较 少, 如果能结合学校的饭卡使用过程中的经济问题问题结合统计学知识, 调查出同学们的消 费水平,一些节俭消费的措施和手段,那数学知识就真的帮上大忙了。最后,希望学校能将 其他同学较为优秀的研究性学习成果进行展示,为我们提供借鉴。 高二(22)班 刘丽华 张晶晶 洪泓 曹静 沈彤 夏叶宁 潘玥

还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考! 1、导数在不等式证明中的应用 2、导数在不等式证明中的应用 3、导数在不等式证明中的应用 4、等价无穷小在求函数极限中的应用及推广 5、迪克斯特拉(Dijkstra)算法及其改进 6、第二积分中值定理“中间点”的性态 7、对均值不等式的探讨 8、对数学教学中开放题的探讨 9、对数学教学中开放题使用的几点思考 10、对现行较普遍的彩票发行方案的讨论 11、对一定理证明过程的感想 12、对一类递推数列收敛性的讨论 13、多扇图和多轮图的生成树计数 14、多维背包问题的扰动修复 15、多项式不可约的判别方法及应用 16、多元函数的极值 17、多元函数的极值及其应用 18、多元函数的极值及其应用 19、多元函数的极值问题 20、多元函数极值问题 21、二次曲线方程的化简 22、二元函数的单调性及其应用 23、二元函数的极值存在的判别方法 24、二元函数极限不存在性之研究 25、反对称矩阵与正交矩阵、对角形矩阵的关系 26、反循环矩阵和分块对称反循环矩阵 27、范德蒙行列式的一些应用 28、方阵A的伴随矩阵 29、放缩法及其应用 30、分块矩阵的应用 31、分块矩阵行列式计算的若干方法 32、辅助函数在数学分析中的应用 33、复合函数的可测性 34、概率方法在其他数学问题中的应用 35、概率论的发展简介及其在生活中的若干应用 36、概率论在彩票中的应用 37、概率统计在彩票中的应用 38、概率统计在实际生活中的应用 39、概率在点名机制中的应用 40、高阶等差数列的通项,前n项和公式的探讨及应用 41、给定点集最小覆盖快速近似算法的进一步研究及其应用 42、关联矩阵的一些性质及其应用 43、关于Gauss整数环及其推广 44、关于g-循环矩阵的逆矩阵 45、关于二重极限的若干计算方法 46、关于反函数问题的讨论 47、关于非线性方程问题的求解 48、关于函数一致连续性的几点注记 49、关于矩阵的秩的讨论 _ 50、关于两个特殊不等式的推广及应用 51、关于幂指函数的极限求法 52、关于扫雪问题的数学模型 53、关于实数完备性及其应用 54、关于数列通项公式问题探讨 55、关于椭圆性质及其应用地探究、推广 56、关于线性方程组的迭代法求解 57、关于一类非开非闭的商映射的构造 58、关于一类生态数学模型的几点思考 59、关于圆锥曲线中若干定值问题的求解初探 60、关于置信区间与假设检验的研究 61、关于周期函数的探讨 62、函数的一致连续性及其应用 63、函数定义的发展 64、函数级数在复分析中与在实分析中的关系 65、函数极值的求法 66、函数幂级数的展开和应用 67、函数项级数的收敛判别法的推广和应用 68、函数项级数一致收敛的判别 69、函数最值问题解法的探讨 70、蝴蝶定理的推广及应用 71、化归中的矛盾分析法研究 72、环上矩阵广义逆的若干性质 73、积分中值定理的再讨论 74、积分中值定理正反问题‘中间点’的渐近性 75、基于高中新教材的概率学习 76、基于最优生成树的'海底油气集输管网策略分析 77、级数求和的常用方法与几个特殊级数和 78、级数求和问题的几个转化 79、级数在求极限中的应用 80、极限的求法与技巧 81、极值的分析和运用 82、极值思想在图论中的应用 83、几个广义正定矩阵的内在联系及其区别 84、几个特殊不等式的巧妙证法及其推广应用 85、几个重要不等式的证明及应用 86、几个重要不等式在数学竞赛中的应用 87、几种特殊矩阵的逆矩阵求法

这个可以写一篇本科毕业论文的。

优秀微分中值定理毕业论文

1,预备知识,就是微分中值定理证明中用到的定理或定义。2,给出定理的内容,并证明,这个证明过程要你自己想,不能用别人证明过程,要不这篇论文就不是你的了,这部分也是你论文的核心和亮点。3,就是定理应用部分了。其实我觉得如果你去证明课本上的中值定理的话。这篇文章不好写,因为他已经被证明过了,你想创新比较难,我建议你改变定理的形式或改变定理的条件后,再自己给出证明过程,那这篇文章就很不错了。

相关百科

热门百科

首页
发表服务